Skip to content

foliumap module

Module for creating interactive maps with the folium library.

CustomControl

Bases: MacroElement

Put any HTML on the map as a Leaflet Control. Adopted from https://github.com/python-visualization/folium/pull/1662

Source code in geemap/foliumap.py
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
class CustomControl(MacroElement):
    """Put any HTML on the map as a Leaflet Control.
    Adopted from https://github.com/python-visualization/folium/pull/1662

    """

    _template = Template(
        """
        {% macro script(this, kwargs) %}
        L.Control.CustomControl = L.Control.extend({
            onAdd: function(map) {
                let div = L.DomUtil.create('div');
                div.innerHTML = `{{ this.html }}`;
                return div;
            },
            onRemove: function(map) {
                // Nothing to do here
            }
        });
        L.control.customControl = function(opts) {
            return new L.Control.CustomControl(opts);
        }
        L.control.customControl(
            { position: "{{ this.position }}" }
        ).addTo({{ this._parent.get_name() }});
        {% endmacro %}
    """
    )

    def __init__(self, html, position="bottomleft"):
        def escape_backticks(text):
            """Escape backticks so text can be used in a JS template."""
            import re

            return re.sub(r"(?<!\\)`", r"\`", text)

        super().__init__()
        self.html = escape_backticks(html)
        self.position = position

__init__(html, position='bottomleft')

Source code in geemap/foliumap.py
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
def __init__(self, html, position="bottomleft"):
    def escape_backticks(text):
        """Escape backticks so text can be used in a JS template."""
        import re

        return re.sub(r"(?<!\\)`", r"\`", text)

    super().__init__()
    self.html = escape_backticks(html)
    self.position = position

EEFoliumTileLayer

Bases: TileLayer

A Folium raster TileLayer that shows an EE object.

Source code in geemap/ee_tile_layers.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
class EEFoliumTileLayer(folium.raster_layers.TileLayer):
    """A Folium raster TileLayer that shows an EE object."""

    def __init__(
        self,
        ee_object: Union[
            ee.Geometry, ee.Feature, ee.FeatureCollection, ee.Image, ee.ImageCollection
        ],
        vis_params: Optional[Dict[str, Any]] = None,
        name: str = "Layer untitled",
        shown: bool = True,
        opacity: float = 1.0,
        **kwargs: Any,
    ):
        """Initialize the folium tile layer.

        Args:
            ee_object (Union[ee.Geometry, ee.Feature, ee.FeatureCollection,
                ee.Image, ee.ImageCollection]): The object to add to the map.
            vis_params (Optional[Dict[str, Any]]): The visualization parameters.
                Defaults to None.
            name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
            shown (bool, optional): A flag indicating whether the layer should
                be on by default. Defaults to True.
            opacity (float, optional): The layer's opacity represented as a
                number between 0 and 1. Defaults to 1.
        """
        self.url_format = _get_tile_url_format(
            ee_object, _validate_vis_params(vis_params)
        )
        super().__init__(
            tiles=self.url_format,
            attr="Google Earth Engine",
            name=name,
            overlay=True,
            control=True,
            show=shown,
            opacity=opacity,
            max_zoom=24,
            **kwargs,
        )

__init__(ee_object, vis_params=None, name='Layer untitled', shown=True, opacity=1.0, **kwargs)

Initialize the folium tile layer.

Parameters:

Name Type Description Default
vis_params Optional[Dict[str, Any]]

The visualization parameters. Defaults to None.

None
name str

The name of the layer. Defaults to 'Layer untitled'.

'Layer untitled'
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
opacity float

The layer's opacity represented as a number between 0 and 1. Defaults to 1.

1.0
Source code in geemap/ee_tile_layers.py
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def __init__(
    self,
    ee_object: Union[
        ee.Geometry, ee.Feature, ee.FeatureCollection, ee.Image, ee.ImageCollection
    ],
    vis_params: Optional[Dict[str, Any]] = None,
    name: str = "Layer untitled",
    shown: bool = True,
    opacity: float = 1.0,
    **kwargs: Any,
):
    """Initialize the folium tile layer.

    Args:
        ee_object (Union[ee.Geometry, ee.Feature, ee.FeatureCollection,
            ee.Image, ee.ImageCollection]): The object to add to the map.
        vis_params (Optional[Dict[str, Any]]): The visualization parameters.
            Defaults to None.
        name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
        shown (bool, optional): A flag indicating whether the layer should
            be on by default. Defaults to True.
        opacity (float, optional): The layer's opacity represented as a
            number between 0 and 1. Defaults to 1.
    """
    self.url_format = _get_tile_url_format(
        ee_object, _validate_vis_params(vis_params)
    )
    super().__init__(
        tiles=self.url_format,
        attr="Google Earth Engine",
        name=name,
        overlay=True,
        control=True,
        show=shown,
        opacity=opacity,
        max_zoom=24,
        **kwargs,
    )

EELeafletTileLayer

Bases: TileLayer

An ipyleaflet TileLayer that shows an EE object.

Source code in geemap/ee_tile_layers.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
class EELeafletTileLayer(ipyleaflet.TileLayer):
    """An ipyleaflet TileLayer that shows an EE object."""

    EE_TYPES = (
        ee.Geometry,
        ee.Feature,
        ee.FeatureCollection,
        ee.Image,
        ee.ImageCollection,
    )

    def __init__(
        self,
        ee_object: Union[
            ee.Geometry, ee.Feature, ee.FeatureCollection, ee.Image, ee.ImageCollection
        ],
        vis_params: Optional[Dict[str, Any]] = None,
        name: str = "Layer untitled",
        shown: bool = True,
        opacity: float = 1.0,
        **kwargs: Any,
    ):
        """Initialize the ipyleaflet tile layer.

        Args:
            ee_object (Union[ee.Geometry, ee.Feature, ee.FeatureCollection,
                ee.Image, ee.ImageCollection]): The object to add to the map.
            vis_params (Optional[Dict[str, Any]]): The visualization parameters.
                Defaults to None.
            name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
            shown (bool, optional): A flag indicating whether the layer should
                be on by default. Defaults to True.
            opacity (float, optional): The layer's opacity represented as a
                number between 0 and 1. Defaults to 1.
        """
        self._ee_object = ee_object
        self.url_format = _get_tile_url_format(
            ee_object, _validate_vis_params(vis_params)
        )
        super().__init__(
            url=self.url_format,
            attribution="Google Earth Engine",
            name=name,
            opacity=opacity,
            visible=shown,
            max_zoom=24,
            **kwargs,
        )

    @lru_cache()
    def _calculate_vis_stats(
        self,
        *,
        bounds: Union[ee.Geometry, ee.Feature, ee.FeatureCollection],
        bands: Tuple[str, ...],
    ) -> Tuple[float, float, float, float]:
        """Calculate stats used for visualization parameters.

        Stats are calculated consistently with the Code Editor visualization parameters,
        and are cached to avoid recomputing for the same bounds and bands.

        Args:
            bounds (Union[ee.Geometry, ee.Feature, ee.FeatureCollection]): The
                bounds to sample.
            bands (Tuple[str, ...]): The bands to sample.

        Returns:
            Tuple[float, float, float, float]: The minimum, maximum, standard
                deviation, and mean values across the specified bands.
        """
        stat_reducer = (
            ee.Reducer.minMax()
            .combine(ee.Reducer.mean().unweighted(), sharedInputs=True)
            .combine(ee.Reducer.stdDev(), sharedInputs=True)
        )

        stats = (
            self._ee_object.select(bands)
            .reduceRegion(
                reducer=stat_reducer,
                geometry=bounds,
                bestEffort=True,
                maxPixels=10_000,
                crs="SR-ORG:6627",
                scale=1,
            )
            .getInfo()
        )

        mins, maxs, stds, means = [
            {v for k, v in stats.items() if k.endswith(stat) and v is not None}
            for stat in ("_min", "_max", "_stdDev", "_mean")
        ]
        if any(len(vals) == 0 for vals in (mins, maxs, stds, means)):
            raise ValueError("No unmasked pixels were sampled.")

        min_val = min(mins)
        max_val = max(maxs)
        std_dev = sum(stds) / len(stds)
        mean = sum(means) / len(means)

        return (min_val, max_val, std_dev, mean)

    def calculate_vis_minmax(
        self,
        *,
        bounds: Union[ee.Geometry, ee.Feature, ee.FeatureCollection],
        bands: Optional[List[str]] = None,
        percent: Optional[float] = None,
        sigma: Optional[float] = None,
    ) -> Tuple[float, float]:
        """Calculate the min and max clip values for visualization.

        Args:
            bounds (Union[ee.Geometry, ee.Feature, ee.FeatureCollection]): The bounds to sample.
            bands (Optional[List[str]]): The bands to sample. If None, all bands are used.
            percent (Optional[float]): The percent to use when stretching.
            sigma (Optional[float]): The number of standard deviations to use when stretching.

        Returns:
            Tuple[float, float]: The minimum and maximum values to clip to.
        """
        bands = self._ee_object.bandNames() if bands is None else tuple(bands)
        try:
            min_val, max_val, std, mean = self._calculate_vis_stats(
                bounds=bounds, bands=bands
            )
        except ValueError:
            return (0, 0)

        if sigma is not None:
            stretch_min = mean - sigma * std
            stretch_max = mean + sigma * std
        elif percent is not None:
            x = (max_val - min_val) * (1 - percent)
            stretch_min = min_val + x
            stretch_max = max_val - x
        else:
            stretch_min = min_val
            stretch_max = max_val

        return (stretch_min, stretch_max)

__init__(ee_object, vis_params=None, name='Layer untitled', shown=True, opacity=1.0, **kwargs)

Initialize the ipyleaflet tile layer.

Parameters:

Name Type Description Default
vis_params Optional[Dict[str, Any]]

The visualization parameters. Defaults to None.

None
name str

The name of the layer. Defaults to 'Layer untitled'.

'Layer untitled'
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
opacity float

The layer's opacity represented as a number between 0 and 1. Defaults to 1.

1.0
Source code in geemap/ee_tile_layers.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def __init__(
    self,
    ee_object: Union[
        ee.Geometry, ee.Feature, ee.FeatureCollection, ee.Image, ee.ImageCollection
    ],
    vis_params: Optional[Dict[str, Any]] = None,
    name: str = "Layer untitled",
    shown: bool = True,
    opacity: float = 1.0,
    **kwargs: Any,
):
    """Initialize the ipyleaflet tile layer.

    Args:
        ee_object (Union[ee.Geometry, ee.Feature, ee.FeatureCollection,
            ee.Image, ee.ImageCollection]): The object to add to the map.
        vis_params (Optional[Dict[str, Any]]): The visualization parameters.
            Defaults to None.
        name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
        shown (bool, optional): A flag indicating whether the layer should
            be on by default. Defaults to True.
        opacity (float, optional): The layer's opacity represented as a
            number between 0 and 1. Defaults to 1.
    """
    self._ee_object = ee_object
    self.url_format = _get_tile_url_format(
        ee_object, _validate_vis_params(vis_params)
    )
    super().__init__(
        url=self.url_format,
        attribution="Google Earth Engine",
        name=name,
        opacity=opacity,
        visible=shown,
        max_zoom=24,
        **kwargs,
    )

calculate_vis_minmax(*, bounds, bands=None, percent=None, sigma=None)

Calculate the min and max clip values for visualization.

Parameters:

Name Type Description Default
bounds Union[Geometry, Feature, FeatureCollection]

The bounds to sample.

required
bands Optional[List[str]]

The bands to sample. If None, all bands are used.

None
percent Optional[float]

The percent to use when stretching.

None
sigma Optional[float]

The number of standard deviations to use when stretching.

None

Returns:

Type Description
Tuple[float, float]

Tuple[float, float]: The minimum and maximum values to clip to.

Source code in geemap/ee_tile_layers.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
def calculate_vis_minmax(
    self,
    *,
    bounds: Union[ee.Geometry, ee.Feature, ee.FeatureCollection],
    bands: Optional[List[str]] = None,
    percent: Optional[float] = None,
    sigma: Optional[float] = None,
) -> Tuple[float, float]:
    """Calculate the min and max clip values for visualization.

    Args:
        bounds (Union[ee.Geometry, ee.Feature, ee.FeatureCollection]): The bounds to sample.
        bands (Optional[List[str]]): The bands to sample. If None, all bands are used.
        percent (Optional[float]): The percent to use when stretching.
        sigma (Optional[float]): The number of standard deviations to use when stretching.

    Returns:
        Tuple[float, float]: The minimum and maximum values to clip to.
    """
    bands = self._ee_object.bandNames() if bands is None else tuple(bands)
    try:
        min_val, max_val, std, mean = self._calculate_vis_stats(
            bounds=bounds, bands=bands
        )
    except ValueError:
        return (0, 0)

    if sigma is not None:
        stretch_min = mean - sigma * std
        stretch_max = mean + sigma * std
    elif percent is not None:
        x = (max_val - min_val) * (1 - percent)
        stretch_min = min_val + x
        stretch_max = max_val - x
    else:
        stretch_min = min_val
        stretch_max = max_val

    return (stretch_min, stretch_max)

FloatText

Bases: MacroElement

Adds a floating image in HTML canvas on top of the map.

Source code in geemap/foliumap.py
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
class FloatText(MacroElement):
    """Adds a floating image in HTML canvas on top of the map."""

    _template = Template(
        """
            {% macro header(this,kwargs) %}
                <style>
                    #{{this.get_name()}} {
                        position:absolute;
                        bottom:{{this.bottom}}%;
                        left:{{this.left}}%;
                        }
                </style>
            {% endmacro %}

            {% macro html(this, kwargs) %}

            <!doctype html>
            <html lang="en">
            <head>
            </head>
            <body>

            <div id='{{this.get_name()}}' class='{{this.get_name()}}'
                style='position: absolute; z-index:9999; border:2px solid grey; background-color:rgba(255, 255, 255, 0.8);
                border-radius:5px; padding: 5px; font-size:14px; '>

            <div class='text'>{{this.text}}</div>
            </div>

            </body>
            </html>

            <style type='text/css'>
            .{{this.get_name()}} .text {
                text-align: left;
                margin-bottom: 0px;
                font-size: 90%;
                float: left;
                }
            </style>
            {% endmacro %}
            """
    )

    def __init__(self, text, bottom=75, left=75):
        super(FloatText, self).__init__()
        self._name = "FloatText"
        self.text = text
        self.bottom = bottom
        self.left = left

Map

Bases: Map

The Map class inherits from folium.Map. By default, the Map will use OpenStreetMap as the basemap.

Returns:

Name Type Description
object

folium map object.

Source code in geemap/foliumap.py
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
class Map(folium.Map):
    """The Map class inherits from folium.Map. By default, the Map will use OpenStreetMap as the basemap.

    Returns:
        object: folium map object.
    """

    def __init__(self, **kwargs):
        import logging

        logging.getLogger("googleapiclient.discovery_cache").setLevel(logging.ERROR)

        if "ee_initialize" not in kwargs.keys():
            kwargs["ee_initialize"] = True

        if kwargs["ee_initialize"]:
            ee_initialize()

        # Default map center location and zoom level
        latlon = [20, 0]
        zoom = 2

        # Interchangeable parameters between ipyleaflet and folium
        if "center" in kwargs.keys():
            kwargs["location"] = kwargs["center"]
            kwargs.pop("center")
        if "location" in kwargs.keys():
            latlon = kwargs["location"]
        else:
            kwargs["location"] = latlon

        if "zoom" in kwargs.keys():
            kwargs["zoom_start"] = kwargs["zoom"]
            kwargs.pop("zoom")
        if "zoom_start" in kwargs.keys():
            zoom = kwargs["zoom_start"]
        else:
            kwargs["zoom_start"] = zoom
        if "max_zoom" not in kwargs.keys():
            kwargs["max_zoom"] = 30

        if "add_google_map" not in kwargs.keys() and "basemap" not in kwargs.keys():
            kwargs["add_google_map"] = False
        if "plugin_LatLngPopup" not in kwargs.keys():
            kwargs["plugin_LatLngPopup"] = False
        if "plugin_Fullscreen" not in kwargs.keys():
            kwargs["plugin_Fullscreen"] = True
        if "plugin_Draw" not in kwargs.keys():
            kwargs["plugin_Draw"] = True
        if "Draw_export" not in kwargs.keys():
            kwargs["Draw_export"] = False
        if "plugin_MiniMap" not in kwargs.keys():
            kwargs["plugin_MiniMap"] = False
        # if "plugin_LayerControl" not in kwargs.keys():
        #     kwargs["plugin_LayerControl"] = False
        if "locate_control" not in kwargs:
            kwargs["locate_control"] = False
        if "search_control" not in kwargs:
            kwargs["search_control"] = True
        if "scale_control" in kwargs:
            kwargs["scale"] = kwargs["scale_control"]
            kwargs.pop("scale_control")

        if (
            "width" in kwargs
            and isinstance(kwargs["width"], str)
            and ("%" not in kwargs["width"])
        ):
            kwargs["width"] = float(kwargs["width"].replace("px", ""))

        height = None
        width = None

        if "height" in kwargs:
            height = kwargs.pop("height")
        else:
            height = 600

        if "width" in kwargs:
            width = kwargs.pop("width")
        else:
            width = "100%"

        if "tiles" not in kwargs:
            kwargs["tiles"] = None
            if "basemap" not in kwargs:
                kwargs["basemap"] = "OpenStreetMap"

        super().__init__(**kwargs)
        self.baseclass = "folium"

        # The list of Earth Engine Geometry objects converted from geojson
        self.draw_features = []
        # The Earth Engine Geometry object converted from the last drawn feature
        self.draw_last_feature = None
        self.draw_layer = None
        self.user_roi = None
        self.user_rois = None
        self.search_locations = None
        self.search_loc_marker = None
        self.search_loc_geom = None

        if (height is not None) or (width is not None):
            f = folium.Figure(width=width, height=height)
            self.add_to(f)

        if kwargs.get("add_google_map"):
            basemaps["ROADMAP"].add_to(self)
        if kwargs.get("basemap"):
            basemaps[kwargs.get("basemap")].add_to(self)
        if kwargs.get("plugin_LatLngPopup"):
            folium.LatLngPopup().add_to(self)
        if kwargs.get("plugin_Fullscreen"):
            plugins.Fullscreen().add_to(self)
        if kwargs.get("plugin_Draw"):
            plugins.Draw(export=kwargs.get("Draw_export")).add_to(self)
        if kwargs.get("plugin_MiniMap"):
            plugins.MiniMap().add_to(self)
        if kwargs.get("plugin_LayerControl"):
            folium.LayerControl().add_to(self)
        if kwargs["locate_control"]:
            plugins.LocateControl().add_to(self)
        if kwargs["search_control"]:
            plugins.Geocoder(collapsed=True, position="topleft").add_to(self)

        if "plugin_LayerControl" not in kwargs:
            self.options["layersControl"] = True
        else:
            self.options["layersControl"] = kwargs["plugin_LayerControl"]

        self.fit_bounds([latlon, latlon], max_zoom=zoom)

    def setOptions(self, mapTypeId="HYBRID", styles={}, types=[]):
        """Adds Google basemap to the map.

        Args:
            mapTypeId (str, optional): A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'.
            styles ([type], optional): A dictionary of custom MapTypeStyle objects keyed with a name that will appear in the map's Map Type Controls. Defaults to None.
            types ([type], optional): A list of mapTypeIds to make available. If omitted, but opt_styles is specified, appends all of the style keys to the standard Google Maps API map types.. Defaults to None.
        """
        try:
            basemaps[mapTypeId].add_to(self)
        except Exception:
            raise Exception(
                "Basemap can only be one of the following: {}".format(
                    ", ".join(basemaps.keys())
                )
            )

    set_options = setOptions

    def add_basemap(
        self, basemap: Optional[str] = "HYBRID", show: Optional[bool] = True, **kwargs
    ):
        """Adds a basemap to the map.

        Args:
            basemap (str, optional): Can be one of string from ee_basemaps. Defaults to 'ROADMAP'.
        """
        import xyzservices

        try:
            map_dict = {
                "ROADMAP": "Esri.WorldStreetMap",
                "SATELLITE": "Esri.WorldImagery",
                "TERRAIN": "Esri.WorldTopoMap",
                "HYBRID": "Esri.WorldImagery",
            }

            if isinstance(basemap, str):
                if basemap.upper() in map_dict:
                    if basemap in os.environ:
                        if "name" in kwargs:
                            kwargs["name"] = basemap
                        basemap = os.environ[basemap]
                        self.add_tile_layer(tiles=basemap, **kwargs)

                    else:
                        basemap = basemap.upper()
                        basemaps[basemap].add_to(self)

                elif isinstance(basemap, xyzservices.TileProvider):
                    name = basemap.name
                    url = basemap.build_url()
                    attribution = basemap.attribution
                    if "max_zoom" in basemap.keys():
                        max_zoom = basemap["max_zoom"]
                    else:
                        max_zoom = 22
                    layer = folium.TileLayer(
                        tiles=url,
                        attr=attribution,
                        name=name,
                        max_zoom=max_zoom,
                        overlay=True,
                        control=True,
                        show=show,
                        **kwargs,
                    )

                    self.add_layer(layer)

                    arc_add_layer(url, name)

                elif basemap in basemaps:
                    bmap = basemaps[basemap]
                    bmap.show = show
                    bmap.add_to(self)
                    if isinstance(basemaps[basemap], folium.TileLayer):
                        url = basemaps[basemap].tiles
                    elif isinstance(basemaps[basemap], folium.WmsTileLayer):
                        url = basemaps[basemap].url
                    arc_add_layer(url, basemap)
                else:
                    print(
                        "Basemap can only be one of the following: {}".format(
                            ", ".join(basemaps.keys())
                        )
                    )

        except Exception:
            raise Exception(
                "Basemap can only be one of the following: {}".format(
                    ", ".join(basemaps.keys())
                )
            )

    def add_layer(
        self,
        ee_object,
        vis_params={},
        name="Layer untitled",
        shown=True,
        opacity=1.0,
        **kwargs,
    ):
        """Adds a given EE object to the map as a layer.

        Args:
            ee_object (Collection|Feature|Image|MapId): The object to add to the map.
            vis_params (dict, optional): The visualization parameters. Defaults to {}.
            name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
            shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
            opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1.
        """

        layer = EEFoliumTileLayer(ee_object, vis_params, name, shown, opacity, **kwargs)
        layer.add_to(self)
        arc_add_layer(layer.url_format, name, shown, opacity)

    addLayer = add_layer

    def _repr_mimebundle_(self, **kwargs):
        """Adds Layer control to the map. Reference: https://ipython.readthedocs.io/en/stable/config/integrating.html#MyObject._repr_mimebundle_"""
        if self.options["layersControl"]:
            self.add_layer_control()

    def set_center(self, lon, lat, zoom=10):
        """Centers the map view at a given coordinates with the given zoom level.

        Args:
            lon (float): The longitude of the center, in degrees.
            lat (float): The latitude of the center, in degrees.
            zoom (int, optional): The zoom level, from 1 to 24. Defaults to 10.
        """
        self.fit_bounds([[lat, lon], [lat, lon]], max_zoom=zoom)

        if is_arcpy():
            arc_zoom_to_extent(lon, lat, lon, lat)

    setCenter = set_center

    def zoom_to_bounds(self, bounds):
        """Zooms to a bounding box in the form of [minx, miny, maxx, maxy].

        Args:
            bounds (list | tuple): A list/tuple containing minx, miny, maxx, maxy values for the bounds.
        """
        #  The folium fit_bounds method takes lat/lon bounds in the form [[south, west], [north, east]].
        self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

    def zoom_to_gdf(self, gdf):
        """Zooms to the bounding box of a GeoPandas GeoDataFrame.

        Args:
            gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
        """
        bounds = gdf.total_bounds
        self.zoom_to_bounds(bounds)

    def center_object(self, ee_object, zoom=None, max_error=0.001):
        """Centers the map view on a given object.

        Args:
            ee_object (Element|Geometry): An Earth Engine object to center on a geometry, image or feature.
            zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
            max_error (float, optional): The maximum error for the geometry. Defaults to 0.001.
        """
        if isinstance(ee_object, ee.Geometry):
            geometry = ee_object.transform(maxError=max_error)
        else:
            try:
                geometry = ee_object.geometry(maxError=max_error).transform(
                    maxError=max_error
                )
            except Exception:
                raise Exception(
                    "ee_object must be an instance of one of ee.Geometry, ee.FeatureCollection, ee.Image, or ee.ImageCollection."
                )

        if zoom is not None:
            if not isinstance(zoom, int):
                raise Exception("Zoom must be an integer.")
            else:
                centroid = geometry.centroid(maxError=max_error).getInfo()[
                    "coordinates"
                ]
                lat = centroid[1]
                lon = centroid[0]
                self.set_center(lon, lat, zoom)

                if is_arcpy():
                    arc_zoom_to_extent(lon, lat, lon, lat)

        else:
            coordinates = geometry.bounds(maxError=max_error).getInfo()["coordinates"][
                0
            ]
            x = [c[0] for c in coordinates]
            y = [c[1] for c in coordinates]
            xmin = min(x)
            xmax = max(x)
            ymin = min(y)
            ymax = max(y)
            bounds = [[ymin, xmin], [ymax, xmax]]
            self.fit_bounds(bounds)

            if is_arcpy():
                arc_zoom_to_extent(xmin, ymin, xmax, ymax)

    centerObject = center_object

    def set_control_visibility(
        self, layerControl=True, fullscreenControl=True, latLngPopup=True
    ):
        """Sets the visibility of the controls on the map.

        Args:
            layerControl (bool, optional): Whether to show the control that allows the user to toggle layers on/off. Defaults to True.
            fullscreenControl (bool, optional): Whether to show the control that allows the user to make the map full-screen. Defaults to True.
            latLngPopup (bool, optional): Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True.
        """
        if layerControl:
            folium.LayerControl().add_to(self)
        if fullscreenControl:
            plugins.Fullscreen().add_to(self)
        if latLngPopup:
            folium.LatLngPopup().add_to(self)

    setControlVisibility = set_control_visibility

    def add_layer_control(self):
        """Adds layer control to the map."""
        layer_ctrl = False
        for item in self.to_dict()["children"]:
            if item.startswith("layer_control"):
                layer_ctrl = True
                break
        if not layer_ctrl:
            folium.LayerControl().add_to(self)

    addLayerControl = add_layer_control

    def add_marker(
        self, location, popup=None, tooltip=None, icon=None, draggable=False, **kwargs
    ):
        """Adds a marker to the map. More info about marker options at https://python-visualization.github.io/folium/modules.html#folium.map.Marker.

        Args:
            location (list | tuple): The location of the marker in the format of [lat, lng].
            popup (str, optional): The popup text. Defaults to None.
            tooltip (str, optional): The tooltip text. Defaults to None.
            icon (str, optional): The icon to use. Defaults to None.
            draggable (bool, optional): Whether the marker is draggable. Defaults to False.
        """
        if isinstance(location, list):
            location = tuple(location)
        if isinstance(location, tuple):
            folium.Marker(
                location=location,
                popup=popup,
                tooltip=tooltip,
                icon=icon,
                draggable=draggable,
                **kwargs,
            ).add_to(self)

        else:
            raise TypeError("The location must be a list or a tuple.")

    def add_wms_layer(
        self,
        url,
        layers,
        name=None,
        attribution="",
        overlay=True,
        control=True,
        shown=True,
        format="image/png",
        transparent=True,
        version="1.1.1",
        styles="",
        **kwargs,
    ):
        """Add a WMS layer to the map.

        Args:
            url (str): The URL of the WMS web service.
            layers (str): Comma-separated list of WMS layers to show.
            name (str, optional): The layer name to use on the layer control. Defaults to None.
            attribution (str, optional): The attribution of the data layer. Defaults to ''.
            overlay (str, optional): Allows overlay. Defaults to True.
            control (str, optional): Adds the layer to the layer control. Defaults to True.
            shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
            format (str, optional): WMS image format (use ‘image/png’ for layers with transparency). Defaults to 'image/png'.
            transparent (bool, optional): Whether the layer shall allow transparency. Defaults to True.
            version (str, optional): Version of the WMS service to use. Defaults to "1.1.1".
            styles (str, optional): Comma-separated list of WMS styles. Defaults to "".
        """
        try:
            folium.raster_layers.WmsTileLayer(
                url=url,
                layers=layers,
                name=name,
                attr=attribution,
                overlay=overlay,
                control=control,
                show=shown,
                styles=styles,
                fmt=format,
                transparent=transparent,
                version=version,
                **kwargs,
            ).add_to(self)
        except Exception:
            raise Exception("Failed to add the specified WMS TileLayer.")

    def add_tile_layer(
        self,
        tiles="OpenStreetMap",
        name="Untitled",
        attribution=".",
        overlay=True,
        control=True,
        shown=True,
        opacity=1.0,
        API_key=None,
        **kwargs,
    ):
        """Add a XYZ tile layer to the map.

        Args:
            tiles (str): The URL of the XYZ tile service.
            name (str, optional): The layer name to use on the layer control. Defaults to 'Untitled'.
            attribution (str, optional): The attribution of the data layer. Defaults to '.'.
            overlay (str, optional): Allows overlay. Defaults to True.
            control (str, optional): Adds the layer to the layer control. Defaults to True.
            shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
            opacity (float, optional): Sets the opacity for the layer.
            API_key (str, optional): – API key for Cloudmade or Mapbox tiles. Defaults to True.
        """

        if "max_zoom" not in kwargs:
            kwargs["max_zoom"] = 100
        if "max_native_zoom" not in kwargs:
            kwargs["max_native_zoom"] = 100

        try:
            folium.raster_layers.TileLayer(
                tiles=tiles,
                name=name,
                attr=attribution,
                overlay=overlay,
                control=control,
                show=shown,
                opacity=opacity,
                API_key=API_key,
                **kwargs,
            ).add_to(self)
        except Exception:
            raise Exception("Failed to add the specified TileLayer.")

    def add_cog_layer(
        self,
        url,
        name="Untitled",
        attribution=".",
        opacity=1.0,
        shown=True,
        bands=None,
        titiler_endpoint=None,
        **kwargs,
    ):
        """Adds a COG TileLayer to the map.

        Args:
            url (str): The URL of the COG tile layer.
            name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'.
            attribution (str, optional): The attribution to use. Defaults to '.'.
            opacity (float, optional): The opacity of the layer. Defaults to 1.
            shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
            bands (list, optional): A list of bands to use. Defaults to None.
            titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        """
        tile_url = cog_tile(url, bands, titiler_endpoint, **kwargs)
        bounds = cog_bounds(url, titiler_endpoint)
        self.add_tile_layer(
            tiles=tile_url,
            name=name,
            attribution=attribution,
            opacity=opacity,
            shown=shown,
        )
        self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

    def add_cog_mosaic(self, **kwargs):
        raise NotImplementedError(
            "This function is no longer supported.See https://github.com/giswqs/leafmap/issues/180."
        )

    def add_stac_layer(
        self,
        url=None,
        collection=None,
        item=None,
        assets=None,
        bands=None,
        titiler_endpoint=None,
        name="STAC Layer",
        attribution=".",
        opacity=1.0,
        shown=True,
        **kwargs,
    ):
        """Adds a STAC TileLayer to the map.

        Args:
            url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
            collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
            item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
            assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
            bands (list): A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"]
            titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
            name (str, optional): The layer name to use for the layer. Defaults to 'STAC Layer'.
            attribution (str, optional): The attribution to use. Defaults to ''.
            opacity (float, optional): The opacity of the layer. Defaults to 1.
            shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
        """
        tile_url = stac_tile(
            url, collection, item, assets, bands, titiler_endpoint, **kwargs
        )
        bounds = stac_bounds(url, collection, item, titiler_endpoint)
        self.add_tile_layer(
            url=tile_url,
            name=name,
            attribution=attribution,
            opacity=opacity,
            shown=shown,
        )
        self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

    def add_raster(
        self,
        source: str,
        indexes: Optional[int] = None,
        colormap: Optional[str] = None,
        vmin: Optional[float] = None,
        vmax: Optional[float] = None,
        nodata: Optional[float] = None,
        attribution: Optional[str] = None,
        layer_name: Optional[str] = "Raster",
        array_args: Optional[Dict] = {},
        **kwargs,
    ):
        """Add a local raster dataset to the map.
            If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and
            if the raster does not render properly, try installing jupyter-server-proxy using `pip install jupyter-server-proxy`,
            then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.

            import os
            os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'

        Args:
            source (str): The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.
            indexes (int, optional): The band(s) to use. Band indexing starts at 1. Defaults to None.
            colormap (str, optional): The name of the colormap from `matplotlib` to use when plotting a single band. See https://matplotlib.org/stable/gallery/color/colormap_reference.html. Default is greyscale.
            vmin (float, optional): The minimum value to use when colormapping the colormap when plotting a single band. Defaults to None.
            vmax (float, optional): The maximum value to use when colormapping the colormap when plotting a single band. Defaults to None.
            nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
            attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
            layer_name (str, optional): The layer name to use. Defaults to 'Raster'.
            array_args (dict, optional): Additional arguments to pass to `array_to_image`. Defaults to {}.
        """

        import numpy as np
        import xarray as xr

        if isinstance(source, np.ndarray) or isinstance(source, xr.DataArray):
            source = array_to_image(source, **array_args)

        tile_layer, tile_client = get_local_tile_layer(
            source,
            indexes=indexes,
            colormap=colormap,
            vmin=vmin,
            vmax=vmax,
            nodata=nodata,
            attribution=attribution,
            tile_format="folium",
            layer_name=layer_name,
            return_client=True,
            **kwargs,
        )
        tile_layer.add_to(self)

        bounds = tile_client.bounds()  # [ymin, ymax, xmin, xmax]
        bounds = (
            bounds[2],
            bounds[0],
            bounds[3],
            bounds[1],
        )  # [minx, miny, maxx, maxy]
        self.zoom_to_bounds(bounds)

        arc_add_layer(tile_layer.tiles, layer_name, True, 1.0)
        arc_zoom_to_extent(bounds[0], bounds[1], bounds[2], bounds[3])

    def add_remote_tile(
        self,
        source,
        band=None,
        palette=None,
        vmin=None,
        vmax=None,
        nodata=None,
        attribution=None,
        layer_name=None,
        **kwargs,
    ):
        """Add a remote Cloud Optimized GeoTIFF (COG) to the map.

        Args:
            source (str): The path to the remote Cloud Optimized GeoTIFF.
            band (int, optional): The band to use. Band indexing starts at 1. Defaults to None.
            palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
            vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
            vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
            nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
            attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
            layer_name (str, optional): The layer name to use. Defaults to None.
        """
        if isinstance(source, str) and source.startswith("http"):
            self.add_raster(
                source,
                band=band,
                palette=palette,
                vmin=vmin,
                vmax=vmax,
                nodata=nodata,
                attribution=attribution,
                layer_name=layer_name,
                **kwargs,
            )
        else:
            raise Exception("The source must be a URL.")

    def add_heatmap(
        self,
        data,
        latitude="latitude",
        longitude="longitude",
        value="value",
        name="Heat map",
        radius=25,
        **kwargs,
    ):
        """Adds a heat map to the map. Reference: https://stackoverflow.com/a/54756617

        Args:
            data (str | list | pd.DataFrame): File path or HTTP URL to the input file or a list of data points in the format of [[x1, y1, z1], [x2, y2, z2]]. For example, https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/world_cities.csv
            latitude (str, optional): The column name of latitude. Defaults to "latitude".
            longitude (str, optional): The column name of longitude. Defaults to "longitude".
            value (str, optional): The column name of values. Defaults to "value".
            name (str, optional): Layer name to use. Defaults to "Heat map".
            radius (int, optional): Radius of each “point” of the heatmap. Defaults to 25.

        Raises:
            ValueError: If data is not a list.
        """
        import pandas as pd

        try:
            if isinstance(data, str):
                df = pd.read_csv(data)
                data = df[[latitude, longitude, value]].values.tolist()
            elif isinstance(data, pd.DataFrame):
                data = data[[latitude, longitude, value]].values.tolist()
            elif isinstance(data, list):
                pass
            else:
                raise ValueError("data must be a list, a DataFrame, or a file path.")

            plugins.HeatMap(data, name=name, radius=radius, **kwargs).add_to(
                folium.FeatureGroup(name=name).add_to(self)
            )
        except Exception as e:
            raise Exception(e)

    def add_legend(
        self,
        title="Legend",
        labels=None,
        colors=None,
        legend_dict=None,
        builtin_legend=None,
        opacity=1.0,
        position="bottomright",
        draggable=True,
        style={},
    ):
        """Adds a customized legend to the map. Reference: https://bit.ly/3oV6vnH.
            If you want to add multiple legends to the map, you need to set the `draggable` argument to False.

        Args:
            title (str, optional): Title of the legend. Defaults to 'Legend'. Defaults to "Legend".
            colors (list, optional): A list of legend colors. Defaults to None.
            labels (list, optional): A list of legend labels. Defaults to None.
            legend_dict (dict, optional): A dictionary containing legend items as keys and color as values.
                If provided, legend_keys and legend_colors will be ignored. Defaults to None.
            builtin_legend (str, optional): Name of the builtin legend to add to the map. Defaults to None.
            opacity (float, optional): The opacity of the legend. Defaults to 1.0.
            position (str, optional): The position of the legend, can be one of the following:
                "topleft", "topright", "bottomleft", "bottomright". Defaults to "bottomright".
            draggable (bool, optional): If True, the legend can be dragged to a new position. Defaults to True.
            style: Additional keyword arguments to style the legend, such as position, bottom, right, z-index,
                border, background-color, border-radius, padding, font-size, etc. The default style is:
                style = {
                    'position': 'fixed',
                    'z-index': '9999',
                    'border': '2px solid grey',
                    'background-color': 'rgba(255, 255, 255, 0.8)',
                    'border-radius': '5px',
                    'padding': '10px',
                    'font-size': '14px',
                    'bottom': '20px',
                    'right': '5px'
                }

        """
        content = create_legend(
            title,
            labels,
            colors,
            legend_dict,
            builtin_legend,
            opacity,
            position,
            draggable,
            style=style,
        )
        if draggable:
            from branca.element import MacroElement, Template

            content = (
                '"""\n{% macro html(this, kwargs) %}\n'
                + content
                + '\n{% endmacro %}"""'
            )

            macro = MacroElement()
            macro._template = Template(content)

            self.get_root().add_child(macro)
        else:
            self.add_html(content, position=position)

    def add_colorbar(
        self,
        vis_params,
        index=None,
        label="",
        categorical=False,
        step=None,
        background_color=None,
        **kwargs,
    ):
        """Add a colorbar to the map.

        Args:
            colors (list): The set of colors to be used for interpolation. Colors can be provided in the form: * tuples of RGBA ints between 0 and 255 (e.g: (255, 255, 0) or (255, 255, 0, 255)) * tuples of RGBA floats between 0. and 1. (e.g: (1.,1.,0.) or (1., 1., 0., 1.)) * HTML-like string (e.g: “#ffff00) * a color name or shortcut (e.g: “y” or “yellow”)
            vmin (int, optional): The minimal value for the colormap. Values lower than vmin will be bound directly to colors[0].. Defaults to 0.
            vmax (float, optional): The maximal value for the colormap. Values higher than vmax will be bound directly to colors[-1]. Defaults to 1.0.
            index (list, optional):The values corresponding to each color. It has to be sorted, and have the same length as colors. If None, a regular grid between vmin and vmax is created.. Defaults to None.
            label (str, optional): The caption for the colormap. Defaults to "".
            categorical (bool, optional): Whether or not to create a categorical colormap. Defaults to False.
            step (int, optional): The step to split the LinearColormap into a StepColormap. Defaults to None.
        """
        from box import Box
        from branca.colormap import LinearColormap

        if not isinstance(vis_params, dict):
            raise ValueError("vis_params must be a dictionary.")

        if "palette" not in vis_params:
            raise ValueError("vis_params must contain a palette.")

        if "min" not in vis_params:
            vis_params["min"] = 0
        if "max" not in vis_params:
            vis_params["max"] = 1

        colors = to_hex_colors(check_cmap(vis_params["palette"]))
        vmin = vis_params["min"]
        vmax = vis_params["max"]

        if isinstance(colors, Box):
            try:
                colors = list(colors["default"])
            except Exception as e:
                print("The provided color list is invalid.")
                raise Exception(e)

        if all(len(color) == 6 for color in colors):
            colors = ["#" + color for color in colors]

        colormap = LinearColormap(
            colors=colors, index=index, vmin=vmin, vmax=vmax, caption=label
        )

        if categorical:
            if step is not None:
                colormap = colormap.to_step(step)
            elif index is not None:
                colormap = colormap.to_step(len(index) - 1)
            else:
                colormap = colormap.to_step(3)

        if background_color is not None:
            svg_style = (
                "<style>svg {background-color: " + background_color + ";}</style>"
            )

            self.get_root().header.add_child(folium.Element(svg_style))

        self.add_child(colormap)

    add_colorbar_branca = add_colorbar

    def add_colormap(
        self,
        width=4.0,
        height=0.3,
        vmin=0,
        vmax=1.0,
        palette=None,
        vis_params=None,
        cmap="gray",
        discrete=False,
        label=None,
        label_size=10,
        label_weight="normal",
        tick_size=8,
        bg_color="white",
        orientation="horizontal",
        dpi="figure",
        transparent=False,
        position=(70, 5),
        **kwargs,
    ):
        """Add a colorbar to the map. Under the hood, it uses matplotlib to generate the colorbar, save it as a png file, and add it to the map using m.add_image().

        Args:
            width (float): Width of the colorbar in inches. Default is 4.0.
            height (float): Height of the colorbar in inches. Default is 0.3.
            vmin (float): Minimum value of the colorbar. Default is 0.
            vmax (float): Maximum value of the colorbar. Default is 1.0.
            palette (list): List of colors to use for the colorbar. It can also be a cmap name, such as ndvi, ndwi, dem, coolwarm. Default is None.
            vis_params (dict): Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
            cmap (str, optional): Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.
            discrete (bool, optional): Whether to create a discrete colorbar. Defaults to False.
            label (str, optional): Label for the colorbar. Defaults to None.
            label_size (int, optional): Font size for the colorbar label. Defaults to 12.
            label_weight (str, optional): Font weight for the colorbar label, can be "normal", "bold", etc. Defaults to "normal".
            tick_size (int, optional): Font size for the colorbar tick labels. Defaults to 10.
            bg_color (str, optional): Background color for the colorbar. Defaults to "white".
            orientation (str, optional): Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".
            dpi (float | str, optional): The resolution in dots per inch.  If 'figure', use the figure's dpi value. Defaults to "figure".
            transparent (bool, optional): Whether to make the background transparent. Defaults to False.
            position (tuple, optional): The position of the colormap in the format of (x, y),
                the percentage ranging from 0 to 100, starting from the lower-left corner. Defaults to (0, 0).
            **kwargs: Other keyword arguments to pass to matplotlib.pyplot.savefig().

        Returns:
            str: Path to the output image.
        """

        colorbar = save_colorbar(
            None,
            width,
            height,
            vmin,
            vmax,
            palette,
            vis_params,
            cmap,
            discrete,
            label,
            label_size,
            label_weight,
            tick_size,
            bg_color,
            orientation,
            dpi,
            transparent,
            show_colorbar=False,
            **kwargs,
        )

        self.add_image(colorbar, position=position)

    def add_styled_vector(
        self,
        ee_object,
        column,
        palette,
        layer_name="Untitled",
        shown=True,
        opacity=1.0,
        **kwargs,
    ):
        """Adds a styled vector to the map.

        Args:
            ee_object (object): An ee.FeatureCollection.
            column (str): The column name to use for styling.
            palette (list | dict): The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling.
            layer_name (str, optional): The name to be used for the new layer. Defaults to "Untitled".
        """
        styled_vector = vector_styling(ee_object, column, palette, **kwargs)
        self.addLayer(
            styled_vector.style(**{"styleProperty": "style"}),
            {},
            layer_name,
            shown,
            opacity,
        )

    def add_shapefile(self, in_shp, layer_name="Untitled", **kwargs):
        """Adds a shapefile to the map. See https://python-visualization.github.io/folium/modules.html#folium.features.GeoJson for more info about setting style.

        Args:
            in_shp (str): The input file path to the shapefile.
            layer_name (str, optional): The layer name to be used. Defaults to "Untitled".

        Raises:
            FileNotFoundError: The provided shapefile could not be found.
        """
        in_shp = os.path.abspath(in_shp)
        if not os.path.exists(in_shp):
            raise FileNotFoundError("The provided shapefile could not be found.")

        data = shp_to_geojson(in_shp)

        geo_json = folium.GeoJson(data=data, name=layer_name, **kwargs)
        geo_json.add_to(self)

    def add_geojson(
        self,
        in_geojson,
        layer_name="Untitled",
        encoding="utf-8",
        info_mode="on_hover",
        fields=None,
        **kwargs,
    ):
        """Adds a GeoJSON file to the map.

        Args:
            in_geojson (str): The input file path to the GeoJSON.
            layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
            encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
            fields (list, optional): The fields to be displayed in the popup. Defaults to None.

        Raises:
            FileNotFoundError: The provided GeoJSON file could not be found.
        """
        import json
        import random

        import requests

        try:
            if isinstance(in_geojson, str):
                if in_geojson.startswith("http"):
                    in_geojson = github_raw_url(in_geojson)
                    data = requests.get(in_geojson).json()
                else:
                    in_geojson = os.path.abspath(in_geojson)
                    if not os.path.exists(in_geojson):
                        raise FileNotFoundError(
                            "The provided GeoJSON file could not be found."
                        )

                    with open(in_geojson, encoding=encoding) as f:
                        data = json.load(f)
            elif isinstance(in_geojson, dict):
                data = in_geojson
            else:
                raise TypeError("The input geojson must be a type of str or dict.")
        except Exception as e:
            raise Exception(e)

        # interchangeable parameters between ipyleaflet and folium.
        if "style_function" not in kwargs:
            if "style" in kwargs:
                style_dict = kwargs["style"]
                if isinstance(kwargs["style"], dict) and len(kwargs["style"]) > 0:
                    kwargs["style_function"] = lambda x: style_dict
                kwargs.pop("style")
            else:
                style_dict = {
                    # "stroke": True,
                    "color": "#000000",
                    "weight": 1,
                    "opacity": 1,
                    # "fill": True,
                    # "fillColor": "#ffffff",
                    "fillOpacity": 0.1,
                    # "dashArray": "9"
                    # "clickable": True,
                }
                kwargs["style_function"] = lambda x: style_dict

        if "style_callback" in kwargs:
            kwargs.pop("style_callback")

        if "hover_style" in kwargs:
            kwargs.pop("hover_style")

        if "fill_colors" in kwargs:
            fill_colors = kwargs["fill_colors"]

            def random_color(feature):
                style_dict["fillColor"] = random.choice(fill_colors)
                return style_dict

            kwargs["style_function"] = random_color
            kwargs.pop("fill_colors")

        if "highlight_function" not in kwargs:
            kwargs["highlight_function"] = lambda feat: {
                "weight": 2,
                "fillOpacity": 0.5,
            }

        tooltip = None
        popup = None
        if info_mode is not None:
            if fields is None:
                fields = list(data["features"][0]["properties"].keys())
            if info_mode == "on_hover":
                tooltip = folium.GeoJsonTooltip(fields=fields)
            elif info_mode == "on_click":
                popup = folium.GeoJsonPopup(fields=fields)

        geojson = folium.GeoJson(
            data=data, name=layer_name, tooltip=tooltip, popup=popup, **kwargs
        )
        geojson.add_to(self)

    def add_kml(
        self, in_kml, layer_name="Untitled", info_mode="on_hover", fields=None, **kwargs
    ):
        """Adds a KML file to the map.

        Args:
            in_kml (str): The input file path to the KML.
            layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
            info_mode (str, optional): Displays the attributes by either on_hover or on_click.
                Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
            fields (list, optional): The fields to be displayed in the popup. Defaults to None.

        Raises:
            FileNotFoundError: The provided KML file could not be found.
        """

        if in_kml.startswith("http") and in_kml.endswith(".kml"):
            out_dir = os.path.abspath("./cache")
            if not os.path.exists(out_dir):
                os.makedirs(out_dir)
            download_from_url(in_kml, out_dir=out_dir, unzip=False, verbose=False)
            in_kml = os.path.join(out_dir, os.path.basename(in_kml))
            if not os.path.exists(in_kml):
                raise FileNotFoundError("The downloaded kml file could not be found.")
        else:
            in_kml = os.path.abspath(in_kml)
            if not os.path.exists(in_kml):
                raise FileNotFoundError("The provided KML could not be found.")

        data = kml_to_geojson(in_kml)

        self.add_geojson(
            data, layer_name=layer_name, info_mode=info_mode, fields=fields, **kwargs
        )

    def add_gdf(
        self,
        gdf,
        layer_name="Untitled",
        zoom_to_layer=True,
        info_mode="on_hover",
        fields=None,
        **kwargs,
    ):
        """Adds a GeoPandas GeoDataFrame to the map.

        Args:
            gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
            layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
            zoom_to_layer (bool, optional): Whether to zoom to the layer.
            info_mode (str, optional): Displays the attributes by either on_hover or on_click.
                Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
            fields (list, optional): The fields to be displayed in the popup. Defaults to None.

        """

        data = gdf_to_geojson(gdf, epsg="4326")

        self.add_geojson(
            data, layer_name=layer_name, info_mode=info_mode, fields=fields, **kwargs
        )

        if zoom_to_layer:
            import numpy as np

            bounds = gdf.to_crs(epsg="4326").bounds
            west = np.min(bounds["minx"])
            south = np.min(bounds["miny"])
            east = np.max(bounds["maxx"])
            north = np.max(bounds["maxy"])
            self.fit_bounds([[south, east], [north, west]])

    def add_gdf_from_postgis(
        self, sql, con, layer_name="Untitled", zoom_to_layer=True, **kwargs
    ):
        """Adds a GeoPandas GeoDataFrameto the map.

        Args:
            sql (str): SQL query to execute in selecting entries from database, or name of the table to read from the database.
            con (sqlalchemy.engine.Engine): Active connection to the database to query.
            layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
            zoom_to_layer (bool, optional): Whether to zoom to the layer.

        """
        if "fill_colors" in kwargs:
            kwargs.pop("fill_colors")
        gdf = read_postgis(sql, con, **kwargs)
        data = gdf_to_geojson(gdf, epsg="4326")

        self.add_geojson(data, layer_name=layer_name, **kwargs)

        if zoom_to_layer:
            import numpy as np

            bounds = gdf.to_crs(epsg="4326").bounds
            west = np.min(bounds["minx"])
            south = np.min(bounds["miny"])
            east = np.max(bounds["maxx"])
            north = np.max(bounds["maxy"])
            self.fit_bounds([[south, east], [north, west]])

    def add_osm(
        self,
        query,
        layer_name="Untitled",
        which_result=None,
        by_osmid=False,
        buffer_dist=None,
        to_ee=False,
        geodesic=True,
        **kwargs,
    ):
        """Adds OSM data to the map.

        Args:
            query (str | dict | list): Query string(s) or structured dict(s) to geocode.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
            which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
            by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
            buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
            to_ee (bool, optional): Whether to convert the csv to an ee.FeatureCollection.
            geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

        """

        gdf = osm_to_gdf(
            query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
        )
        geojson = gdf.__geo_interface__

        if to_ee:
            fc = geojson_to_ee(geojson, geodesic=geodesic)
            self.addLayer(fc, {}, layer_name)
            self.centerObject(fc)
        else:
            self.add_geojson(geojson, layer_name=layer_name, **kwargs)
            bounds = gdf.bounds.iloc[0]
            self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

    def add_osm_from_geocode(
        self,
        query,
        which_result=None,
        by_osmid=False,
        buffer_dist=None,
        layer_name="Untitled",
        style={},
        hover_style={},
        style_callback=None,
        fill_colors=["black"],
        info_mode="on_hover",
    ):
        """Adds OSM data of place(s) by name or ID to the map.

        Args:
            query (str | dict | list): Query string(s) or structured dict(s) to geocode.
            which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
            by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
            buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
            hover_style (dict, optional): Hover style dictionary. Defaults to {}.
            style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

        """

        gdf = osm_gdf_from_geocode(
            query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
        )
        geojson = gdf.__geo_interface__

        self.add_geojson(
            geojson,
            layer_name=layer_name,
            style=style,
            hover_style=hover_style,
            style_callback=style_callback,
            fill_colors=fill_colors,
            info_mode=info_mode,
        )
        self.zoom_to_gdf(gdf)

    def add_osm_from_address(
        self,
        address,
        tags,
        dist=1000,
        layer_name="Untitled",
        style={},
        hover_style={},
        style_callback=None,
        fill_colors=["black"],
        info_mode="on_hover",
    ):
        """Adds OSM entities within some distance N, S, E, W of address to the map.

        Args:
            address (str): The address to geocode and use as the central point around which to get the geometries.
            tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
            dist (int, optional): Distance in meters. Defaults to 1000.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
            hover_style (dict, optional): Hover style dictionary. Defaults to {}.
            style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

        """
        gdf = osm_gdf_from_address(address, tags, dist)
        geojson = gdf.__geo_interface__

        self.add_geojson(
            geojson,
            layer_name=layer_name,
            style=style,
            hover_style=hover_style,
            style_callback=style_callback,
            fill_colors=fill_colors,
            info_mode=info_mode,
        )
        self.zoom_to_gdf(gdf)

    def add_osm_from_place(
        self,
        query,
        tags,
        which_result=None,
        buffer_dist=None,
        layer_name="Untitled",
        style={},
        hover_style={},
        style_callback=None,
        fill_colors=["black"],
        info_mode="on_hover",
    ):
        """Adds OSM entities within boundaries of geocodable place(s) to the map.

        Args:
            query (str | dict | list): Query string(s) or structured dict(s) to geocode.
            tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
            which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
            buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
            hover_style (dict, optional): Hover style dictionary. Defaults to {}.
            style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

        """
        gdf = osm_gdf_from_place(query, tags, which_result, buffer_dist)
        geojson = gdf.__geo_interface__

        self.add_geojson(
            geojson,
            layer_name=layer_name,
            style=style,
            hover_style=hover_style,
            style_callback=style_callback,
            fill_colors=fill_colors,
            info_mode=info_mode,
        )
        self.zoom_to_gdf(gdf)

    def add_osm_from_point(
        self,
        center_point,
        tags,
        dist=1000,
        layer_name="Untitled",
        style={},
        hover_style={},
        style_callback=None,
        fill_colors=["black"],
        info_mode="on_hover",
    ):
        """Adds OSM entities within some distance N, S, E, W of a point to the map.

        Args:
            center_point (tuple): The (lat, lng) center point around which to get the geometries.
            tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
            dist (int, optional): Distance in meters. Defaults to 1000.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
            hover_style (dict, optional): Hover style dictionary. Defaults to {}.
            style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

        """
        gdf = osm_gdf_from_point(center_point, tags, dist)
        geojson = gdf.__geo_interface__

        self.add_geojson(
            geojson,
            layer_name=layer_name,
            style=style,
            hover_style=hover_style,
            style_callback=style_callback,
            fill_colors=fill_colors,
            info_mode=info_mode,
        )
        self.zoom_to_gdf(gdf)

    def add_osm_from_polygon(
        self,
        polygon,
        tags,
        layer_name="Untitled",
        style={},
        hover_style={},
        style_callback=None,
        fill_colors=["black"],
        info_mode="on_hover",
    ):
        """Adds OSM entities within boundaries of a (multi)polygon to the map.

        Args:
            polygon (shapely.geometry.Polygon | shapely.geometry.MultiPolygon): Geographic boundaries to fetch geometries within
            tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
            hover_style (dict, optional): Hover style dictionary. Defaults to {}.
            style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

        """
        gdf = osm_gdf_from_polygon(polygon, tags)
        geojson = gdf.__geo_interface__

        self.add_geojson(
            geojson,
            layer_name=layer_name,
            style=style,
            hover_style=hover_style,
            style_callback=style_callback,
            fill_colors=fill_colors,
            info_mode=info_mode,
        )
        self.zoom_to_gdf(gdf)

    def add_osm_from_bbox(
        self,
        north,
        south,
        east,
        west,
        tags,
        layer_name="Untitled",
        style={},
        hover_style={},
        style_callback=None,
        fill_colors=["black"],
        info_mode="on_hover",
    ):
        """Adds OSM entities within a N, S, E, W bounding box to the map.


        Args:
            north (float): Northern latitude of bounding box.
            south (float): Southern latitude of bounding box.
            east (float): Eastern longitude of bounding box.
            west (float): Western longitude of bounding box.
            tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
            hover_style (dict, optional): Hover style dictionary. Defaults to {}.
            style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

        """
        gdf = osm_gdf_from_bbox(north, south, east, west, tags)
        geojson = gdf.__geo_interface__

        self.add_geojson(
            geojson,
            layer_name=layer_name,
            style=style,
            hover_style=hover_style,
            style_callback=style_callback,
            fill_colors=fill_colors,
            info_mode=info_mode,
        )
        self.zoom_to_gdf(gdf)

    def add_points_from_xy(
        self,
        data: Union[str, pd.DataFrame],
        x: Optional[str] = "longitude",
        y: Optional[str] = "latitude",
        popup: Optional[List] = None,
        min_width: Optional[int] = 100,
        max_width: Optional[int] = 200,
        layer_name: Optional[str] = "Marker Cluster",
        color_column: Optional[str] = None,
        marker_colors: Optional[List] = None,
        icon_colors: Optional[List] = ["white"],
        icon_names: Optional[List] = ["info"],
        angle: Optional[int] = 0,
        prefix: Optional[str] = "fa",
        add_legend: Optional[bool] = True,
        max_cluster_radius: Optional[int] = 80,
        **kwargs,
    ):
        """Adds a marker cluster to the map.

        Args:
            data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
            x (str, optional): The column name for the x values. Defaults to "longitude".
            y (str, optional): The column name for the y values. Defaults to "latitude".
            popup (list, optional): A list of column names to be used as the popup. Defaults to None.
            min_width (int, optional): The minimum width of the popup. Defaults to 100.
            max_width (int, optional): The maximum width of the popup. Defaults to 200.
            layer_name (str, optional): The name of the layer. Defaults to "Marker Cluster".
            color_column (str, optional): The column name for the color values. Defaults to None.
            marker_colors (list, optional): A list of colors to be used for the markers. Defaults to None.
            icon_colors (list, optional): A list of colors to be used for the icons. Defaults to ['white'].
            icon_names (list, optional): A list of names to be used for the icons. More icons can be found
                at https://fontawesome.com/v4/icons or https://getbootstrap.com/docs/3.3/components/?utm_source=pocket_mylist. Defaults to ['info'].
            angle (int, optional): The angle of the icon. Defaults to 0.
            prefix (str, optional): The prefix states the source of the icon. 'fa' for font-awesome or 'glyphicon' for bootstrap 3. Defaults to 'fa'.
            add_legend (bool, optional): If True, a legend will be added to the map. Defaults to True.
            max_cluster_radius (int, optional): The maximum radius that a cluster will cover from the central marker (in pixels).
            **kwargs: Other keyword arguments to pass to folium.MarkerCluster(). For a list of available options,
                see https://github.com/Leaflet/Leaflet.markercluster. For example, to change the cluster radius, use options={"maxClusterRadius": 50}.
        """
        import pandas as pd

        if "maxClusterRadius" not in kwargs:
            kwargs["maxClusterRadius"] = max_cluster_radius

        color_options = [
            "red",
            "blue",
            "green",
            "purple",
            "orange",
            "darkred",
            "lightred",
            "beige",
            "darkblue",
            "darkgreen",
            "cadetblue",
            "darkpurple",
            "white",
            "pink",
            "lightblue",
            "lightgreen",
            "gray",
            "black",
            "lightgray",
        ]

        if isinstance(data, pd.DataFrame):
            df = data
        elif not data.startswith("http") and (not os.path.exists(data)):
            raise FileNotFoundError("The specified input csv does not exist.")
        else:
            df = pd.read_csv(data)

        col_names = df.columns.values.tolist()

        if color_column is not None and color_column not in col_names:
            raise ValueError(
                f"The color column {color_column} does not exist in the dataframe."
            )

        if color_column is not None:
            items = list(set(df[color_column]))
        else:
            items = None

        if color_column is not None and marker_colors is None:
            if len(items) > len(color_options):
                raise ValueError(
                    f"The number of unique values in the color column {color_column} is greater than the number of available colors."
                )
            else:
                marker_colors = color_options[: len(items)]
        elif color_column is not None and marker_colors is not None:
            if len(items) != len(marker_colors):
                raise ValueError(
                    f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
                )

        if items is not None:
            if len(icon_colors) == 1:
                icon_colors = icon_colors * len(items)
            elif len(items) != len(icon_colors):
                raise ValueError(
                    f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
                )

            if len(icon_names) == 1:
                icon_names = icon_names * len(items)
            elif len(items) != len(icon_names):
                raise ValueError(
                    f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
                )

        if popup is None:
            popup = col_names

        if x not in col_names:
            raise ValueError(f"x must be one of the following: {', '.join(col_names)}")

        if y not in col_names:
            raise ValueError(f"y must be one of the following: {', '.join(col_names)}")

        marker_cluster = plugins.MarkerCluster(name=layer_name, **kwargs).add_to(self)

        for idx, row in df.iterrows():
            html = ""
            for p in popup:
                html = html + "<b>" + p + "</b>" + ": " + str(row[p]) + "<br>"
            popup_html = folium.Popup(html, min_width=min_width, max_width=max_width)

            if items is not None:
                index = items.index(row[color_column])
                marker_icon = folium.Icon(
                    color=marker_colors[index],
                    icon_color=icon_colors[index],
                    icon=icon_names[index],
                    angle=angle,
                    prefix=prefix,
                )
            else:
                marker_icon = None

            folium.Marker(
                location=[row[y], row[x]],
                popup=popup_html,
                icon=marker_icon,
            ).add_to(marker_cluster)

        if items is not None and add_legend:
            marker_colors = [check_color(c) for c in marker_colors]
            self.add_legend(
                title=color_column.title(), colors=marker_colors, labels=items
            )

    def add_circle_markers_from_xy(
        self,
        data,
        x="longitude",
        y="latitude",
        radius=10,
        popup=None,
        tooltip=None,
        min_width=100,
        max_width=200,
        **kwargs,
    ):
        """Adds a marker cluster to the map.

        Args:
            data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
            x (str, optional): The column name for the x values. Defaults to "longitude".
            y (str, optional): The column name for the y values. Defaults to "latitude".
            radius (int, optional): The radius of the circle. Defaults to 10.
            popup (list, optional): A list of column names to be used as the popup. Defaults to None.
            tooltip (list, optional): A list of column names to be used as the tooltip. Defaults to None.
            min_width (int, optional): The minimum width of the popup. Defaults to 100.
            max_width (int, optional): The maximum width of the popup. Defaults to 200.

        """
        import pandas as pd

        data = github_raw_url(data)

        if isinstance(data, pd.DataFrame):
            df = data
        elif not data.startswith("http") and (not os.path.exists(data)):
            raise FileNotFoundError("The specified input csv does not exist.")
        else:
            df = pd.read_csv(data)

        col_names = df.columns.values.tolist()

        if "color" not in kwargs:
            kwargs["color"] = None
        if "fill" not in kwargs:
            kwargs["fill"] = True
        if "fill_color" not in kwargs:
            kwargs["fill_color"] = "blue"
        if "fill_opacity" not in kwargs:
            kwargs["fill_opacity"] = 0.7

        if popup is None:
            popup = col_names

        if not isinstance(popup, list):
            popup = [popup]

        if tooltip is not None:
            if not isinstance(tooltip, list):
                tooltip = [tooltip]

        if x not in col_names:
            raise ValueError(f"x must be one of the following: {', '.join(col_names)}")

        if y not in col_names:
            raise ValueError(f"y must be one of the following: {', '.join(col_names)}")

        for _ in df.itertuples():
            html = ""
            for p in popup:
                html = (
                    html
                    + "<b>"
                    + p
                    + "</b>"
                    + ": "
                    + str(eval(str("row." + p)))
                    + "<br>"
                )
            popup_html = folium.Popup(html, min_width=min_width, max_width=max_width)

            if tooltip is not None:
                html = ""
                for p in tooltip:
                    html = (
                        html
                        + "<b>"
                        + p
                        + "</b>"
                        + ": "
                        + str(eval(str("row." + p)))
                        + "<br>"
                    )

                tooltip_str = folium.Tooltip(html)
            else:
                tooltip_str = None

            folium.CircleMarker(
                location=[eval(f"row.{y}"), eval(f"row.{x}")],
                radius=radius,
                popup=popup_html,
                tooltip=tooltip_str,
                **kwargs,
            ).add_to(self)

    def add_markers_from_xy(
        self,
        data,
        x="longitude",
        y="latitude",
        popup=None,
        min_width=100,
        max_width=200,
        layer_name="Markers",
        icon=None,
        icon_shape="circle-dot",
        border_width=3,
        border_color="#0000ff",
        **kwargs,
    ):
        """Adds markers to the map from a csv or Pandas DataFrame containing x, y values.

        Args:
            data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
            x (str, optional): The column name for the x values. Defaults to "longitude".
            y (str, optional): The column name for the y values. Defaults to "latitude".
            popup (list, optional): A list of column names to be used as the popup. Defaults to None.
            min_width (int, optional): The minimum width of the popup. Defaults to 100.
            max_width (int, optional): The maximum width of the popup. Defaults to 200.
            layer_name (str, optional): The name of the layer. Defaults to "Marker Cluster".
            icon (str, optional): The Font-Awesome icon name to use to render the marker. Defaults to None.
            icon_shape (str, optional): The shape of the marker, such as "retangle-dot", "circle-dot". Defaults to 'circle-dot'.
            border_width (int, optional): The width of the border. Defaults to 3.
            border_color (str, optional): The color of the border. Defaults to '#0000ff'.
            kwargs (dict, optional): Additional keyword arguments to pass to BeautifyIcon. See
                https://python-visualization.github.io/folium/plugins.html#folium.plugins.BeautifyIcon.

        """
        import pandas as pd
        from folium.plugins import BeautifyIcon

        layer_group = folium.FeatureGroup(name=layer_name)

        if isinstance(data, pd.DataFrame):
            df = data
        elif not data.startswith("http") and (not os.path.exists(data)):
            raise FileNotFoundError("The specified input csv does not exist.")
        else:
            df = pd.read_csv(data)

        col_names = df.columns.values.tolist()

        if popup is None:
            popup = col_names

        if x not in col_names:
            raise ValueError(f"x must be one of the following: {', '.join(col_names)}")

        if y not in col_names:
            raise ValueError(f"y must be one of the following: {', '.join(col_names)}")

        for row in df.itertuples():
            html = ""
            for p in popup:
                html = html + "<b>" + p + "</b>" + ": " + str(getattr(row, p)) + "<br>"
            popup_html = folium.Popup(html, min_width=min_width, max_width=max_width)

            marker_icon = BeautifyIcon(
                icon, icon_shape, border_width, border_color, **kwargs
            )
            folium.Marker(
                location=[getattr(row, y), getattr(row, x)],
                popup=popup_html,
                icon=marker_icon,
            ).add_to(layer_group)

        layer_group.add_to(self)

    def add_planet_by_month(
        self, year=2016, month=1, name=None, api_key=None, token_name="PLANET_API_KEY"
    ):
        """Adds a Planet global mosaic by month to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis

        Args:
            year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
            month (int, optional): The month of Planet global mosaic, must be 1-12. Defaults to 1.
            name (str, optional): The layer name to use. Defaults to None.
            api_key (str, optional): The Planet API key. Defaults to None.
            token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        """
        layer = planet_tile_by_month(
            year, month, name, api_key, token_name, tile_format="folium"
        )
        layer.add_to(self)

    def add_planet_by_quarter(
        self, year=2016, quarter=1, name=None, api_key=None, token_name="PLANET_API_KEY"
    ):
        """Adds a Planet global mosaic by quarter to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis

        Args:
            year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
            quarter (int, optional): The quarter of Planet global mosaic, must be 1-12. Defaults to 1.
            name (str, optional): The layer name to use. Defaults to None.
            api_key (str, optional): The Planet API key. Defaults to None.
            token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        """
        layer = planet_tile_by_quarter(
            year, quarter, name, api_key, token_name, tile_format="folium"
        )
        layer.add_to(self)

    def publish(
        self,
        name="Folium Map",
        description="",
        source_url="",
        tags=None,
        source_file=None,
        open=True,
        formatting=None,
        token=None,
        **kwargs,
    ):
        """Publish the map to datapane.com

        Args:
            name (str, optional): The document name - can include spaces, caps, symbols, etc., e.g. "Profit & Loss 2020". Defaults to "Folium Map".
            description (str, optional): A high-level description for the document, this is displayed in searches and thumbnails. Defaults to ''.
            source_url (str, optional): A URL pointing to the source code for the document, e.g. a GitHub repo or a Colab notebook. Defaults to ''.
            tags (bool, optional): A list of tags (as strings) used to categorise your document. Defaults to None.
            source_file (str, optional): Path of jupyter notebook file to upload. Defaults to None.
            open (bool, optional): Whether to open the map. Defaults to True.
            formatting (ReportFormatting, optional): Set the basic styling for your report.
            token (str, optional): The token to use to datapane to publish the map. See https://docs.datapane.com/tut-getting-started. Defaults to None.
        """
        import warnings
        import webbrowser

        if os.environ.get("USE_MKDOCS") is not None:
            return

        warnings.filterwarnings("ignore")
        try:
            import datapane as dp
        except Exception:
            webbrowser.open_new_tab("https://docs.datapane.com/")
            raise ImportError(
                "The datapane Python package is not installed. You need to install and authenticate datapane first."
            )

        if token is None:
            try:
                _ = dp.ping(verbose=False)
            except Exception as e:
                if os.environ.get("DP_TOKEN") is not None:
                    dp.login(token=os.environ.get("DP_TOKEN"))
                else:
                    raise Exception(e)
        else:
            dp.login(token)

        try:
            dp.upload_report(
                dp.Plot(self),
                name=name,
                description=description,
                source_url=source_url,
                tags=tags,
                source_file=source_file,
                open=open,
                formatting=formatting,
                **kwargs,
            )

        except Exception as e:
            raise Exception(e)

    def to_html(self, filename=None, **kwargs):
        """Exports a map as an HTML file.

        Args:
            filename (str, optional): File path to the output HTML. Defaults to None.

        Raises:
            ValueError: If it is an invalid HTML file.

        Returns:
            str: A string containing the HTML code.
        """

        if self.options["layersControl"]:
            self.add_layer_control()

        if filename is not None:
            if not filename.endswith(".html"):
                raise ValueError("The output file extension must be html.")
            filename = os.path.abspath(filename)
            out_dir = os.path.dirname(filename)
            if not os.path.exists(out_dir):
                os.makedirs(out_dir)
            self.save(filename, **kwargs)
        else:
            filename = os.path.abspath(random_string() + ".html")
            self.save(filename, **kwargs)
            out_html = ""
            with open(filename) as f:
                lines = f.readlines()
                out_html = "".join(lines)
            os.remove(filename)
            return out_html

    def to_streamlit(
        self,
        width=None,
        height=600,
        scrolling=False,
        add_layer_control=True,
        bidirectional=False,
        **kwargs,
    ):
        """Renders `folium.Figure` or `folium.Map` in a Streamlit app. This method is a static Streamlit Component, meaning, no information is passed back from Leaflet on browser interaction.

        Args:
            width (int, optional): Width of the map. Defaults to None.
            height (int, optional): Height of the map. Defaults to 600.
            scrolling (bool, optional): Whether to allow the map to scroll. Defaults to False.
            add_layer_control (bool, optional): Whether to add the layer control. Defaults to True.
            bidirectional (bool, optional): Whether to add bidirectional functionality to the map. The streamlit-folium package is required to use the bidirectional functionality. Defaults to False.

        Raises:
            ImportError: If streamlit is not installed.

        Returns:
            streamlit.components: components.html object.
        """

        try:
            import streamlit.components.v1 as components

            if add_layer_control:
                self.add_layer_control()

            if bidirectional:
                from streamlit_folium import st_folium

                output = st_folium(self, width=width, height=height)
                return output
            else:
                # if responsive:
                #     make_map_responsive = """
                #     <style>
                #     [title~="st.iframe"] { width: 100%}
                #     </style>
                #     """
                #     st.markdown(make_map_responsive, unsafe_allow_html=True)
                return components.html(
                    self.to_html(), width=width, height=height, scrolling=scrolling
                )

        except Exception as e:
            raise Exception(e)

    def st_map_center(self, st_component):
        """Get the center of the map.

        Args:
            st_folium (streamlit-folium): The streamlit component.

        Returns:
            tuple: The center of the map.
        """

        bounds = st_component["bounds"]
        west = bounds["_southWest"]["lng"]
        south = bounds["_southWest"]["lat"]
        east = bounds["_northEast"]["lng"]
        north = bounds["_northEast"]["lat"]
        return (south + (north - south) / 2, west + (east - west) / 2)

    def st_map_bounds(self, st_component):
        """Get the bounds of the map in the format of (miny, minx, maxy, maxx).

        Args:
            st_folium (streamlit-folium): The streamlit component.

        Returns:
            tuple: The bounds of the map.
        """

        bounds = st_component["bounds"]
        south = bounds["_southWest"]["lat"]
        west = bounds["_southWest"]["lng"]
        north = bounds["_northEast"]["lat"]
        east = bounds["_northEast"]["lng"]

        bounds = [[south, west], [north, east]]
        return bounds

    def st_fit_bounds(self):
        """Fit the map to the bounds of the map.

        Returns:
            folium.Map: The map.
        """

        try:
            import streamlit as st

            if "map_bounds" in st.session_state:
                bounds = st.session_state["map_bounds"]

                self.fit_bounds(bounds)

        except Exception as e:
            raise Exception(e)

    def st_last_draw(self, st_component):
        """Get the last draw feature of the map.

        Args:
            st_folium (streamlit-folium): The streamlit component.

        Returns:
            str: The last draw of the map.
        """

        return st_component["last_active_drawing"]

    def st_last_click(self, st_component):
        """Get the last click feature of the map.

        Args:
            st_folium (streamlit-folium): The streamlit component.

        Returns:
            str: The last click of the map.
        """

        coords = st_component["last_clicked"]
        return (coords["lat"], coords["lng"])

    def st_draw_features(self, st_component):
        """Get the draw features of the map.

        Args:
            st_folium (streamlit-folium): The streamlit component.

        Returns:
            list: The draw features of the map.
        """

        return st_component["all_drawings"]

    def add_census_data(self, wms, layer, census_dict=None, **kwargs):
        """Adds a census data layer to the map.

        Args:
            wms (str): The wms to use. For example, "Current", "ACS 2021", "Census 2020".  See the complete list at https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.html
            layer (str): The layer name to add to the map.
            census_dict (dict, optional): A dictionary containing census data. Defaults to None. It can be obtained from the get_census_dict() function.
        """

        try:
            if census_dict is None:
                census_dict = get_census_dict()

            if wms not in census_dict.keys():
                raise ValueError(
                    f"The provided WMS is invalid. It must be one of {census_dict.keys()}"
                )

            layers = census_dict[wms]["layers"]
            if layer not in layers:
                raise ValueError(
                    f"The layer name is not valid. It must be one of {layers}"
                )

            url = census_dict[wms]["url"]
            if "name" not in kwargs:
                kwargs["name"] = layer
            if "attribution" not in kwargs:
                kwargs["attribution"] = "U.S. Census Bureau"
            if "format" not in kwargs:
                kwargs["format"] = "image/png"
            if "transparent" not in kwargs:
                kwargs["transparent"] = True

            self.add_wms_layer(url, layer, **kwargs)

        except Exception as e:
            raise Exception(e)

    def add_xyz_service(self, provider, **kwargs):
        """Add a XYZ tile layer to the map.

        Args:
            provider (str): A tile layer name starts with xyz or qms. For example, xyz.OpenTopoMap,

        Raises:
            ValueError: The provider is not valid. It must start with xyz or qms.
        """
        import xyzservices.providers as xyz
        from xyzservices import TileProvider

        if provider.startswith("xyz"):
            name = provider[4:]
            xyz_provider = xyz.flatten()[name]
            url = xyz_provider.build_url()
            attribution = xyz_provider.attribution
            if attribution.strip() == "":
                attribution = " "
            self.add_tile_layer(url, name, attribution)
        elif provider.startswith("qms"):
            name = provider[4:]
            qms_provider = TileProvider.from_qms(name)
            url = qms_provider.build_url()
            attribution = qms_provider.attribution
            if attribution.strip() == "":
                attribution = " "
            self.add_tile_layer(url=url, name=name, attribution=attribution)
        else:
            raise ValueError(
                f"The provider {provider} is not valid. It must start with xyz or qms."
            )

    def add_labels(
        self,
        data,
        column,
        font_size="12pt",
        font_color="black",
        font_family="arial",
        font_weight="normal",
        x="longitude",
        y="latitude",
        draggable=True,
        layer_name="Labels",
        **kwargs,
    ):
        """Adds a label layer to the map. Reference: https://python-visualization.github.io/folium/modules.html#folium.features.DivIcon

        Args:
            data (pd.DataFrame | ee.FeatureCollection): The input data to label.
            column (str): The column name of the data to label.
            font_size (str, optional): The font size of the labels. Defaults to "12pt".
            font_color (str, optional): The font color of the labels. Defaults to "black".
            font_family (str, optional): The font family of the labels. Defaults to "arial".
            font_weight (str, optional): The font weight of the labels, can be normal, bold. Defaults to "normal".
            x (str, optional): The column name of the longitude. Defaults to "longitude".
            y (str, optional): The column name of the latitude. Defaults to "latitude".
            draggable (bool, optional): Whether the labels are draggable. Defaults to True.
            layer_name (str, optional): The name of the layer. Defaults to "Labels".

        """
        import warnings

        import pandas as pd
        from folium.features import DivIcon

        warnings.filterwarnings("ignore")

        if isinstance(data, ee.FeatureCollection):
            centroids = vector_centroids(data)
            df = ee_to_df(centroids)
        elif isinstance(data, pd.DataFrame):
            df = data
        elif isinstance(data, str):
            ext = os.path.splitext(data)[1]
            if ext == ".csv":
                df = pd.read_csv(data)
            elif ext in [".geojson", ".json", ".shp", ".gpkg"]:
                try:
                    import geopandas as gpd

                    df = gpd.read_file(data)
                    df[x] = df.centroid.x
                    df[y] = df.centroid.y
                except Exception as e:
                    print("geopandas is required to read geojson.")
                    print(e)
                    return
        else:
            raise ValueError("data must be a DataFrame or an ee.FeatureCollection.")

        if column not in df.columns:
            raise ValueError(f"column must be one of {', '.join(df.columns)}.")
        if x not in df.columns:
            raise ValueError(f"column must be one of {', '.join(df.columns)}.")
        if y not in df.columns:
            raise ValueError(f"column must be one of {', '.join(df.columns)}.")

        try:
            size = int(font_size.replace("pt", ""))
        except Exception as _:
            raise ValueError("font_size must be something like '10pt'")

        layer_group = folium.FeatureGroup(name=layer_name)
        for index in df.index:
            html = f'<div style="font-size: {font_size};color:{font_color};font-family:{font_family};font-weight: {font_weight}">{df[column][index]}</div>'
            folium.Marker(
                location=[df[y][index], df[x][index]],
                icon=DivIcon(
                    icon_size=(1, 1),
                    icon_anchor=(size, size),
                    html=html,
                    **kwargs,
                ),
                draggable=draggable,
            ).add_to(layer_group)

        layer_group.add_to(self)

    def split_map(
        self,
        left_layer="TERRAIN",
        right_layer="OpenTopoMap",
        left_args={},
        right_args={},
        left_label=None,
        right_label=None,
        left_position="bottomleft",
        right_position="bottomright",
        **kwargs,
    ):
        """Adds a split-panel map.

        Args:
            left_layer (str, optional): The left tile layer. Can be a local file path, HTTP URL, or a basemap name. Defaults to 'TERRAIN'.
            right_layer (str, optional): The right tile layer. Can be a local file path, HTTP URL, or a basemap name. Defaults to 'OpenTopoMap'.
            left_args (dict, optional): The arguments for the left tile layer. Defaults to {}.
            right_args (dict, optional): The arguments for the right tile layer. Defaults to {}.
        """
        if "max_zoom" not in left_args:
            left_args["max_zoom"] = 100
        if "max_native_zoom" not in left_args:
            left_args["max_native_zoom"] = 100

        if "max_zoom" not in right_args:
            right_args["max_zoom"] = 100
        if "max_native_zoom" not in right_args:
            right_args["max_native_zoom"] = 100

        if "layer_name" not in left_args:
            left_args["layer_name"] = "Left Layer"

        if "layer_name" not in right_args:
            right_args["layer_name"] = "Right Layer"

        bounds = None

        try:
            if left_label is not None:
                left_name = left_label
            else:
                left_name = "Left Layer"

            if right_label is not None:
                right_name = right_label
            else:
                right_name = "Right Layer"

            if left_layer in basemaps.keys():
                left_layer = basemaps[left_layer]
            elif isinstance(left_layer, str):
                if left_layer.startswith("http") and left_layer.endswith(".tif"):
                    url = cog_tile(left_layer, **left_args)
                    bbox = cog_bounds(left_layer)
                    bounds = [(bbox[1], bbox[0]), (bbox[3], bbox[2])]
                    left_layer = folium.raster_layers.TileLayer(
                        tiles=url,
                        name=left_name,
                        attr=" ",
                        overlay=True,
                    )
                elif os.path.exists(left_layer):
                    left_layer, left_client = get_local_tile_layer(
                        left_layer,
                        tile_format="folium",
                        return_client=True,
                        **left_args,
                    )
                    bounds = image_bounds(left_client)

                else:
                    left_layer = folium.raster_layers.TileLayer(
                        tiles=left_layer,
                        name=left_name,
                        attr=" ",
                        overlay=True,
                        **left_args,
                    )
            elif isinstance(left_layer, folium.raster_layers.TileLayer) or isinstance(
                left_layer, folium.WmsTileLayer
            ):
                pass
            else:
                raise ValueError(
                    f"left_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
                )

            if right_layer in basemaps.keys():
                right_layer = basemaps[right_layer]
            elif isinstance(right_layer, str):
                if right_layer.startswith("http") and right_layer.endswith(".tif"):
                    url = cog_tile(right_layer, **right_args)
                    bbox = cog_bounds(right_layer)
                    bounds = [(bbox[1], bbox[0]), (bbox[3], bbox[2])]
                    right_layer = folium.raster_layers.TileLayer(
                        tiles=url,
                        name=right_name,
                        attr=" ",
                        overlay=True,
                    )
                elif os.path.exists(right_layer):
                    right_layer, right_client = get_local_tile_layer(
                        right_layer,
                        tile_format="folium",
                        return_client=True,
                        **right_args,
                    )
                    bounds = image_bounds(right_client)
                else:
                    right_layer = folium.raster_layers.TileLayer(
                        tiles=right_layer,
                        name=right_name,
                        attr=" ",
                        overlay=True,
                        **right_args,
                    )
            elif isinstance(right_layer, folium.raster_layers.TileLayer) or isinstance(
                left_layer, folium.WmsTileLayer
            ):
                pass
            else:
                raise ValueError(
                    f"right_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
                )

            control = folium.plugins.SideBySideLayers(
                layer_left=left_layer, layer_right=right_layer
            )
            left_layer.add_to(self)
            right_layer.add_to(self)
            control.add_to(self)

            if left_label is not None:
                if "<" not in left_label:
                    left_label = f"<h4>{left_label}</h4>"
                self.add_html(left_label, position=left_position)

            if right_label is not None:
                if "<" not in right_label:
                    right_label = f"<h4>{right_label}</h4>"
                self.add_html(right_label, position=right_position)
            if bounds is not None:
                self.fit_bounds(bounds)

        except Exception as e:
            print("The provided layers are invalid!")
            raise ValueError(e)

    def add_netcdf(
        self,
        filename,
        variables=None,
        palette=None,
        vmin=None,
        vmax=None,
        nodata=None,
        attribution=None,
        layer_name="NetCDF layer",
        shift_lon=True,
        lat="lat",
        lon="lon",
        **kwargs,
    ):
        """Generate an ipyleaflet/folium TileLayer from a netCDF file.
            If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer),
            try adding to following two lines to the beginning of the notebook if the raster does not render properly.

            import os
            os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = f'{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}'

        Args:
            filename (str): File path or HTTP URL to the netCDF file.
            variables (int, optional): The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted.
            port (str, optional): The port to use for the server. Defaults to "default".
            palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
            vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
            vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
            nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
            attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
            layer_name (str, optional): The layer name to use. Defaults to "netCDF layer".
            shift_lon (bool, optional): Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.
            lat (str, optional): Name of the latitude variable. Defaults to 'lat'.
            lon (str, optional): Name of the longitude variable. Defaults to 'lon'.
        """

        if in_colab_shell():
            print("The add_netcdf() function is not supported in Colab.")
            return

        tif, vars = netcdf_to_tif(
            filename, shift_lon=shift_lon, lat=lat, lon=lon, return_vars=True
        )

        if variables is None:
            if len(vars) >= 3:
                band_idx = [1, 2, 3]
            else:
                band_idx = [1]
        else:
            if not set(variables).issubset(set(vars)):
                raise ValueError(f"The variables must be a subset of {vars}.")
            else:
                band_idx = [vars.index(v) + 1 for v in variables]

        self.add_raster(
            tif,
            band=band_idx,
            palette=palette,
            vmin=vmin,
            vmax=vmax,
            nodata=nodata,
            attribution=attribution,
            layer_name=layer_name,
            **kwargs,
        )

    def add_data(
        self,
        data,
        column,
        colors=None,
        labels=None,
        cmap=None,
        scheme="Quantiles",
        k=5,
        add_legend=True,
        legend_title=None,
        legend_kwds=None,
        classification_kwds=None,
        style_function=None,
        highlight_function=None,
        layer_name="Untitled",
        info_mode="on_hover",
        encoding="utf-8",
        **kwargs,
    ):
        """Add vector data to the map with a variety of classification schemes.

        Args:
            data (str | pd.DataFrame | gpd.GeoDataFrame): The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe.
            column (str): The column to classify.
            cmap (str, optional): The name of a colormap recognized by matplotlib. Defaults to None.
            colors (list, optional): A list of colors to use for the classification. Defaults to None.
            labels (list, optional): A list of labels to use for the legend. Defaults to None.
            scheme (str, optional): Name of a choropleth classification scheme (requires mapclassify).
                Name of a choropleth classification scheme (requires mapclassify).
                A mapclassify.MapClassifier object will be used
                under the hood. Supported are all schemes provided by mapclassify (e.g.
                'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled',
                'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced',
                'JenksCaspallSampled', 'MaxP', 'MaximumBreaks',
                'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean',
                'UserDefined'). Arguments can be passed in classification_kwds.
            k (int, optional): Number of classes (ignored if scheme is None or if column is categorical). Default to 5.
            legend_kwds (dict, optional): Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or `matplotlib.pyplot.colorbar`. Defaults to None.
                Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or
                Additional accepted keywords when `scheme` is specified:
                fmt : string
                    A formatting specification for the bin edges of the classes in the
                    legend. For example, to have no decimals: ``{"fmt": "{:.0f}"}``.
                labels : list-like
                    A list of legend labels to override the auto-generated labblels.
                    Needs to have the same number of elements as the number of
                    classes (`k`).
                interval : boolean (default False)
                    An option to control brackets from mapclassify legend.
                    If True, open/closed interval brackets are shown in the legend.
            classification_kwds (dict, optional): Keyword arguments to pass to mapclassify. Defaults to None.
            layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
            style_function (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
                style_callback is a function that takes the feature as argument and should return a dictionary of the following form:
                style_callback = lambda feat: {"fillColor": feat["properties"]["color"]}
                style is a dictionary of the following form:
                    style = {
                    "stroke": False,
                    "color": "#ff0000",
                    "weight": 1,
                    "opacity": 1,
                    "fill": True,
                    "fillColor": "#ffffff",
                    "fillOpacity": 1.0,
                    "dashArray": "9"
                    "clickable": True,
                }
            hightlight_function (function, optional): Highlighting function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
                highlight_function is a function that takes the feature as argument and should return a dictionary of the following form:
                highlight_function = lambda feat: {"fillColor": feat["properties"]["color"]}
            info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
            encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
        """

        import warnings

        gdf, legend_dict = classify(
            data=data,
            column=column,
            cmap=cmap,
            colors=colors,
            labels=labels,
            scheme=scheme,
            k=k,
            legend_kwds=legend_kwds,
            classification_kwds=classification_kwds,
        )

        if legend_title is None:
            legend_title = column

        if "style" in kwargs:
            warnings.warn(
                "The style arguments is for ipyleaflet only. ",
                UserWarning,
            )
            kwargs.pop("style")

        if "hover_style" in kwargs:
            warnings.warn(
                "The hover_style arguments is for ipyleaflet only. ",
                UserWarning,
            )
            kwargs.pop("hover_style")

        if "style_callback" in kwargs:
            warnings.warn(
                "The style_callback arguments is for ipyleaflet only. ",
                UserWarning,
            )
            kwargs.pop("style_callback")

        if style_function is None:
            style_function = lambda feat: {
                # "stroke": False,
                # "color": "#ff0000",
                "weight": 1,
                "opacity": 1,
                # "fill": True,
                # "fillColor": "#ffffff",
                "fillOpacity": 1.0,
                # "dashArray": "9"
                # "clickable": True,
                "fillColor": feat["properties"]["color"],
            }

        if highlight_function is None:
            highlight_function = lambda feat: {
                "weight": 2,
                "fillOpacity": 0.5,
            }

        self.add_gdf(
            gdf,
            layer_name=layer_name,
            style_function=style_function,
            highlight_function=highlight_function,
            info_mode=info_mode,
            encoding=encoding,
            **kwargs,
        )
        if add_legend:
            self.add_legend(title=legend_title, legend_dict=legend_dict)

    def add_image(self, image, position=(0, 0), **kwargs):
        """Add an image to the map.

        Args:
            image (str | ipywidgets.Image): The image to add.
            position (tuple, optional): The position of the image in the format of (x, y),
                the percentage ranging from 0 to 100, starting from the lower-left corner. Defaults to (0, 0).
        """
        import base64

        if isinstance(image, str):
            if image.startswith("http"):
                html = f'<img src="{image}">'
                if isinstance(position, tuple):
                    position = "bottomright"
                self.add_html(html, position=position, **kwargs)

            elif os.path.exists(image):
                if position == "bottomleft":
                    position = (5, 5)
                elif position == "bottomright":
                    position = (80, 5)
                elif position == "topleft":
                    position = (5, 60)
                elif position == "topright":
                    position = (80, 60)

                with open(image, "rb") as lf:
                    # open in binary mode, read bytes, encode, decode obtained bytes as utf-8 string
                    b64_content = base64.b64encode(lf.read()).decode("utf-8")
                    widget = plugins.FloatImage(
                        "data:image/png;base64,{}".format(b64_content),
                        bottom=position[1],
                        left=position[0],
                    )
                    widget.add_to(self)

        else:
            raise Exception("Invalid image")

    def add_widget(self, content, position="bottomright", **kwargs):
        """Add a widget (e.g., text, HTML, figure) to the map.

        Args:
            content (str): The widget to add.
            position (str, optional): The position of the widget. Defaults to "bottomright".
        """

        import base64
        from io import BytesIO

        from matplotlib import figure

        allowed_positions = ["topleft", "topright", "bottomleft", "bottomright"]

        if position not in allowed_positions:
            raise Exception(f"position must be one of {allowed_positions}")

        try:
            if isinstance(content, str):
                widget = CustomControl(content, position=position)
                widget.add_to(self)
            elif isinstance(content, figure.Figure):
                buf = BytesIO()
                content.savefig(buf, format="png")
                buf.seek(0)
                b64_content = base64.b64encode(buf.read()).decode("utf-8")
                widget = CustomControl(
                    f"""<img src="data:image/png;base64,{b64_content}">""",
                    position=position,
                )
                widget.add_to(self)
            else:
                raise Exception("The content must be a string or a matplotlib figure")

        except Exception as e:
            raise Exception(f"Error adding widget: {e}")

    def add_html(self, html, position="bottomright", **kwargs):
        """Add HTML to the map.

        Args:
            html (str): The HTML to add.
            position (str, optional): The position of the widget. Defaults to "bottomright".
        """

        self.add_widget(html, position=position, **kwargs)

    def add_text(
        self,
        text,
        fontsize=20,
        fontcolor="black",
        bold=False,
        padding="5px",
        background=True,
        bg_color="white",
        border_radius="5px",
        position="bottomright",
        **kwargs,
    ):
        """Add text to the map.

        Args:
            text (str): The text to add.
            fontsize (int, optional): The font size. Defaults to 20.
            fontcolor (str, optional): The font color. Defaults to "black".
            bold (bool, optional): Whether to use bold font. Defaults to False.
            padding (str, optional): The padding. Defaults to "5px".
            background (bool, optional): Whether to use background. Defaults to True.
            bg_color (str, optional): The background color. Defaults to "white".
            border_radius (str, optional): The border radius. Defaults to "5px".
            position (str, optional): The position of the widget. Defaults to "bottomright".
        """

        if background:
            text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
            padding: {padding}; background-color: {bg_color};
            border-radius: {border_radius};">{text}</div>"""
        else:
            text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
            padding: {padding};">{text}</div>"""

        self.add_html(text, position=position, **kwargs)

    def to_gradio(self, width="100%", height="500px", **kwargs):
        """Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as
            attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190

        Args:
            width (str, optional): The width of the map. Defaults to '100%'.
            height (str, optional): The height of the map. Defaults to '500px'.

        Returns:
            str: The HTML string to use in Gradio.
        """

        if isinstance(width, int):
            width = f"{width}px"
        if isinstance(height, int):
            height = f"{height}px"

        html = self.to_html()
        lines = html.split("\n")
        output = []
        skipped_lines = []
        for index, line in enumerate(lines):
            if index in skipped_lines:
                continue
            if line.lstrip().startswith('{"attribution":'):
                continue
            elif "on(L.Draw.Event.CREATED, function(e)" in line:
                for i in range(14):
                    skipped_lines.append(index + i)
            elif "L.Control.geocoder" in line:
                for i in range(5):
                    skipped_lines.append(index + i)
            elif "function(e)" in line:
                print(
                    f"Warning: The folium plotting backend does not support functions in code blocks. Please delete line {index + 1}."
                )
            else:
                output.append(line + "\n")

        return f"""<iframe style="width: {width}; height: {height}" name="result" allow="midi; geolocation; microphone; camera;
        display-capture; encrypted-media;" sandbox="allow-modals allow-forms
        allow-scripts allow-same-origin allow-popups
        allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
        allowpaymentrequest="" frameborder="0" srcdoc='{"".join(output)}'></iframe>"""

    def remove_labels(self, **kwargs):
        """Removes a layer from the map."""
        print("The folium plotting backend does not support removing labels.")

    def basemap_demo(self):
        """A demo for using geemap basemaps."""
        print("The folium plotting backend does not support this function.")

    def set_plot_options(
        self,
        **kwargs,
    ):
        """Sets plotting options."""
        print("The folium plotting backend does not support this function.")

    def ts_inspector(
        self,
        left_ts,
        right_ts,
        left_names,
        right_names,
        left_vis={},
        right_vis={},
        width="130px",
        **kwargs,
    ):
        print("The folium plotting backend does not support this function.")

    def add_time_slider(
        self,
        ee_object,
        vis_params={},
        region=None,
        layer_name="Time series",
        labels=None,
        time_interval=1,
        position="bottomright",
        slider_length="150px",
        date_format="YYYY-MM-dd",
        opacity=1.0,
        **kwargs,
    ):
        print("The folium plotting backend does not support this function.")

    def extract_values_to_points(self, filename):
        print("The folium plotting backend does not support this function.")

add_basemap(basemap='HYBRID', show=True, **kwargs)

Adds a basemap to the map.

Parameters:

Name Type Description Default
basemap str

Can be one of string from ee_basemaps. Defaults to 'ROADMAP'.

'HYBRID'
Source code in geemap/foliumap.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def add_basemap(
    self, basemap: Optional[str] = "HYBRID", show: Optional[bool] = True, **kwargs
):
    """Adds a basemap to the map.

    Args:
        basemap (str, optional): Can be one of string from ee_basemaps. Defaults to 'ROADMAP'.
    """
    import xyzservices

    try:
        map_dict = {
            "ROADMAP": "Esri.WorldStreetMap",
            "SATELLITE": "Esri.WorldImagery",
            "TERRAIN": "Esri.WorldTopoMap",
            "HYBRID": "Esri.WorldImagery",
        }

        if isinstance(basemap, str):
            if basemap.upper() in map_dict:
                if basemap in os.environ:
                    if "name" in kwargs:
                        kwargs["name"] = basemap
                    basemap = os.environ[basemap]
                    self.add_tile_layer(tiles=basemap, **kwargs)

                else:
                    basemap = basemap.upper()
                    basemaps[basemap].add_to(self)

            elif isinstance(basemap, xyzservices.TileProvider):
                name = basemap.name
                url = basemap.build_url()
                attribution = basemap.attribution
                if "max_zoom" in basemap.keys():
                    max_zoom = basemap["max_zoom"]
                else:
                    max_zoom = 22
                layer = folium.TileLayer(
                    tiles=url,
                    attr=attribution,
                    name=name,
                    max_zoom=max_zoom,
                    overlay=True,
                    control=True,
                    show=show,
                    **kwargs,
                )

                self.add_layer(layer)

                arc_add_layer(url, name)

            elif basemap in basemaps:
                bmap = basemaps[basemap]
                bmap.show = show
                bmap.add_to(self)
                if isinstance(basemaps[basemap], folium.TileLayer):
                    url = basemaps[basemap].tiles
                elif isinstance(basemaps[basemap], folium.WmsTileLayer):
                    url = basemaps[basemap].url
                arc_add_layer(url, basemap)
            else:
                print(
                    "Basemap can only be one of the following: {}".format(
                        ", ".join(basemaps.keys())
                    )
                )

    except Exception:
        raise Exception(
            "Basemap can only be one of the following: {}".format(
                ", ".join(basemaps.keys())
            )
        )

add_census_data(wms, layer, census_dict=None, **kwargs)

Adds a census data layer to the map.

Parameters:

Name Type Description Default
wms str

The wms to use. For example, "Current", "ACS 2021", "Census 2020". See the complete list at https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.html

required
layer str

The layer name to add to the map.

required
census_dict dict

A dictionary containing census data. Defaults to None. It can be obtained from the get_census_dict() function.

None
Source code in geemap/foliumap.py
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
def add_census_data(self, wms, layer, census_dict=None, **kwargs):
    """Adds a census data layer to the map.

    Args:
        wms (str): The wms to use. For example, "Current", "ACS 2021", "Census 2020".  See the complete list at https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.html
        layer (str): The layer name to add to the map.
        census_dict (dict, optional): A dictionary containing census data. Defaults to None. It can be obtained from the get_census_dict() function.
    """

    try:
        if census_dict is None:
            census_dict = get_census_dict()

        if wms not in census_dict.keys():
            raise ValueError(
                f"The provided WMS is invalid. It must be one of {census_dict.keys()}"
            )

        layers = census_dict[wms]["layers"]
        if layer not in layers:
            raise ValueError(
                f"The layer name is not valid. It must be one of {layers}"
            )

        url = census_dict[wms]["url"]
        if "name" not in kwargs:
            kwargs["name"] = layer
        if "attribution" not in kwargs:
            kwargs["attribution"] = "U.S. Census Bureau"
        if "format" not in kwargs:
            kwargs["format"] = "image/png"
        if "transparent" not in kwargs:
            kwargs["transparent"] = True

        self.add_wms_layer(url, layer, **kwargs)

    except Exception as e:
        raise Exception(e)

add_circle_markers_from_xy(data, x='longitude', y='latitude', radius=10, popup=None, tooltip=None, min_width=100, max_width=200, **kwargs)

Adds a marker cluster to the map.

Parameters:

Name Type Description Default
data str | DataFrame

A csv or Pandas DataFrame containing x, y, z values.

required
x str

The column name for the x values. Defaults to "longitude".

'longitude'
y str

The column name for the y values. Defaults to "latitude".

'latitude'
radius int

The radius of the circle. Defaults to 10.

10
popup list

A list of column names to be used as the popup. Defaults to None.

None
tooltip list

A list of column names to be used as the tooltip. Defaults to None.

None
min_width int

The minimum width of the popup. Defaults to 100.

100
max_width int

The maximum width of the popup. Defaults to 200.

200
Source code in geemap/foliumap.py
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
def add_circle_markers_from_xy(
    self,
    data,
    x="longitude",
    y="latitude",
    radius=10,
    popup=None,
    tooltip=None,
    min_width=100,
    max_width=200,
    **kwargs,
):
    """Adds a marker cluster to the map.

    Args:
        data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
        x (str, optional): The column name for the x values. Defaults to "longitude".
        y (str, optional): The column name for the y values. Defaults to "latitude".
        radius (int, optional): The radius of the circle. Defaults to 10.
        popup (list, optional): A list of column names to be used as the popup. Defaults to None.
        tooltip (list, optional): A list of column names to be used as the tooltip. Defaults to None.
        min_width (int, optional): The minimum width of the popup. Defaults to 100.
        max_width (int, optional): The maximum width of the popup. Defaults to 200.

    """
    import pandas as pd

    data = github_raw_url(data)

    if isinstance(data, pd.DataFrame):
        df = data
    elif not data.startswith("http") and (not os.path.exists(data)):
        raise FileNotFoundError("The specified input csv does not exist.")
    else:
        df = pd.read_csv(data)

    col_names = df.columns.values.tolist()

    if "color" not in kwargs:
        kwargs["color"] = None
    if "fill" not in kwargs:
        kwargs["fill"] = True
    if "fill_color" not in kwargs:
        kwargs["fill_color"] = "blue"
    if "fill_opacity" not in kwargs:
        kwargs["fill_opacity"] = 0.7

    if popup is None:
        popup = col_names

    if not isinstance(popup, list):
        popup = [popup]

    if tooltip is not None:
        if not isinstance(tooltip, list):
            tooltip = [tooltip]

    if x not in col_names:
        raise ValueError(f"x must be one of the following: {', '.join(col_names)}")

    if y not in col_names:
        raise ValueError(f"y must be one of the following: {', '.join(col_names)}")

    for _ in df.itertuples():
        html = ""
        for p in popup:
            html = (
                html
                + "<b>"
                + p
                + "</b>"
                + ": "
                + str(eval(str("row." + p)))
                + "<br>"
            )
        popup_html = folium.Popup(html, min_width=min_width, max_width=max_width)

        if tooltip is not None:
            html = ""
            for p in tooltip:
                html = (
                    html
                    + "<b>"
                    + p
                    + "</b>"
                    + ": "
                    + str(eval(str("row." + p)))
                    + "<br>"
                )

            tooltip_str = folium.Tooltip(html)
        else:
            tooltip_str = None

        folium.CircleMarker(
            location=[eval(f"row.{y}"), eval(f"row.{x}")],
            radius=radius,
            popup=popup_html,
            tooltip=tooltip_str,
            **kwargs,
        ).add_to(self)

add_cog_layer(url, name='Untitled', attribution='.', opacity=1.0, shown=True, bands=None, titiler_endpoint=None, **kwargs)

Adds a COG TileLayer to the map.

Parameters:

Name Type Description Default
url str

The URL of the COG tile layer.

required
name str

The layer name to use for the layer. Defaults to 'Untitled'.

'Untitled'
attribution str

The attribution to use. Defaults to '.'.

'.'
opacity float

The opacity of the layer. Defaults to 1.

1.0
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
bands list

A list of bands to use. Defaults to None.

None
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
Source code in geemap/foliumap.py
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def add_cog_layer(
    self,
    url,
    name="Untitled",
    attribution=".",
    opacity=1.0,
    shown=True,
    bands=None,
    titiler_endpoint=None,
    **kwargs,
):
    """Adds a COG TileLayer to the map.

    Args:
        url (str): The URL of the COG tile layer.
        name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'.
        attribution (str, optional): The attribution to use. Defaults to '.'.
        opacity (float, optional): The opacity of the layer. Defaults to 1.
        shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
        bands (list, optional): A list of bands to use. Defaults to None.
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
    """
    tile_url = cog_tile(url, bands, titiler_endpoint, **kwargs)
    bounds = cog_bounds(url, titiler_endpoint)
    self.add_tile_layer(
        tiles=tile_url,
        name=name,
        attribution=attribution,
        opacity=opacity,
        shown=shown,
    )
    self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

add_colorbar(vis_params, index=None, label='', categorical=False, step=None, background_color=None, **kwargs)

Add a colorbar to the map.

Parameters:

Name Type Description Default
colors list

The set of colors to be used for interpolation. Colors can be provided in the form: * tuples of RGBA ints between 0 and 255 (e.g: (255, 255, 0) or (255, 255, 0, 255)) * tuples of RGBA floats between 0. and 1. (e.g: (1.,1.,0.) or (1., 1., 0., 1.)) * HTML-like string (e.g: “#ffff00) * a color name or shortcut (e.g: “y” or “yellow”)

required
vmin int

The minimal value for the colormap. Values lower than vmin will be bound directly to colors[0].. Defaults to 0.

required
vmax float

The maximal value for the colormap. Values higher than vmax will be bound directly to colors[-1]. Defaults to 1.0.

required
index list

The values corresponding to each color. It has to be sorted, and have the same length as colors. If None, a regular grid between vmin and vmax is created.. Defaults to None.

None
label str

The caption for the colormap. Defaults to "".

''
categorical bool

Whether or not to create a categorical colormap. Defaults to False.

False
step int

The step to split the LinearColormap into a StepColormap. Defaults to None.

None
Source code in geemap/foliumap.py
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
def add_colorbar(
    self,
    vis_params,
    index=None,
    label="",
    categorical=False,
    step=None,
    background_color=None,
    **kwargs,
):
    """Add a colorbar to the map.

    Args:
        colors (list): The set of colors to be used for interpolation. Colors can be provided in the form: * tuples of RGBA ints between 0 and 255 (e.g: (255, 255, 0) or (255, 255, 0, 255)) * tuples of RGBA floats between 0. and 1. (e.g: (1.,1.,0.) or (1., 1., 0., 1.)) * HTML-like string (e.g: “#ffff00) * a color name or shortcut (e.g: “y” or “yellow”)
        vmin (int, optional): The minimal value for the colormap. Values lower than vmin will be bound directly to colors[0].. Defaults to 0.
        vmax (float, optional): The maximal value for the colormap. Values higher than vmax will be bound directly to colors[-1]. Defaults to 1.0.
        index (list, optional):The values corresponding to each color. It has to be sorted, and have the same length as colors. If None, a regular grid between vmin and vmax is created.. Defaults to None.
        label (str, optional): The caption for the colormap. Defaults to "".
        categorical (bool, optional): Whether or not to create a categorical colormap. Defaults to False.
        step (int, optional): The step to split the LinearColormap into a StepColormap. Defaults to None.
    """
    from box import Box
    from branca.colormap import LinearColormap

    if not isinstance(vis_params, dict):
        raise ValueError("vis_params must be a dictionary.")

    if "palette" not in vis_params:
        raise ValueError("vis_params must contain a palette.")

    if "min" not in vis_params:
        vis_params["min"] = 0
    if "max" not in vis_params:
        vis_params["max"] = 1

    colors = to_hex_colors(check_cmap(vis_params["palette"]))
    vmin = vis_params["min"]
    vmax = vis_params["max"]

    if isinstance(colors, Box):
        try:
            colors = list(colors["default"])
        except Exception as e:
            print("The provided color list is invalid.")
            raise Exception(e)

    if all(len(color) == 6 for color in colors):
        colors = ["#" + color for color in colors]

    colormap = LinearColormap(
        colors=colors, index=index, vmin=vmin, vmax=vmax, caption=label
    )

    if categorical:
        if step is not None:
            colormap = colormap.to_step(step)
        elif index is not None:
            colormap = colormap.to_step(len(index) - 1)
        else:
            colormap = colormap.to_step(3)

    if background_color is not None:
        svg_style = (
            "<style>svg {background-color: " + background_color + ";}</style>"
        )

        self.get_root().header.add_child(folium.Element(svg_style))

    self.add_child(colormap)

add_colormap(width=4.0, height=0.3, vmin=0, vmax=1.0, palette=None, vis_params=None, cmap='gray', discrete=False, label=None, label_size=10, label_weight='normal', tick_size=8, bg_color='white', orientation='horizontal', dpi='figure', transparent=False, position=(70, 5), **kwargs)

Add a colorbar to the map. Under the hood, it uses matplotlib to generate the colorbar, save it as a png file, and add it to the map using m.add_image().

Parameters:

Name Type Description Default
width float

Width of the colorbar in inches. Default is 4.0.

4.0
height float

Height of the colorbar in inches. Default is 0.3.

0.3
vmin float

Minimum value of the colorbar. Default is 0.

0
vmax float

Maximum value of the colorbar. Default is 1.0.

1.0
palette list

List of colors to use for the colorbar. It can also be a cmap name, such as ndvi, ndwi, dem, coolwarm. Default is None.

None
vis_params dict

Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.

None
cmap str

Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.

'gray'
discrete bool

Whether to create a discrete colorbar. Defaults to False.

False
label str

Label for the colorbar. Defaults to None.

None
label_size int

Font size for the colorbar label. Defaults to 12.

10
label_weight str

Font weight for the colorbar label, can be "normal", "bold", etc. Defaults to "normal".

'normal'
tick_size int

Font size for the colorbar tick labels. Defaults to 10.

8
bg_color str

Background color for the colorbar. Defaults to "white".

'white'
orientation str

Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".

'horizontal'
dpi float | str

The resolution in dots per inch. If 'figure', use the figure's dpi value. Defaults to "figure".

'figure'
transparent bool

Whether to make the background transparent. Defaults to False.

False
position tuple

The position of the colormap in the format of (x, y), the percentage ranging from 0 to 100, starting from the lower-left corner. Defaults to (0, 0).

(70, 5)
**kwargs

Other keyword arguments to pass to matplotlib.pyplot.savefig().

{}

Returns:

Name Type Description
str

Path to the output image.

Source code in geemap/foliumap.py
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
def add_colormap(
    self,
    width=4.0,
    height=0.3,
    vmin=0,
    vmax=1.0,
    palette=None,
    vis_params=None,
    cmap="gray",
    discrete=False,
    label=None,
    label_size=10,
    label_weight="normal",
    tick_size=8,
    bg_color="white",
    orientation="horizontal",
    dpi="figure",
    transparent=False,
    position=(70, 5),
    **kwargs,
):
    """Add a colorbar to the map. Under the hood, it uses matplotlib to generate the colorbar, save it as a png file, and add it to the map using m.add_image().

    Args:
        width (float): Width of the colorbar in inches. Default is 4.0.
        height (float): Height of the colorbar in inches. Default is 0.3.
        vmin (float): Minimum value of the colorbar. Default is 0.
        vmax (float): Maximum value of the colorbar. Default is 1.0.
        palette (list): List of colors to use for the colorbar. It can also be a cmap name, such as ndvi, ndwi, dem, coolwarm. Default is None.
        vis_params (dict): Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
        cmap (str, optional): Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.
        discrete (bool, optional): Whether to create a discrete colorbar. Defaults to False.
        label (str, optional): Label for the colorbar. Defaults to None.
        label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        label_weight (str, optional): Font weight for the colorbar label, can be "normal", "bold", etc. Defaults to "normal".
        tick_size (int, optional): Font size for the colorbar tick labels. Defaults to 10.
        bg_color (str, optional): Background color for the colorbar. Defaults to "white".
        orientation (str, optional): Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".
        dpi (float | str, optional): The resolution in dots per inch.  If 'figure', use the figure's dpi value. Defaults to "figure".
        transparent (bool, optional): Whether to make the background transparent. Defaults to False.
        position (tuple, optional): The position of the colormap in the format of (x, y),
            the percentage ranging from 0 to 100, starting from the lower-left corner. Defaults to (0, 0).
        **kwargs: Other keyword arguments to pass to matplotlib.pyplot.savefig().

    Returns:
        str: Path to the output image.
    """

    colorbar = save_colorbar(
        None,
        width,
        height,
        vmin,
        vmax,
        palette,
        vis_params,
        cmap,
        discrete,
        label,
        label_size,
        label_weight,
        tick_size,
        bg_color,
        orientation,
        dpi,
        transparent,
        show_colorbar=False,
        **kwargs,
    )

    self.add_image(colorbar, position=position)

add_data(data, column, colors=None, labels=None, cmap=None, scheme='Quantiles', k=5, add_legend=True, legend_title=None, legend_kwds=None, classification_kwds=None, style_function=None, highlight_function=None, layer_name='Untitled', info_mode='on_hover', encoding='utf-8', **kwargs)

Add vector data to the map with a variety of classification schemes.

Parameters:

Name Type Description Default
data str | DataFrame | GeoDataFrame

The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe.

required
column str

The column to classify.

required
cmap str

The name of a colormap recognized by matplotlib. Defaults to None.

None
colors list

A list of colors to use for the classification. Defaults to None.

None
labels list

A list of labels to use for the legend. Defaults to None.

None
scheme str

Name of a choropleth classification scheme (requires mapclassify). Name of a choropleth classification scheme (requires mapclassify). A mapclassify.MapClassifier object will be used under the hood. Supported are all schemes provided by mapclassify (e.g. 'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled', 'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced', 'JenksCaspallSampled', 'MaxP', 'MaximumBreaks', 'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean', 'UserDefined'). Arguments can be passed in classification_kwds.

'Quantiles'
k int

Number of classes (ignored if scheme is None or if column is categorical). Default to 5.

5
legend_kwds dict

Keyword arguments to pass to :func:matplotlib.pyplot.legend or matplotlib.pyplot.colorbar. Defaults to None. Keyword arguments to pass to :func:matplotlib.pyplot.legend or Additional accepted keywords when scheme is specified: fmt : string A formatting specification for the bin edges of the classes in the legend. For example, to have no decimals: {"fmt": "{:.0f}"}. labels : list-like A list of legend labels to override the auto-generated labblels. Needs to have the same number of elements as the number of classes (k). interval : boolean (default False) An option to control brackets from mapclassify legend. If True, open/closed interval brackets are shown in the legend.

None
classification_kwds dict

Keyword arguments to pass to mapclassify. Defaults to None.

None
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style_function function

Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. style_callback is a function that takes the feature as argument and should return a dictionary of the following form: style_callback = lambda feat: {"fillColor": feat["properties"]["color"]} style is a dictionary of the following form: style = { "stroke": False, "color": "#ff0000", "weight": 1, "opacity": 1, "fill": True, "fillColor": "#ffffff", "fillOpacity": 1.0, "dashArray": "9" "clickable": True, }

None
hightlight_function function

Highlighting function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. highlight_function is a function that takes the feature as argument and should return a dictionary of the following form: highlight_function = lambda feat: {"fillColor": feat["properties"]["color"]}

required
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
encoding str

The encoding of the GeoJSON file. Defaults to "utf-8".

'utf-8'
Source code in geemap/foliumap.py
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
def add_data(
    self,
    data,
    column,
    colors=None,
    labels=None,
    cmap=None,
    scheme="Quantiles",
    k=5,
    add_legend=True,
    legend_title=None,
    legend_kwds=None,
    classification_kwds=None,
    style_function=None,
    highlight_function=None,
    layer_name="Untitled",
    info_mode="on_hover",
    encoding="utf-8",
    **kwargs,
):
    """Add vector data to the map with a variety of classification schemes.

    Args:
        data (str | pd.DataFrame | gpd.GeoDataFrame): The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe.
        column (str): The column to classify.
        cmap (str, optional): The name of a colormap recognized by matplotlib. Defaults to None.
        colors (list, optional): A list of colors to use for the classification. Defaults to None.
        labels (list, optional): A list of labels to use for the legend. Defaults to None.
        scheme (str, optional): Name of a choropleth classification scheme (requires mapclassify).
            Name of a choropleth classification scheme (requires mapclassify).
            A mapclassify.MapClassifier object will be used
            under the hood. Supported are all schemes provided by mapclassify (e.g.
            'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled',
            'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced',
            'JenksCaspallSampled', 'MaxP', 'MaximumBreaks',
            'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean',
            'UserDefined'). Arguments can be passed in classification_kwds.
        k (int, optional): Number of classes (ignored if scheme is None or if column is categorical). Default to 5.
        legend_kwds (dict, optional): Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or `matplotlib.pyplot.colorbar`. Defaults to None.
            Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or
            Additional accepted keywords when `scheme` is specified:
            fmt : string
                A formatting specification for the bin edges of the classes in the
                legend. For example, to have no decimals: ``{"fmt": "{:.0f}"}``.
            labels : list-like
                A list of legend labels to override the auto-generated labblels.
                Needs to have the same number of elements as the number of
                classes (`k`).
            interval : boolean (default False)
                An option to control brackets from mapclassify legend.
                If True, open/closed interval brackets are shown in the legend.
        classification_kwds (dict, optional): Keyword arguments to pass to mapclassify. Defaults to None.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style_function (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            style_callback is a function that takes the feature as argument and should return a dictionary of the following form:
            style_callback = lambda feat: {"fillColor": feat["properties"]["color"]}
            style is a dictionary of the following form:
                style = {
                "stroke": False,
                "color": "#ff0000",
                "weight": 1,
                "opacity": 1,
                "fill": True,
                "fillColor": "#ffffff",
                "fillOpacity": 1.0,
                "dashArray": "9"
                "clickable": True,
            }
        hightlight_function (function, optional): Highlighting function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
            highlight_function is a function that takes the feature as argument and should return a dictionary of the following form:
            highlight_function = lambda feat: {"fillColor": feat["properties"]["color"]}
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
        encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
    """

    import warnings

    gdf, legend_dict = classify(
        data=data,
        column=column,
        cmap=cmap,
        colors=colors,
        labels=labels,
        scheme=scheme,
        k=k,
        legend_kwds=legend_kwds,
        classification_kwds=classification_kwds,
    )

    if legend_title is None:
        legend_title = column

    if "style" in kwargs:
        warnings.warn(
            "The style arguments is for ipyleaflet only. ",
            UserWarning,
        )
        kwargs.pop("style")

    if "hover_style" in kwargs:
        warnings.warn(
            "The hover_style arguments is for ipyleaflet only. ",
            UserWarning,
        )
        kwargs.pop("hover_style")

    if "style_callback" in kwargs:
        warnings.warn(
            "The style_callback arguments is for ipyleaflet only. ",
            UserWarning,
        )
        kwargs.pop("style_callback")

    if style_function is None:
        style_function = lambda feat: {
            # "stroke": False,
            # "color": "#ff0000",
            "weight": 1,
            "opacity": 1,
            # "fill": True,
            # "fillColor": "#ffffff",
            "fillOpacity": 1.0,
            # "dashArray": "9"
            # "clickable": True,
            "fillColor": feat["properties"]["color"],
        }

    if highlight_function is None:
        highlight_function = lambda feat: {
            "weight": 2,
            "fillOpacity": 0.5,
        }

    self.add_gdf(
        gdf,
        layer_name=layer_name,
        style_function=style_function,
        highlight_function=highlight_function,
        info_mode=info_mode,
        encoding=encoding,
        **kwargs,
    )
    if add_legend:
        self.add_legend(title=legend_title, legend_dict=legend_dict)

add_gdf(gdf, layer_name='Untitled', zoom_to_layer=True, info_mode='on_hover', fields=None, **kwargs)

Adds a GeoPandas GeoDataFrame to the map.

Parameters:

Name Type Description Default
gdf GeoDataFrame

A GeoPandas GeoDataFrame.

required
layer_name str

The layer name to be used. Defaults to "Untitled".

'Untitled'
zoom_to_layer bool

Whether to zoom to the layer.

True
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
fields list

The fields to be displayed in the popup. Defaults to None.

None
Source code in geemap/foliumap.py
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
def add_gdf(
    self,
    gdf,
    layer_name="Untitled",
    zoom_to_layer=True,
    info_mode="on_hover",
    fields=None,
    **kwargs,
):
    """Adds a GeoPandas GeoDataFrame to the map.

    Args:
        gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
        layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
        zoom_to_layer (bool, optional): Whether to zoom to the layer.
        info_mode (str, optional): Displays the attributes by either on_hover or on_click.
            Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
        fields (list, optional): The fields to be displayed in the popup. Defaults to None.

    """

    data = gdf_to_geojson(gdf, epsg="4326")

    self.add_geojson(
        data, layer_name=layer_name, info_mode=info_mode, fields=fields, **kwargs
    )

    if zoom_to_layer:
        import numpy as np

        bounds = gdf.to_crs(epsg="4326").bounds
        west = np.min(bounds["minx"])
        south = np.min(bounds["miny"])
        east = np.max(bounds["maxx"])
        north = np.max(bounds["maxy"])
        self.fit_bounds([[south, east], [north, west]])

add_gdf_from_postgis(sql, con, layer_name='Untitled', zoom_to_layer=True, **kwargs)

Adds a GeoPandas GeoDataFrameto the map.

Parameters:

Name Type Description Default
sql str

SQL query to execute in selecting entries from database, or name of the table to read from the database.

required
con Engine

Active connection to the database to query.

required
layer_name str

The layer name to be used. Defaults to "Untitled".

'Untitled'
zoom_to_layer bool

Whether to zoom to the layer.

True
Source code in geemap/foliumap.py
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
def add_gdf_from_postgis(
    self, sql, con, layer_name="Untitled", zoom_to_layer=True, **kwargs
):
    """Adds a GeoPandas GeoDataFrameto the map.

    Args:
        sql (str): SQL query to execute in selecting entries from database, or name of the table to read from the database.
        con (sqlalchemy.engine.Engine): Active connection to the database to query.
        layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
        zoom_to_layer (bool, optional): Whether to zoom to the layer.

    """
    if "fill_colors" in kwargs:
        kwargs.pop("fill_colors")
    gdf = read_postgis(sql, con, **kwargs)
    data = gdf_to_geojson(gdf, epsg="4326")

    self.add_geojson(data, layer_name=layer_name, **kwargs)

    if zoom_to_layer:
        import numpy as np

        bounds = gdf.to_crs(epsg="4326").bounds
        west = np.min(bounds["minx"])
        south = np.min(bounds["miny"])
        east = np.max(bounds["maxx"])
        north = np.max(bounds["maxy"])
        self.fit_bounds([[south, east], [north, west]])

add_geojson(in_geojson, layer_name='Untitled', encoding='utf-8', info_mode='on_hover', fields=None, **kwargs)

Adds a GeoJSON file to the map.

Parameters:

Name Type Description Default
in_geojson str

The input file path to the GeoJSON.

required
layer_name str

The layer name to be used. Defaults to "Untitled".

'Untitled'
encoding str

The encoding of the GeoJSON file. Defaults to "utf-8".

'utf-8'
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
fields list

The fields to be displayed in the popup. Defaults to None.

None

Raises:

Type Description
FileNotFoundError

The provided GeoJSON file could not be found.

Source code in geemap/foliumap.py
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
def add_geojson(
    self,
    in_geojson,
    layer_name="Untitled",
    encoding="utf-8",
    info_mode="on_hover",
    fields=None,
    **kwargs,
):
    """Adds a GeoJSON file to the map.

    Args:
        in_geojson (str): The input file path to the GeoJSON.
        layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
        encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
        fields (list, optional): The fields to be displayed in the popup. Defaults to None.

    Raises:
        FileNotFoundError: The provided GeoJSON file could not be found.
    """
    import json
    import random

    import requests

    try:
        if isinstance(in_geojson, str):
            if in_geojson.startswith("http"):
                in_geojson = github_raw_url(in_geojson)
                data = requests.get(in_geojson).json()
            else:
                in_geojson = os.path.abspath(in_geojson)
                if not os.path.exists(in_geojson):
                    raise FileNotFoundError(
                        "The provided GeoJSON file could not be found."
                    )

                with open(in_geojson, encoding=encoding) as f:
                    data = json.load(f)
        elif isinstance(in_geojson, dict):
            data = in_geojson
        else:
            raise TypeError("The input geojson must be a type of str or dict.")
    except Exception as e:
        raise Exception(e)

    # interchangeable parameters between ipyleaflet and folium.
    if "style_function" not in kwargs:
        if "style" in kwargs:
            style_dict = kwargs["style"]
            if isinstance(kwargs["style"], dict) and len(kwargs["style"]) > 0:
                kwargs["style_function"] = lambda x: style_dict
            kwargs.pop("style")
        else:
            style_dict = {
                # "stroke": True,
                "color": "#000000",
                "weight": 1,
                "opacity": 1,
                # "fill": True,
                # "fillColor": "#ffffff",
                "fillOpacity": 0.1,
                # "dashArray": "9"
                # "clickable": True,
            }
            kwargs["style_function"] = lambda x: style_dict

    if "style_callback" in kwargs:
        kwargs.pop("style_callback")

    if "hover_style" in kwargs:
        kwargs.pop("hover_style")

    if "fill_colors" in kwargs:
        fill_colors = kwargs["fill_colors"]

        def random_color(feature):
            style_dict["fillColor"] = random.choice(fill_colors)
            return style_dict

        kwargs["style_function"] = random_color
        kwargs.pop("fill_colors")

    if "highlight_function" not in kwargs:
        kwargs["highlight_function"] = lambda feat: {
            "weight": 2,
            "fillOpacity": 0.5,
        }

    tooltip = None
    popup = None
    if info_mode is not None:
        if fields is None:
            fields = list(data["features"][0]["properties"].keys())
        if info_mode == "on_hover":
            tooltip = folium.GeoJsonTooltip(fields=fields)
        elif info_mode == "on_click":
            popup = folium.GeoJsonPopup(fields=fields)

    geojson = folium.GeoJson(
        data=data, name=layer_name, tooltip=tooltip, popup=popup, **kwargs
    )
    geojson.add_to(self)

add_heatmap(data, latitude='latitude', longitude='longitude', value='value', name='Heat map', radius=25, **kwargs)

Adds a heat map to the map. Reference: https://stackoverflow.com/a/54756617

Parameters:

Name Type Description Default
data str | list | DataFrame

File path or HTTP URL to the input file or a list of data points in the format of [[x1, y1, z1], [x2, y2, z2]]. For example, https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/world_cities.csv

required
latitude str

The column name of latitude. Defaults to "latitude".

'latitude'
longitude str

The column name of longitude. Defaults to "longitude".

'longitude'
value str

The column name of values. Defaults to "value".

'value'
name str

Layer name to use. Defaults to "Heat map".

'Heat map'
radius int

Radius of each “point” of the heatmap. Defaults to 25.

25

Raises:

Type Description
ValueError

If data is not a list.

Source code in geemap/foliumap.py
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
def add_heatmap(
    self,
    data,
    latitude="latitude",
    longitude="longitude",
    value="value",
    name="Heat map",
    radius=25,
    **kwargs,
):
    """Adds a heat map to the map. Reference: https://stackoverflow.com/a/54756617

    Args:
        data (str | list | pd.DataFrame): File path or HTTP URL to the input file or a list of data points in the format of [[x1, y1, z1], [x2, y2, z2]]. For example, https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/world_cities.csv
        latitude (str, optional): The column name of latitude. Defaults to "latitude".
        longitude (str, optional): The column name of longitude. Defaults to "longitude".
        value (str, optional): The column name of values. Defaults to "value".
        name (str, optional): Layer name to use. Defaults to "Heat map".
        radius (int, optional): Radius of each “point” of the heatmap. Defaults to 25.

    Raises:
        ValueError: If data is not a list.
    """
    import pandas as pd

    try:
        if isinstance(data, str):
            df = pd.read_csv(data)
            data = df[[latitude, longitude, value]].values.tolist()
        elif isinstance(data, pd.DataFrame):
            data = data[[latitude, longitude, value]].values.tolist()
        elif isinstance(data, list):
            pass
        else:
            raise ValueError("data must be a list, a DataFrame, or a file path.")

        plugins.HeatMap(data, name=name, radius=radius, **kwargs).add_to(
            folium.FeatureGroup(name=name).add_to(self)
        )
    except Exception as e:
        raise Exception(e)

add_html(html, position='bottomright', **kwargs)

Add HTML to the map.

Parameters:

Name Type Description Default
html str

The HTML to add.

required
position str

The position of the widget. Defaults to "bottomright".

'bottomright'
Source code in geemap/foliumap.py
2714
2715
2716
2717
2718
2719
2720
2721
2722
def add_html(self, html, position="bottomright", **kwargs):
    """Add HTML to the map.

    Args:
        html (str): The HTML to add.
        position (str, optional): The position of the widget. Defaults to "bottomright".
    """

    self.add_widget(html, position=position, **kwargs)

add_image(image, position=(0, 0), **kwargs)

Add an image to the map.

Parameters:

Name Type Description Default
image str | Image

The image to add.

required
position tuple

The position of the image in the format of (x, y), the percentage ranging from 0 to 100, starting from the lower-left corner. Defaults to (0, 0).

(0, 0)
Source code in geemap/foliumap.py
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
def add_image(self, image, position=(0, 0), **kwargs):
    """Add an image to the map.

    Args:
        image (str | ipywidgets.Image): The image to add.
        position (tuple, optional): The position of the image in the format of (x, y),
            the percentage ranging from 0 to 100, starting from the lower-left corner. Defaults to (0, 0).
    """
    import base64

    if isinstance(image, str):
        if image.startswith("http"):
            html = f'<img src="{image}">'
            if isinstance(position, tuple):
                position = "bottomright"
            self.add_html(html, position=position, **kwargs)

        elif os.path.exists(image):
            if position == "bottomleft":
                position = (5, 5)
            elif position == "bottomright":
                position = (80, 5)
            elif position == "topleft":
                position = (5, 60)
            elif position == "topright":
                position = (80, 60)

            with open(image, "rb") as lf:
                # open in binary mode, read bytes, encode, decode obtained bytes as utf-8 string
                b64_content = base64.b64encode(lf.read()).decode("utf-8")
                widget = plugins.FloatImage(
                    "data:image/png;base64,{}".format(b64_content),
                    bottom=position[1],
                    left=position[0],
                )
                widget.add_to(self)

    else:
        raise Exception("Invalid image")

add_kml(in_kml, layer_name='Untitled', info_mode='on_hover', fields=None, **kwargs)

Adds a KML file to the map.

Parameters:

Name Type Description Default
in_kml str

The input file path to the KML.

required
layer_name str

The layer name to be used. Defaults to "Untitled".

'Untitled'
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
fields list

The fields to be displayed in the popup. Defaults to None.

None

Raises:

Type Description
FileNotFoundError

The provided KML file could not be found.

Source code in geemap/foliumap.py
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
def add_kml(
    self, in_kml, layer_name="Untitled", info_mode="on_hover", fields=None, **kwargs
):
    """Adds a KML file to the map.

    Args:
        in_kml (str): The input file path to the KML.
        layer_name (str, optional): The layer name to be used. Defaults to "Untitled".
        info_mode (str, optional): Displays the attributes by either on_hover or on_click.
            Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
        fields (list, optional): The fields to be displayed in the popup. Defaults to None.

    Raises:
        FileNotFoundError: The provided KML file could not be found.
    """

    if in_kml.startswith("http") and in_kml.endswith(".kml"):
        out_dir = os.path.abspath("./cache")
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)
        download_from_url(in_kml, out_dir=out_dir, unzip=False, verbose=False)
        in_kml = os.path.join(out_dir, os.path.basename(in_kml))
        if not os.path.exists(in_kml):
            raise FileNotFoundError("The downloaded kml file could not be found.")
    else:
        in_kml = os.path.abspath(in_kml)
        if not os.path.exists(in_kml):
            raise FileNotFoundError("The provided KML could not be found.")

    data = kml_to_geojson(in_kml)

    self.add_geojson(
        data, layer_name=layer_name, info_mode=info_mode, fields=fields, **kwargs
    )

add_labels(data, column, font_size='12pt', font_color='black', font_family='arial', font_weight='normal', x='longitude', y='latitude', draggable=True, layer_name='Labels', **kwargs)

Adds a label layer to the map. Reference: https://python-visualization.github.io/folium/modules.html#folium.features.DivIcon

Parameters:

Name Type Description Default
data DataFrame | FeatureCollection

The input data to label.

required
column str

The column name of the data to label.

required
font_size str

The font size of the labels. Defaults to "12pt".

'12pt'
font_color str

The font color of the labels. Defaults to "black".

'black'
font_family str

The font family of the labels. Defaults to "arial".

'arial'
font_weight str

The font weight of the labels, can be normal, bold. Defaults to "normal".

'normal'
x str

The column name of the longitude. Defaults to "longitude".

'longitude'
y str

The column name of the latitude. Defaults to "latitude".

'latitude'
draggable bool

Whether the labels are draggable. Defaults to True.

True
layer_name str

The name of the layer. Defaults to "Labels".

'Labels'
Source code in geemap/foliumap.py
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
def add_labels(
    self,
    data,
    column,
    font_size="12pt",
    font_color="black",
    font_family="arial",
    font_weight="normal",
    x="longitude",
    y="latitude",
    draggable=True,
    layer_name="Labels",
    **kwargs,
):
    """Adds a label layer to the map. Reference: https://python-visualization.github.io/folium/modules.html#folium.features.DivIcon

    Args:
        data (pd.DataFrame | ee.FeatureCollection): The input data to label.
        column (str): The column name of the data to label.
        font_size (str, optional): The font size of the labels. Defaults to "12pt".
        font_color (str, optional): The font color of the labels. Defaults to "black".
        font_family (str, optional): The font family of the labels. Defaults to "arial".
        font_weight (str, optional): The font weight of the labels, can be normal, bold. Defaults to "normal".
        x (str, optional): The column name of the longitude. Defaults to "longitude".
        y (str, optional): The column name of the latitude. Defaults to "latitude".
        draggable (bool, optional): Whether the labels are draggable. Defaults to True.
        layer_name (str, optional): The name of the layer. Defaults to "Labels".

    """
    import warnings

    import pandas as pd
    from folium.features import DivIcon

    warnings.filterwarnings("ignore")

    if isinstance(data, ee.FeatureCollection):
        centroids = vector_centroids(data)
        df = ee_to_df(centroids)
    elif isinstance(data, pd.DataFrame):
        df = data
    elif isinstance(data, str):
        ext = os.path.splitext(data)[1]
        if ext == ".csv":
            df = pd.read_csv(data)
        elif ext in [".geojson", ".json", ".shp", ".gpkg"]:
            try:
                import geopandas as gpd

                df = gpd.read_file(data)
                df[x] = df.centroid.x
                df[y] = df.centroid.y
            except Exception as e:
                print("geopandas is required to read geojson.")
                print(e)
                return
    else:
        raise ValueError("data must be a DataFrame or an ee.FeatureCollection.")

    if column not in df.columns:
        raise ValueError(f"column must be one of {', '.join(df.columns)}.")
    if x not in df.columns:
        raise ValueError(f"column must be one of {', '.join(df.columns)}.")
    if y not in df.columns:
        raise ValueError(f"column must be one of {', '.join(df.columns)}.")

    try:
        size = int(font_size.replace("pt", ""))
    except Exception as _:
        raise ValueError("font_size must be something like '10pt'")

    layer_group = folium.FeatureGroup(name=layer_name)
    for index in df.index:
        html = f'<div style="font-size: {font_size};color:{font_color};font-family:{font_family};font-weight: {font_weight}">{df[column][index]}</div>'
        folium.Marker(
            location=[df[y][index], df[x][index]],
            icon=DivIcon(
                icon_size=(1, 1),
                icon_anchor=(size, size),
                html=html,
                **kwargs,
            ),
            draggable=draggable,
        ).add_to(layer_group)

    layer_group.add_to(self)

add_layer(ee_object, vis_params={}, name='Layer untitled', shown=True, opacity=1.0, **kwargs)

Adds a given EE object to the map as a layer.

Parameters:

Name Type Description Default
ee_object Collection | Feature | Image | MapId

The object to add to the map.

required
vis_params dict

The visualization parameters. Defaults to {}.

{}
name str

The name of the layer. Defaults to 'Layer untitled'.

'Layer untitled'
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
opacity float

The layer's opacity represented as a number between 0 and 1. Defaults to 1.

1.0
Source code in geemap/foliumap.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def add_layer(
    self,
    ee_object,
    vis_params={},
    name="Layer untitled",
    shown=True,
    opacity=1.0,
    **kwargs,
):
    """Adds a given EE object to the map as a layer.

    Args:
        ee_object (Collection|Feature|Image|MapId): The object to add to the map.
        vis_params (dict, optional): The visualization parameters. Defaults to {}.
        name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
        shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
        opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1.
    """

    layer = EEFoliumTileLayer(ee_object, vis_params, name, shown, opacity, **kwargs)
    layer.add_to(self)
    arc_add_layer(layer.url_format, name, shown, opacity)

add_layer_control()

Adds layer control to the map.

Source code in geemap/foliumap.py
397
398
399
400
401
402
403
404
405
def add_layer_control(self):
    """Adds layer control to the map."""
    layer_ctrl = False
    for item in self.to_dict()["children"]:
        if item.startswith("layer_control"):
            layer_ctrl = True
            break
    if not layer_ctrl:
        folium.LayerControl().add_to(self)

add_legend(title='Legend', labels=None, colors=None, legend_dict=None, builtin_legend=None, opacity=1.0, position='bottomright', draggable=True, style={})

Adds a customized legend to the map. Reference: https://bit.ly/3oV6vnH. If you want to add multiple legends to the map, you need to set the draggable argument to False.

Parameters:

Name Type Description Default
title str

Title of the legend. Defaults to 'Legend'. Defaults to "Legend".

'Legend'
colors list

A list of legend colors. Defaults to None.

None
labels list

A list of legend labels. Defaults to None.

None
legend_dict dict

A dictionary containing legend items as keys and color as values. If provided, legend_keys and legend_colors will be ignored. Defaults to None.

None
builtin_legend str

Name of the builtin legend to add to the map. Defaults to None.

None
opacity float

The opacity of the legend. Defaults to 1.0.

1.0
position str

The position of the legend, can be one of the following: "topleft", "topright", "bottomleft", "bottomright". Defaults to "bottomright".

'bottomright'
draggable bool

If True, the legend can be dragged to a new position. Defaults to True.

True
style

Additional keyword arguments to style the legend, such as position, bottom, right, z-index, border, background-color, border-radius, padding, font-size, etc. The default style is: style = { 'position': 'fixed', 'z-index': '9999', 'border': '2px solid grey', 'background-color': 'rgba(255, 255, 255, 0.8)', 'border-radius': '5px', 'padding': '10px', 'font-size': '14px', 'bottom': '20px', 'right': '5px' }

{}
Source code in geemap/foliumap.py
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
def add_legend(
    self,
    title="Legend",
    labels=None,
    colors=None,
    legend_dict=None,
    builtin_legend=None,
    opacity=1.0,
    position="bottomright",
    draggable=True,
    style={},
):
    """Adds a customized legend to the map. Reference: https://bit.ly/3oV6vnH.
        If you want to add multiple legends to the map, you need to set the `draggable` argument to False.

    Args:
        title (str, optional): Title of the legend. Defaults to 'Legend'. Defaults to "Legend".
        colors (list, optional): A list of legend colors. Defaults to None.
        labels (list, optional): A list of legend labels. Defaults to None.
        legend_dict (dict, optional): A dictionary containing legend items as keys and color as values.
            If provided, legend_keys and legend_colors will be ignored. Defaults to None.
        builtin_legend (str, optional): Name of the builtin legend to add to the map. Defaults to None.
        opacity (float, optional): The opacity of the legend. Defaults to 1.0.
        position (str, optional): The position of the legend, can be one of the following:
            "topleft", "topright", "bottomleft", "bottomright". Defaults to "bottomright".
        draggable (bool, optional): If True, the legend can be dragged to a new position. Defaults to True.
        style: Additional keyword arguments to style the legend, such as position, bottom, right, z-index,
            border, background-color, border-radius, padding, font-size, etc. The default style is:
            style = {
                'position': 'fixed',
                'z-index': '9999',
                'border': '2px solid grey',
                'background-color': 'rgba(255, 255, 255, 0.8)',
                'border-radius': '5px',
                'padding': '10px',
                'font-size': '14px',
                'bottom': '20px',
                'right': '5px'
            }

    """
    content = create_legend(
        title,
        labels,
        colors,
        legend_dict,
        builtin_legend,
        opacity,
        position,
        draggable,
        style=style,
    )
    if draggable:
        from branca.element import MacroElement, Template

        content = (
            '"""\n{% macro html(this, kwargs) %}\n'
            + content
            + '\n{% endmacro %}"""'
        )

        macro = MacroElement()
        macro._template = Template(content)

        self.get_root().add_child(macro)
    else:
        self.add_html(content, position=position)

add_marker(location, popup=None, tooltip=None, icon=None, draggable=False, **kwargs)

Adds a marker to the map. More info about marker options at https://python-visualization.github.io/folium/modules.html#folium.map.Marker.

Parameters:

Name Type Description Default
location list | tuple

The location of the marker in the format of [lat, lng].

required
popup str

The popup text. Defaults to None.

None
tooltip str

The tooltip text. Defaults to None.

None
icon str

The icon to use. Defaults to None.

None
draggable bool

Whether the marker is draggable. Defaults to False.

False
Source code in geemap/foliumap.py
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def add_marker(
    self, location, popup=None, tooltip=None, icon=None, draggable=False, **kwargs
):
    """Adds a marker to the map. More info about marker options at https://python-visualization.github.io/folium/modules.html#folium.map.Marker.

    Args:
        location (list | tuple): The location of the marker in the format of [lat, lng].
        popup (str, optional): The popup text. Defaults to None.
        tooltip (str, optional): The tooltip text. Defaults to None.
        icon (str, optional): The icon to use. Defaults to None.
        draggable (bool, optional): Whether the marker is draggable. Defaults to False.
    """
    if isinstance(location, list):
        location = tuple(location)
    if isinstance(location, tuple):
        folium.Marker(
            location=location,
            popup=popup,
            tooltip=tooltip,
            icon=icon,
            draggable=draggable,
            **kwargs,
        ).add_to(self)

    else:
        raise TypeError("The location must be a list or a tuple.")

add_markers_from_xy(data, x='longitude', y='latitude', popup=None, min_width=100, max_width=200, layer_name='Markers', icon=None, icon_shape='circle-dot', border_width=3, border_color='#0000ff', **kwargs)

Adds markers to the map from a csv or Pandas DataFrame containing x, y values.

Parameters:

Name Type Description Default
data str | DataFrame

A csv or Pandas DataFrame containing x, y, z values.

required
x str

The column name for the x values. Defaults to "longitude".

'longitude'
y str

The column name for the y values. Defaults to "latitude".

'latitude'
popup list

A list of column names to be used as the popup. Defaults to None.

None
min_width int

The minimum width of the popup. Defaults to 100.

100
max_width int

The maximum width of the popup. Defaults to 200.

200
layer_name str

The name of the layer. Defaults to "Marker Cluster".

'Markers'
icon str

The Font-Awesome icon name to use to render the marker. Defaults to None.

None
icon_shape str

The shape of the marker, such as "retangle-dot", "circle-dot". Defaults to 'circle-dot'.

'circle-dot'
border_width int

The width of the border. Defaults to 3.

3
border_color str

The color of the border. Defaults to '#0000ff'.

'#0000ff'
kwargs dict

Additional keyword arguments to pass to BeautifyIcon. See https://python-visualization.github.io/folium/plugins.html#folium.plugins.BeautifyIcon.

{}
Source code in geemap/foliumap.py
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
def add_markers_from_xy(
    self,
    data,
    x="longitude",
    y="latitude",
    popup=None,
    min_width=100,
    max_width=200,
    layer_name="Markers",
    icon=None,
    icon_shape="circle-dot",
    border_width=3,
    border_color="#0000ff",
    **kwargs,
):
    """Adds markers to the map from a csv or Pandas DataFrame containing x, y values.

    Args:
        data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
        x (str, optional): The column name for the x values. Defaults to "longitude".
        y (str, optional): The column name for the y values. Defaults to "latitude".
        popup (list, optional): A list of column names to be used as the popup. Defaults to None.
        min_width (int, optional): The minimum width of the popup. Defaults to 100.
        max_width (int, optional): The maximum width of the popup. Defaults to 200.
        layer_name (str, optional): The name of the layer. Defaults to "Marker Cluster".
        icon (str, optional): The Font-Awesome icon name to use to render the marker. Defaults to None.
        icon_shape (str, optional): The shape of the marker, such as "retangle-dot", "circle-dot". Defaults to 'circle-dot'.
        border_width (int, optional): The width of the border. Defaults to 3.
        border_color (str, optional): The color of the border. Defaults to '#0000ff'.
        kwargs (dict, optional): Additional keyword arguments to pass to BeautifyIcon. See
            https://python-visualization.github.io/folium/plugins.html#folium.plugins.BeautifyIcon.

    """
    import pandas as pd
    from folium.plugins import BeautifyIcon

    layer_group = folium.FeatureGroup(name=layer_name)

    if isinstance(data, pd.DataFrame):
        df = data
    elif not data.startswith("http") and (not os.path.exists(data)):
        raise FileNotFoundError("The specified input csv does not exist.")
    else:
        df = pd.read_csv(data)

    col_names = df.columns.values.tolist()

    if popup is None:
        popup = col_names

    if x not in col_names:
        raise ValueError(f"x must be one of the following: {', '.join(col_names)}")

    if y not in col_names:
        raise ValueError(f"y must be one of the following: {', '.join(col_names)}")

    for row in df.itertuples():
        html = ""
        for p in popup:
            html = html + "<b>" + p + "</b>" + ": " + str(getattr(row, p)) + "<br>"
        popup_html = folium.Popup(html, min_width=min_width, max_width=max_width)

        marker_icon = BeautifyIcon(
            icon, icon_shape, border_width, border_color, **kwargs
        )
        folium.Marker(
            location=[getattr(row, y), getattr(row, x)],
            popup=popup_html,
            icon=marker_icon,
        ).add_to(layer_group)

    layer_group.add_to(self)

add_netcdf(filename, variables=None, palette=None, vmin=None, vmax=None, nodata=None, attribution=None, layer_name='NetCDF layer', shift_lon=True, lat='lat', lon='lon', **kwargs)

Generate an ipyleaflet/folium TileLayer from a netCDF file. If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer), try adding to following two lines to the beginning of the notebook if the raster does not render properly.

1
2
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = f'{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}'

Parameters:

Name Type Description Default
filename str

File path or HTTP URL to the netCDF file.

required
variables int

The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted.

None
port str

The port to use for the server. Defaults to "default".

required
palette str

The name of the color palette from palettable to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale

None
vmin float

The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.

None
vmax float

The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.

None
nodata float

The value from the band to use to interpret as not valid data. Defaults to None.

None
attribution str

Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.

None
layer_name str

The layer name to use. Defaults to "netCDF layer".

'NetCDF layer'
shift_lon bool

Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.

True
lat str

Name of the latitude variable. Defaults to 'lat'.

'lat'
lon str

Name of the longitude variable. Defaults to 'lon'.

'lon'
Source code in geemap/foliumap.py
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
def add_netcdf(
    self,
    filename,
    variables=None,
    palette=None,
    vmin=None,
    vmax=None,
    nodata=None,
    attribution=None,
    layer_name="NetCDF layer",
    shift_lon=True,
    lat="lat",
    lon="lon",
    **kwargs,
):
    """Generate an ipyleaflet/folium TileLayer from a netCDF file.
        If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer),
        try adding to following two lines to the beginning of the notebook if the raster does not render properly.

        import os
        os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = f'{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}'

    Args:
        filename (str): File path or HTTP URL to the netCDF file.
        variables (int, optional): The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted.
        port (str, optional): The port to use for the server. Defaults to "default".
        palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
        vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
        vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
        nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
        attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
        layer_name (str, optional): The layer name to use. Defaults to "netCDF layer".
        shift_lon (bool, optional): Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.
        lat (str, optional): Name of the latitude variable. Defaults to 'lat'.
        lon (str, optional): Name of the longitude variable. Defaults to 'lon'.
    """

    if in_colab_shell():
        print("The add_netcdf() function is not supported in Colab.")
        return

    tif, vars = netcdf_to_tif(
        filename, shift_lon=shift_lon, lat=lat, lon=lon, return_vars=True
    )

    if variables is None:
        if len(vars) >= 3:
            band_idx = [1, 2, 3]
        else:
            band_idx = [1]
    else:
        if not set(variables).issubset(set(vars)):
            raise ValueError(f"The variables must be a subset of {vars}.")
        else:
            band_idx = [vars.index(v) + 1 for v in variables]

    self.add_raster(
        tif,
        band=band_idx,
        palette=palette,
        vmin=vmin,
        vmax=vmax,
        nodata=nodata,
        attribution=attribution,
        layer_name=layer_name,
        **kwargs,
    )

add_osm(query, layer_name='Untitled', which_result=None, by_osmid=False, buffer_dist=None, to_ee=False, geodesic=True, **kwargs)

Adds OSM data to the map.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style dict

A dictionary specifying the style to be used. Defaults to {}.

required
which_result INT

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None
to_ee bool

Whether to convert the csv to an ee.FeatureCollection.

False
geodesic bool

Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

True
Source code in geemap/foliumap.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
def add_osm(
    self,
    query,
    layer_name="Untitled",
    which_result=None,
    by_osmid=False,
    buffer_dist=None,
    to_ee=False,
    geodesic=True,
    **kwargs,
):
    """Adds OSM data to the map.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
        which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
        to_ee (bool, optional): Whether to convert the csv to an ee.FeatureCollection.
        geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

    """

    gdf = osm_to_gdf(
        query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
    )
    geojson = gdf.__geo_interface__

    if to_ee:
        fc = geojson_to_ee(geojson, geodesic=geodesic)
        self.addLayer(fc, {}, layer_name)
        self.centerObject(fc)
    else:
        self.add_geojson(geojson, layer_name=layer_name, **kwargs)
        bounds = gdf.bounds.iloc[0]
        self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

add_osm_from_address(address, tags, dist=1000, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')

Adds OSM entities within some distance N, S, E, W of address to the map.

Parameters:

Name Type Description Default
address str

The address to geocode and use as the central point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
dist int

Distance in meters. Defaults to 1000.

1000
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style dict

A dictionary specifying the style to be used. Defaults to {}.

{}
hover_style dict

Hover style dictionary. Defaults to {}.

{}
style_callback function

Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.

None
fill_colors list

The random colors to use for filling polygons. Defaults to ["black"].

['black']
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
Source code in geemap/foliumap.py
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
def add_osm_from_address(
    self,
    address,
    tags,
    dist=1000,
    layer_name="Untitled",
    style={},
    hover_style={},
    style_callback=None,
    fill_colors=["black"],
    info_mode="on_hover",
):
    """Adds OSM entities within some distance N, S, E, W of address to the map.

    Args:
        address (str): The address to geocode and use as the central point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        dist (int, optional): Distance in meters. Defaults to 1000.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
        hover_style (dict, optional): Hover style dictionary. Defaults to {}.
        style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
        fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

    """
    gdf = osm_gdf_from_address(address, tags, dist)
    geojson = gdf.__geo_interface__

    self.add_geojson(
        geojson,
        layer_name=layer_name,
        style=style,
        hover_style=hover_style,
        style_callback=style_callback,
        fill_colors=fill_colors,
        info_mode=info_mode,
    )
    self.zoom_to_gdf(gdf)

add_osm_from_bbox(north, south, east, west, tags, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')

Adds OSM entities within a N, S, E, W bounding box to the map.

Parameters:

Name Type Description Default
north float

Northern latitude of bounding box.

required
south float

Southern latitude of bounding box.

required
east float

Eastern longitude of bounding box.

required
west float

Western longitude of bounding box.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style dict

A dictionary specifying the style to be used. Defaults to {}.

{}
hover_style dict

Hover style dictionary. Defaults to {}.

{}
style_callback function

Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.

None
fill_colors list

The random colors to use for filling polygons. Defaults to ["black"].

['black']
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
Source code in geemap/foliumap.py
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
def add_osm_from_bbox(
    self,
    north,
    south,
    east,
    west,
    tags,
    layer_name="Untitled",
    style={},
    hover_style={},
    style_callback=None,
    fill_colors=["black"],
    info_mode="on_hover",
):
    """Adds OSM entities within a N, S, E, W bounding box to the map.


    Args:
        north (float): Northern latitude of bounding box.
        south (float): Southern latitude of bounding box.
        east (float): Eastern longitude of bounding box.
        west (float): Western longitude of bounding box.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
        hover_style (dict, optional): Hover style dictionary. Defaults to {}.
        style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
        fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

    """
    gdf = osm_gdf_from_bbox(north, south, east, west, tags)
    geojson = gdf.__geo_interface__

    self.add_geojson(
        geojson,
        layer_name=layer_name,
        style=style,
        hover_style=hover_style,
        style_callback=style_callback,
        fill_colors=fill_colors,
        info_mode=info_mode,
    )
    self.zoom_to_gdf(gdf)

add_osm_from_geocode(query, which_result=None, by_osmid=False, buffer_dist=None, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')

Adds OSM data of place(s) by name or ID to the map.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
which_result int

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style dict

A dictionary specifying the style to be used. Defaults to {}.

{}
hover_style dict

Hover style dictionary. Defaults to {}.

{}
style_callback function

Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.

None
fill_colors list

The random colors to use for filling polygons. Defaults to ["black"].

['black']
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
Source code in geemap/foliumap.py
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
def add_osm_from_geocode(
    self,
    query,
    which_result=None,
    by_osmid=False,
    buffer_dist=None,
    layer_name="Untitled",
    style={},
    hover_style={},
    style_callback=None,
    fill_colors=["black"],
    info_mode="on_hover",
):
    """Adds OSM data of place(s) by name or ID to the map.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
        hover_style (dict, optional): Hover style dictionary. Defaults to {}.
        style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
        fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

    """

    gdf = osm_gdf_from_geocode(
        query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
    )
    geojson = gdf.__geo_interface__

    self.add_geojson(
        geojson,
        layer_name=layer_name,
        style=style,
        hover_style=hover_style,
        style_callback=style_callback,
        fill_colors=fill_colors,
        info_mode=info_mode,
    )
    self.zoom_to_gdf(gdf)

add_osm_from_place(query, tags, which_result=None, buffer_dist=None, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')

Adds OSM entities within boundaries of geocodable place(s) to the map.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
which_result int

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style dict

A dictionary specifying the style to be used. Defaults to {}.

{}
hover_style dict

Hover style dictionary. Defaults to {}.

{}
style_callback function

Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.

None
fill_colors list

The random colors to use for filling polygons. Defaults to ["black"].

['black']
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
Source code in geemap/foliumap.py
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
def add_osm_from_place(
    self,
    query,
    tags,
    which_result=None,
    buffer_dist=None,
    layer_name="Untitled",
    style={},
    hover_style={},
    style_callback=None,
    fill_colors=["black"],
    info_mode="on_hover",
):
    """Adds OSM entities within boundaries of geocodable place(s) to the map.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
        hover_style (dict, optional): Hover style dictionary. Defaults to {}.
        style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
        fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

    """
    gdf = osm_gdf_from_place(query, tags, which_result, buffer_dist)
    geojson = gdf.__geo_interface__

    self.add_geojson(
        geojson,
        layer_name=layer_name,
        style=style,
        hover_style=hover_style,
        style_callback=style_callback,
        fill_colors=fill_colors,
        info_mode=info_mode,
    )
    self.zoom_to_gdf(gdf)

add_osm_from_point(center_point, tags, dist=1000, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')

Adds OSM entities within some distance N, S, E, W of a point to the map.

Parameters:

Name Type Description Default
center_point tuple

The (lat, lng) center point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
dist int

Distance in meters. Defaults to 1000.

1000
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style dict

A dictionary specifying the style to be used. Defaults to {}.

{}
hover_style dict

Hover style dictionary. Defaults to {}.

{}
style_callback function

Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.

None
fill_colors list

The random colors to use for filling polygons. Defaults to ["black"].

['black']
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
Source code in geemap/foliumap.py
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
def add_osm_from_point(
    self,
    center_point,
    tags,
    dist=1000,
    layer_name="Untitled",
    style={},
    hover_style={},
    style_callback=None,
    fill_colors=["black"],
    info_mode="on_hover",
):
    """Adds OSM entities within some distance N, S, E, W of a point to the map.

    Args:
        center_point (tuple): The (lat, lng) center point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        dist (int, optional): Distance in meters. Defaults to 1000.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
        hover_style (dict, optional): Hover style dictionary. Defaults to {}.
        style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
        fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

    """
    gdf = osm_gdf_from_point(center_point, tags, dist)
    geojson = gdf.__geo_interface__

    self.add_geojson(
        geojson,
        layer_name=layer_name,
        style=style,
        hover_style=hover_style,
        style_callback=style_callback,
        fill_colors=fill_colors,
        info_mode=info_mode,
    )
    self.zoom_to_gdf(gdf)

add_osm_from_polygon(polygon, tags, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')

Adds OSM entities within boundaries of a (multi)polygon to the map.

Parameters:

Name Type Description Default
polygon Polygon | MultiPolygon

Geographic boundaries to fetch geometries within

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
layer_name str

The layer name to be used.. Defaults to "Untitled".

'Untitled'
style dict

A dictionary specifying the style to be used. Defaults to {}.

{}
hover_style dict

Hover style dictionary. Defaults to {}.

{}
style_callback function

Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.

None
fill_colors list

The random colors to use for filling polygons. Defaults to ["black"].

['black']
info_mode str

Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

'on_hover'
Source code in geemap/foliumap.py
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
def add_osm_from_polygon(
    self,
    polygon,
    tags,
    layer_name="Untitled",
    style={},
    hover_style={},
    style_callback=None,
    fill_colors=["black"],
    info_mode="on_hover",
):
    """Adds OSM entities within boundaries of a (multi)polygon to the map.

    Args:
        polygon (shapely.geometry.Polygon | shapely.geometry.MultiPolygon): Geographic boundaries to fetch geometries within
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
        style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
        hover_style (dict, optional): Hover style dictionary. Defaults to {}.
        style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
        fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
        info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".

    """
    gdf = osm_gdf_from_polygon(polygon, tags)
    geojson = gdf.__geo_interface__

    self.add_geojson(
        geojson,
        layer_name=layer_name,
        style=style,
        hover_style=hover_style,
        style_callback=style_callback,
        fill_colors=fill_colors,
        info_mode=info_mode,
    )
    self.zoom_to_gdf(gdf)

add_planet_by_month(year=2016, month=1, name=None, api_key=None, token_name='PLANET_API_KEY')

Adds a Planet global mosaic by month to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis

Parameters:

Name Type Description Default
year int

The year of Planet global mosaic, must be >=2016. Defaults to 2016.

2016
month int

The month of Planet global mosaic, must be 1-12. Defaults to 1.

1
name str

The layer name to use. Defaults to None.

None
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
Source code in geemap/foliumap.py
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
def add_planet_by_month(
    self, year=2016, month=1, name=None, api_key=None, token_name="PLANET_API_KEY"
):
    """Adds a Planet global mosaic by month to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis

    Args:
        year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
        month (int, optional): The month of Planet global mosaic, must be 1-12. Defaults to 1.
        name (str, optional): The layer name to use. Defaults to None.
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
    """
    layer = planet_tile_by_month(
        year, month, name, api_key, token_name, tile_format="folium"
    )
    layer.add_to(self)

add_planet_by_quarter(year=2016, quarter=1, name=None, api_key=None, token_name='PLANET_API_KEY')

Adds a Planet global mosaic by quarter to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis

Parameters:

Name Type Description Default
year int

The year of Planet global mosaic, must be >=2016. Defaults to 2016.

2016
quarter int

The quarter of Planet global mosaic, must be 1-12. Defaults to 1.

1
name str

The layer name to use. Defaults to None.

None
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
Source code in geemap/foliumap.py
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
def add_planet_by_quarter(
    self, year=2016, quarter=1, name=None, api_key=None, token_name="PLANET_API_KEY"
):
    """Adds a Planet global mosaic by quarter to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis

    Args:
        year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
        quarter (int, optional): The quarter of Planet global mosaic, must be 1-12. Defaults to 1.
        name (str, optional): The layer name to use. Defaults to None.
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
    """
    layer = planet_tile_by_quarter(
        year, quarter, name, api_key, token_name, tile_format="folium"
    )
    layer.add_to(self)

add_points_from_xy(data, x='longitude', y='latitude', popup=None, min_width=100, max_width=200, layer_name='Marker Cluster', color_column=None, marker_colors=None, icon_colors=['white'], icon_names=['info'], angle=0, prefix='fa', add_legend=True, max_cluster_radius=80, **kwargs)

Adds a marker cluster to the map.

Parameters:

Name Type Description Default
data str | DataFrame

A csv or Pandas DataFrame containing x, y, z values.

required
x str

The column name for the x values. Defaults to "longitude".

'longitude'
y str

The column name for the y values. Defaults to "latitude".

'latitude'
popup list

A list of column names to be used as the popup. Defaults to None.

None
min_width int

The minimum width of the popup. Defaults to 100.

100
max_width int

The maximum width of the popup. Defaults to 200.

200
layer_name str

The name of the layer. Defaults to "Marker Cluster".

'Marker Cluster'
color_column str

The column name for the color values. Defaults to None.

None
marker_colors list

A list of colors to be used for the markers. Defaults to None.

None
icon_colors list

A list of colors to be used for the icons. Defaults to ['white'].

['white']
icon_names list

A list of names to be used for the icons. More icons can be found at https://fontawesome.com/v4/icons or https://getbootstrap.com/docs/3.3/components/?utm_source=pocket_mylist. Defaults to ['info'].

['info']
angle int

The angle of the icon. Defaults to 0.

0
prefix str

The prefix states the source of the icon. 'fa' for font-awesome or 'glyphicon' for bootstrap 3. Defaults to 'fa'.

'fa'
add_legend bool

If True, a legend will be added to the map. Defaults to True.

True
max_cluster_radius int

The maximum radius that a cluster will cover from the central marker (in pixels).

80
**kwargs

Other keyword arguments to pass to folium.MarkerCluster(). For a list of available options, see https://github.com/Leaflet/Leaflet.markercluster. For example, to change the cluster radius, use options={"maxClusterRadius": 50}.

{}
Source code in geemap/foliumap.py
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
def add_points_from_xy(
    self,
    data: Union[str, pd.DataFrame],
    x: Optional[str] = "longitude",
    y: Optional[str] = "latitude",
    popup: Optional[List] = None,
    min_width: Optional[int] = 100,
    max_width: Optional[int] = 200,
    layer_name: Optional[str] = "Marker Cluster",
    color_column: Optional[str] = None,
    marker_colors: Optional[List] = None,
    icon_colors: Optional[List] = ["white"],
    icon_names: Optional[List] = ["info"],
    angle: Optional[int] = 0,
    prefix: Optional[str] = "fa",
    add_legend: Optional[bool] = True,
    max_cluster_radius: Optional[int] = 80,
    **kwargs,
):
    """Adds a marker cluster to the map.

    Args:
        data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
        x (str, optional): The column name for the x values. Defaults to "longitude".
        y (str, optional): The column name for the y values. Defaults to "latitude".
        popup (list, optional): A list of column names to be used as the popup. Defaults to None.
        min_width (int, optional): The minimum width of the popup. Defaults to 100.
        max_width (int, optional): The maximum width of the popup. Defaults to 200.
        layer_name (str, optional): The name of the layer. Defaults to "Marker Cluster".
        color_column (str, optional): The column name for the color values. Defaults to None.
        marker_colors (list, optional): A list of colors to be used for the markers. Defaults to None.
        icon_colors (list, optional): A list of colors to be used for the icons. Defaults to ['white'].
        icon_names (list, optional): A list of names to be used for the icons. More icons can be found
            at https://fontawesome.com/v4/icons or https://getbootstrap.com/docs/3.3/components/?utm_source=pocket_mylist. Defaults to ['info'].
        angle (int, optional): The angle of the icon. Defaults to 0.
        prefix (str, optional): The prefix states the source of the icon. 'fa' for font-awesome or 'glyphicon' for bootstrap 3. Defaults to 'fa'.
        add_legend (bool, optional): If True, a legend will be added to the map. Defaults to True.
        max_cluster_radius (int, optional): The maximum radius that a cluster will cover from the central marker (in pixels).
        **kwargs: Other keyword arguments to pass to folium.MarkerCluster(). For a list of available options,
            see https://github.com/Leaflet/Leaflet.markercluster. For example, to change the cluster radius, use options={"maxClusterRadius": 50}.
    """
    import pandas as pd

    if "maxClusterRadius" not in kwargs:
        kwargs["maxClusterRadius"] = max_cluster_radius

    color_options = [
        "red",
        "blue",
        "green",
        "purple",
        "orange",
        "darkred",
        "lightred",
        "beige",
        "darkblue",
        "darkgreen",
        "cadetblue",
        "darkpurple",
        "white",
        "pink",
        "lightblue",
        "lightgreen",
        "gray",
        "black",
        "lightgray",
    ]

    if isinstance(data, pd.DataFrame):
        df = data
    elif not data.startswith("http") and (not os.path.exists(data)):
        raise FileNotFoundError("The specified input csv does not exist.")
    else:
        df = pd.read_csv(data)

    col_names = df.columns.values.tolist()

    if color_column is not None and color_column not in col_names:
        raise ValueError(
            f"The color column {color_column} does not exist in the dataframe."
        )

    if color_column is not None:
        items = list(set(df[color_column]))
    else:
        items = None

    if color_column is not None and marker_colors is None:
        if len(items) > len(color_options):
            raise ValueError(
                f"The number of unique values in the color column {color_column} is greater than the number of available colors."
            )
        else:
            marker_colors = color_options[: len(items)]
    elif color_column is not None and marker_colors is not None:
        if len(items) != len(marker_colors):
            raise ValueError(
                f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
            )

    if items is not None:
        if len(icon_colors) == 1:
            icon_colors = icon_colors * len(items)
        elif len(items) != len(icon_colors):
            raise ValueError(
                f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
            )

        if len(icon_names) == 1:
            icon_names = icon_names * len(items)
        elif len(items) != len(icon_names):
            raise ValueError(
                f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
            )

    if popup is None:
        popup = col_names

    if x not in col_names:
        raise ValueError(f"x must be one of the following: {', '.join(col_names)}")

    if y not in col_names:
        raise ValueError(f"y must be one of the following: {', '.join(col_names)}")

    marker_cluster = plugins.MarkerCluster(name=layer_name, **kwargs).add_to(self)

    for idx, row in df.iterrows():
        html = ""
        for p in popup:
            html = html + "<b>" + p + "</b>" + ": " + str(row[p]) + "<br>"
        popup_html = folium.Popup(html, min_width=min_width, max_width=max_width)

        if items is not None:
            index = items.index(row[color_column])
            marker_icon = folium.Icon(
                color=marker_colors[index],
                icon_color=icon_colors[index],
                icon=icon_names[index],
                angle=angle,
                prefix=prefix,
            )
        else:
            marker_icon = None

        folium.Marker(
            location=[row[y], row[x]],
            popup=popup_html,
            icon=marker_icon,
        ).add_to(marker_cluster)

    if items is not None and add_legend:
        marker_colors = [check_color(c) for c in marker_colors]
        self.add_legend(
            title=color_column.title(), colors=marker_colors, labels=items
        )

add_raster(source, indexes=None, colormap=None, vmin=None, vmax=None, nodata=None, attribution=None, layer_name='Raster', array_args={}, **kwargs)

Add a local raster dataset to the map. If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and if the raster does not render properly, try installing jupyter-server-proxy using pip install jupyter-server-proxy, then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.

1
2
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'

Parameters:

Name Type Description Default
source str

The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.

required
indexes int

The band(s) to use. Band indexing starts at 1. Defaults to None.

None
colormap str

The name of the colormap from matplotlib to use when plotting a single band. See https://matplotlib.org/stable/gallery/color/colormap_reference.html. Default is greyscale.

None
vmin float

The minimum value to use when colormapping the colormap when plotting a single band. Defaults to None.

None
vmax float

The maximum value to use when colormapping the colormap when plotting a single band. Defaults to None.

None
nodata float

The value from the band to use to interpret as not valid data. Defaults to None.

None
attribution str

Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.

None
layer_name str

The layer name to use. Defaults to 'Raster'.

'Raster'
array_args dict

Additional arguments to pass to array_to_image. Defaults to {}.

{}
Source code in geemap/foliumap.py
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def add_raster(
    self,
    source: str,
    indexes: Optional[int] = None,
    colormap: Optional[str] = None,
    vmin: Optional[float] = None,
    vmax: Optional[float] = None,
    nodata: Optional[float] = None,
    attribution: Optional[str] = None,
    layer_name: Optional[str] = "Raster",
    array_args: Optional[Dict] = {},
    **kwargs,
):
    """Add a local raster dataset to the map.
        If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and
        if the raster does not render properly, try installing jupyter-server-proxy using `pip install jupyter-server-proxy`,
        then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.

        import os
        os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'

    Args:
        source (str): The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.
        indexes (int, optional): The band(s) to use. Band indexing starts at 1. Defaults to None.
        colormap (str, optional): The name of the colormap from `matplotlib` to use when plotting a single band. See https://matplotlib.org/stable/gallery/color/colormap_reference.html. Default is greyscale.
        vmin (float, optional): The minimum value to use when colormapping the colormap when plotting a single band. Defaults to None.
        vmax (float, optional): The maximum value to use when colormapping the colormap when plotting a single band. Defaults to None.
        nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
        attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
        layer_name (str, optional): The layer name to use. Defaults to 'Raster'.
        array_args (dict, optional): Additional arguments to pass to `array_to_image`. Defaults to {}.
    """

    import numpy as np
    import xarray as xr

    if isinstance(source, np.ndarray) or isinstance(source, xr.DataArray):
        source = array_to_image(source, **array_args)

    tile_layer, tile_client = get_local_tile_layer(
        source,
        indexes=indexes,
        colormap=colormap,
        vmin=vmin,
        vmax=vmax,
        nodata=nodata,
        attribution=attribution,
        tile_format="folium",
        layer_name=layer_name,
        return_client=True,
        **kwargs,
    )
    tile_layer.add_to(self)

    bounds = tile_client.bounds()  # [ymin, ymax, xmin, xmax]
    bounds = (
        bounds[2],
        bounds[0],
        bounds[3],
        bounds[1],
    )  # [minx, miny, maxx, maxy]
    self.zoom_to_bounds(bounds)

    arc_add_layer(tile_layer.tiles, layer_name, True, 1.0)
    arc_zoom_to_extent(bounds[0], bounds[1], bounds[2], bounds[3])

add_remote_tile(source, band=None, palette=None, vmin=None, vmax=None, nodata=None, attribution=None, layer_name=None, **kwargs)

Add a remote Cloud Optimized GeoTIFF (COG) to the map.

Parameters:

Name Type Description Default
source str

The path to the remote Cloud Optimized GeoTIFF.

required
band int

The band to use. Band indexing starts at 1. Defaults to None.

None
palette str

The name of the color palette from palettable to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale

None
vmin float

The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.

None
vmax float

The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.

None
nodata float

The value from the band to use to interpret as not valid data. Defaults to None.

None
attribution str

Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.

None
layer_name str

The layer name to use. Defaults to None.

None
Source code in geemap/foliumap.py
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
def add_remote_tile(
    self,
    source,
    band=None,
    palette=None,
    vmin=None,
    vmax=None,
    nodata=None,
    attribution=None,
    layer_name=None,
    **kwargs,
):
    """Add a remote Cloud Optimized GeoTIFF (COG) to the map.

    Args:
        source (str): The path to the remote Cloud Optimized GeoTIFF.
        band (int, optional): The band to use. Band indexing starts at 1. Defaults to None.
        palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
        vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
        vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
        nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
        attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
        layer_name (str, optional): The layer name to use. Defaults to None.
    """
    if isinstance(source, str) and source.startswith("http"):
        self.add_raster(
            source,
            band=band,
            palette=palette,
            vmin=vmin,
            vmax=vmax,
            nodata=nodata,
            attribution=attribution,
            layer_name=layer_name,
            **kwargs,
        )
    else:
        raise Exception("The source must be a URL.")

add_shapefile(in_shp, layer_name='Untitled', **kwargs)

Adds a shapefile to the map. See https://python-visualization.github.io/folium/modules.html#folium.features.GeoJson for more info about setting style.

Parameters:

Name Type Description Default
in_shp str

The input file path to the shapefile.

required
layer_name str

The layer name to be used. Defaults to "Untitled".

'Untitled'

Raises:

Type Description
FileNotFoundError

The provided shapefile could not be found.

Source code in geemap/foliumap.py
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
def add_shapefile(self, in_shp, layer_name="Untitled", **kwargs):
    """Adds a shapefile to the map. See https://python-visualization.github.io/folium/modules.html#folium.features.GeoJson for more info about setting style.

    Args:
        in_shp (str): The input file path to the shapefile.
        layer_name (str, optional): The layer name to be used. Defaults to "Untitled".

    Raises:
        FileNotFoundError: The provided shapefile could not be found.
    """
    in_shp = os.path.abspath(in_shp)
    if not os.path.exists(in_shp):
        raise FileNotFoundError("The provided shapefile could not be found.")

    data = shp_to_geojson(in_shp)

    geo_json = folium.GeoJson(data=data, name=layer_name, **kwargs)
    geo_json.add_to(self)

add_stac_layer(url=None, collection=None, item=None, assets=None, bands=None, titiler_endpoint=None, name='STAC Layer', attribution='.', opacity=1.0, shown=True, **kwargs)

Adds a STAC TileLayer to the map.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
assets str | list

The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].

None
bands list

A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"]

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
name str

The layer name to use for the layer. Defaults to 'STAC Layer'.

'STAC Layer'
attribution str

The attribution to use. Defaults to ''.

'.'
opacity float

The opacity of the layer. Defaults to 1.

1.0
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
Source code in geemap/foliumap.py
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
def add_stac_layer(
    self,
    url=None,
    collection=None,
    item=None,
    assets=None,
    bands=None,
    titiler_endpoint=None,
    name="STAC Layer",
    attribution=".",
    opacity=1.0,
    shown=True,
    **kwargs,
):
    """Adds a STAC TileLayer to the map.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
        bands (list): A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"]
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        name (str, optional): The layer name to use for the layer. Defaults to 'STAC Layer'.
        attribution (str, optional): The attribution to use. Defaults to ''.
        opacity (float, optional): The opacity of the layer. Defaults to 1.
        shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
    """
    tile_url = stac_tile(
        url, collection, item, assets, bands, titiler_endpoint, **kwargs
    )
    bounds = stac_bounds(url, collection, item, titiler_endpoint)
    self.add_tile_layer(
        url=tile_url,
        name=name,
        attribution=attribution,
        opacity=opacity,
        shown=shown,
    )
    self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

add_styled_vector(ee_object, column, palette, layer_name='Untitled', shown=True, opacity=1.0, **kwargs)

Adds a styled vector to the map.

Parameters:

Name Type Description Default
ee_object object

An ee.FeatureCollection.

required
column str

The column name to use for styling.

required
palette list | dict

The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling.

required
layer_name str

The name to be used for the new layer. Defaults to "Untitled".

'Untitled'
Source code in geemap/foliumap.py
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
def add_styled_vector(
    self,
    ee_object,
    column,
    palette,
    layer_name="Untitled",
    shown=True,
    opacity=1.0,
    **kwargs,
):
    """Adds a styled vector to the map.

    Args:
        ee_object (object): An ee.FeatureCollection.
        column (str): The column name to use for styling.
        palette (list | dict): The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling.
        layer_name (str, optional): The name to be used for the new layer. Defaults to "Untitled".
    """
    styled_vector = vector_styling(ee_object, column, palette, **kwargs)
    self.addLayer(
        styled_vector.style(**{"styleProperty": "style"}),
        {},
        layer_name,
        shown,
        opacity,
    )

add_text(text, fontsize=20, fontcolor='black', bold=False, padding='5px', background=True, bg_color='white', border_radius='5px', position='bottomright', **kwargs)

Add text to the map.

Parameters:

Name Type Description Default
text str

The text to add.

required
fontsize int

The font size. Defaults to 20.

20
fontcolor str

The font color. Defaults to "black".

'black'
bold bool

Whether to use bold font. Defaults to False.

False
padding str

The padding. Defaults to "5px".

'5px'
background bool

Whether to use background. Defaults to True.

True
bg_color str

The background color. Defaults to "white".

'white'
border_radius str

The border radius. Defaults to "5px".

'5px'
position str

The position of the widget. Defaults to "bottomright".

'bottomright'
Source code in geemap/foliumap.py
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
def add_text(
    self,
    text,
    fontsize=20,
    fontcolor="black",
    bold=False,
    padding="5px",
    background=True,
    bg_color="white",
    border_radius="5px",
    position="bottomright",
    **kwargs,
):
    """Add text to the map.

    Args:
        text (str): The text to add.
        fontsize (int, optional): The font size. Defaults to 20.
        fontcolor (str, optional): The font color. Defaults to "black".
        bold (bool, optional): Whether to use bold font. Defaults to False.
        padding (str, optional): The padding. Defaults to "5px".
        background (bool, optional): Whether to use background. Defaults to True.
        bg_color (str, optional): The background color. Defaults to "white".
        border_radius (str, optional): The border radius. Defaults to "5px".
        position (str, optional): The position of the widget. Defaults to "bottomright".
    """

    if background:
        text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
        padding: {padding}; background-color: {bg_color};
        border-radius: {border_radius};">{text}</div>"""
    else:
        text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
        padding: {padding};">{text}</div>"""

    self.add_html(text, position=position, **kwargs)

add_tile_layer(tiles='OpenStreetMap', name='Untitled', attribution='.', overlay=True, control=True, shown=True, opacity=1.0, API_key=None, **kwargs)

Add a XYZ tile layer to the map.

Parameters:

Name Type Description Default
tiles str

The URL of the XYZ tile service.

'OpenStreetMap'
name str

The layer name to use on the layer control. Defaults to 'Untitled'.

'Untitled'
attribution str

The attribution of the data layer. Defaults to '.'.

'.'
overlay str

Allows overlay. Defaults to True.

True
control str

Adds the layer to the layer control. Defaults to True.

True
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
opacity float

Sets the opacity for the layer.

1.0
API_key str

– API key for Cloudmade or Mapbox tiles. Defaults to True.

None
Source code in geemap/foliumap.py
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def add_tile_layer(
    self,
    tiles="OpenStreetMap",
    name="Untitled",
    attribution=".",
    overlay=True,
    control=True,
    shown=True,
    opacity=1.0,
    API_key=None,
    **kwargs,
):
    """Add a XYZ tile layer to the map.

    Args:
        tiles (str): The URL of the XYZ tile service.
        name (str, optional): The layer name to use on the layer control. Defaults to 'Untitled'.
        attribution (str, optional): The attribution of the data layer. Defaults to '.'.
        overlay (str, optional): Allows overlay. Defaults to True.
        control (str, optional): Adds the layer to the layer control. Defaults to True.
        shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
        opacity (float, optional): Sets the opacity for the layer.
        API_key (str, optional): – API key for Cloudmade or Mapbox tiles. Defaults to True.
    """

    if "max_zoom" not in kwargs:
        kwargs["max_zoom"] = 100
    if "max_native_zoom" not in kwargs:
        kwargs["max_native_zoom"] = 100

    try:
        folium.raster_layers.TileLayer(
            tiles=tiles,
            name=name,
            attr=attribution,
            overlay=overlay,
            control=control,
            show=shown,
            opacity=opacity,
            API_key=API_key,
            **kwargs,
        ).add_to(self)
    except Exception:
        raise Exception("Failed to add the specified TileLayer.")

add_widget(content, position='bottomright', **kwargs)

Add a widget (e.g., text, HTML, figure) to the map.

Parameters:

Name Type Description Default
content str

The widget to add.

required
position str

The position of the widget. Defaults to "bottomright".

'bottomright'
Source code in geemap/foliumap.py
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
def add_widget(self, content, position="bottomright", **kwargs):
    """Add a widget (e.g., text, HTML, figure) to the map.

    Args:
        content (str): The widget to add.
        position (str, optional): The position of the widget. Defaults to "bottomright".
    """

    import base64
    from io import BytesIO

    from matplotlib import figure

    allowed_positions = ["topleft", "topright", "bottomleft", "bottomright"]

    if position not in allowed_positions:
        raise Exception(f"position must be one of {allowed_positions}")

    try:
        if isinstance(content, str):
            widget = CustomControl(content, position=position)
            widget.add_to(self)
        elif isinstance(content, figure.Figure):
            buf = BytesIO()
            content.savefig(buf, format="png")
            buf.seek(0)
            b64_content = base64.b64encode(buf.read()).decode("utf-8")
            widget = CustomControl(
                f"""<img src="data:image/png;base64,{b64_content}">""",
                position=position,
            )
            widget.add_to(self)
        else:
            raise Exception("The content must be a string or a matplotlib figure")

    except Exception as e:
        raise Exception(f"Error adding widget: {e}")

add_wms_layer(url, layers, name=None, attribution='', overlay=True, control=True, shown=True, format='image/png', transparent=True, version='1.1.1', styles='', **kwargs)

Add a WMS layer to the map.

Parameters:

Name Type Description Default
url str

The URL of the WMS web service.

required
layers str

Comma-separated list of WMS layers to show.

required
name str

The layer name to use on the layer control. Defaults to None.

None
attribution str

The attribution of the data layer. Defaults to ''.

''
overlay str

Allows overlay. Defaults to True.

True
control str

Adds the layer to the layer control. Defaults to True.

True
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
format str

WMS image format (use ‘image/png’ for layers with transparency). Defaults to 'image/png'.

'image/png'
transparent bool

Whether the layer shall allow transparency. Defaults to True.

True
version str

Version of the WMS service to use. Defaults to "1.1.1".

'1.1.1'
styles str

Comma-separated list of WMS styles. Defaults to "".

''
Source code in geemap/foliumap.py
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
def add_wms_layer(
    self,
    url,
    layers,
    name=None,
    attribution="",
    overlay=True,
    control=True,
    shown=True,
    format="image/png",
    transparent=True,
    version="1.1.1",
    styles="",
    **kwargs,
):
    """Add a WMS layer to the map.

    Args:
        url (str): The URL of the WMS web service.
        layers (str): Comma-separated list of WMS layers to show.
        name (str, optional): The layer name to use on the layer control. Defaults to None.
        attribution (str, optional): The attribution of the data layer. Defaults to ''.
        overlay (str, optional): Allows overlay. Defaults to True.
        control (str, optional): Adds the layer to the layer control. Defaults to True.
        shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
        format (str, optional): WMS image format (use ‘image/png’ for layers with transparency). Defaults to 'image/png'.
        transparent (bool, optional): Whether the layer shall allow transparency. Defaults to True.
        version (str, optional): Version of the WMS service to use. Defaults to "1.1.1".
        styles (str, optional): Comma-separated list of WMS styles. Defaults to "".
    """
    try:
        folium.raster_layers.WmsTileLayer(
            url=url,
            layers=layers,
            name=name,
            attr=attribution,
            overlay=overlay,
            control=control,
            show=shown,
            styles=styles,
            fmt=format,
            transparent=transparent,
            version=version,
            **kwargs,
        ).add_to(self)
    except Exception:
        raise Exception("Failed to add the specified WMS TileLayer.")

add_xyz_service(provider, **kwargs)

Add a XYZ tile layer to the map.

Parameters:

Name Type Description Default
provider str

A tile layer name starts with xyz or qms. For example, xyz.OpenTopoMap,

required

Raises:

Type Description
ValueError

The provider is not valid. It must start with xyz or qms.

Source code in geemap/foliumap.py
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
def add_xyz_service(self, provider, **kwargs):
    """Add a XYZ tile layer to the map.

    Args:
        provider (str): A tile layer name starts with xyz or qms. For example, xyz.OpenTopoMap,

    Raises:
        ValueError: The provider is not valid. It must start with xyz or qms.
    """
    import xyzservices.providers as xyz
    from xyzservices import TileProvider

    if provider.startswith("xyz"):
        name = provider[4:]
        xyz_provider = xyz.flatten()[name]
        url = xyz_provider.build_url()
        attribution = xyz_provider.attribution
        if attribution.strip() == "":
            attribution = " "
        self.add_tile_layer(url, name, attribution)
    elif provider.startswith("qms"):
        name = provider[4:]
        qms_provider = TileProvider.from_qms(name)
        url = qms_provider.build_url()
        attribution = qms_provider.attribution
        if attribution.strip() == "":
            attribution = " "
        self.add_tile_layer(url=url, name=name, attribution=attribution)
    else:
        raise ValueError(
            f"The provider {provider} is not valid. It must start with xyz or qms."
        )

basemap_demo()

A demo for using geemap basemaps.

Source code in geemap/foliumap.py
2810
2811
2812
def basemap_demo(self):
    """A demo for using geemap basemaps."""
    print("The folium plotting backend does not support this function.")

center_object(ee_object, zoom=None, max_error=0.001)

Centers the map view on a given object.

Parameters:

Name Type Description Default
ee_object Element | Geometry

An Earth Engine object to center on a geometry, image or feature.

required
zoom int

The zoom level, from 1 to 24. Defaults to None.

None
max_error float

The maximum error for the geometry. Defaults to 0.001.

0.001
Source code in geemap/foliumap.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def center_object(self, ee_object, zoom=None, max_error=0.001):
    """Centers the map view on a given object.

    Args:
        ee_object (Element|Geometry): An Earth Engine object to center on a geometry, image or feature.
        zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
        max_error (float, optional): The maximum error for the geometry. Defaults to 0.001.
    """
    if isinstance(ee_object, ee.Geometry):
        geometry = ee_object.transform(maxError=max_error)
    else:
        try:
            geometry = ee_object.geometry(maxError=max_error).transform(
                maxError=max_error
            )
        except Exception:
            raise Exception(
                "ee_object must be an instance of one of ee.Geometry, ee.FeatureCollection, ee.Image, or ee.ImageCollection."
            )

    if zoom is not None:
        if not isinstance(zoom, int):
            raise Exception("Zoom must be an integer.")
        else:
            centroid = geometry.centroid(maxError=max_error).getInfo()[
                "coordinates"
            ]
            lat = centroid[1]
            lon = centroid[0]
            self.set_center(lon, lat, zoom)

            if is_arcpy():
                arc_zoom_to_extent(lon, lat, lon, lat)

    else:
        coordinates = geometry.bounds(maxError=max_error).getInfo()["coordinates"][
            0
        ]
        x = [c[0] for c in coordinates]
        y = [c[1] for c in coordinates]
        xmin = min(x)
        xmax = max(x)
        ymin = min(y)
        ymax = max(y)
        bounds = [[ymin, xmin], [ymax, xmax]]
        self.fit_bounds(bounds)

        if is_arcpy():
            arc_zoom_to_extent(xmin, ymin, xmax, ymax)

publish(name='Folium Map', description='', source_url='', tags=None, source_file=None, open=True, formatting=None, token=None, **kwargs)

Publish the map to datapane.com

Parameters:

Name Type Description Default
name str

The document name - can include spaces, caps, symbols, etc., e.g. "Profit & Loss 2020". Defaults to "Folium Map".

'Folium Map'
description str

A high-level description for the document, this is displayed in searches and thumbnails. Defaults to ''.

''
source_url str

A URL pointing to the source code for the document, e.g. a GitHub repo or a Colab notebook. Defaults to ''.

''
tags bool

A list of tags (as strings) used to categorise your document. Defaults to None.

None
source_file str

Path of jupyter notebook file to upload. Defaults to None.

None
open bool

Whether to open the map. Defaults to True.

True
formatting ReportFormatting

Set the basic styling for your report.

None
token str

The token to use to datapane to publish the map. See https://docs.datapane.com/tut-getting-started. Defaults to None.

None
Source code in geemap/foliumap.py
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
def publish(
    self,
    name="Folium Map",
    description="",
    source_url="",
    tags=None,
    source_file=None,
    open=True,
    formatting=None,
    token=None,
    **kwargs,
):
    """Publish the map to datapane.com

    Args:
        name (str, optional): The document name - can include spaces, caps, symbols, etc., e.g. "Profit & Loss 2020". Defaults to "Folium Map".
        description (str, optional): A high-level description for the document, this is displayed in searches and thumbnails. Defaults to ''.
        source_url (str, optional): A URL pointing to the source code for the document, e.g. a GitHub repo or a Colab notebook. Defaults to ''.
        tags (bool, optional): A list of tags (as strings) used to categorise your document. Defaults to None.
        source_file (str, optional): Path of jupyter notebook file to upload. Defaults to None.
        open (bool, optional): Whether to open the map. Defaults to True.
        formatting (ReportFormatting, optional): Set the basic styling for your report.
        token (str, optional): The token to use to datapane to publish the map. See https://docs.datapane.com/tut-getting-started. Defaults to None.
    """
    import warnings
    import webbrowser

    if os.environ.get("USE_MKDOCS") is not None:
        return

    warnings.filterwarnings("ignore")
    try:
        import datapane as dp
    except Exception:
        webbrowser.open_new_tab("https://docs.datapane.com/")
        raise ImportError(
            "The datapane Python package is not installed. You need to install and authenticate datapane first."
        )

    if token is None:
        try:
            _ = dp.ping(verbose=False)
        except Exception as e:
            if os.environ.get("DP_TOKEN") is not None:
                dp.login(token=os.environ.get("DP_TOKEN"))
            else:
                raise Exception(e)
    else:
        dp.login(token)

    try:
        dp.upload_report(
            dp.Plot(self),
            name=name,
            description=description,
            source_url=source_url,
            tags=tags,
            source_file=source_file,
            open=open,
            formatting=formatting,
            **kwargs,
        )

    except Exception as e:
        raise Exception(e)

remove_labels(**kwargs)

Removes a layer from the map.

Source code in geemap/foliumap.py
2806
2807
2808
def remove_labels(self, **kwargs):
    """Removes a layer from the map."""
    print("The folium plotting backend does not support removing labels.")

setOptions(mapTypeId='HYBRID', styles={}, types=[])

Adds Google basemap to the map.

Parameters:

Name Type Description Default
mapTypeId str

A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'.

'HYBRID'
styles [type]

A dictionary of custom MapTypeStyle objects keyed with a name that will appear in the map's Map Type Controls. Defaults to None.

{}
types [type]

A list of mapTypeIds to make available. If omitted, but opt_styles is specified, appends all of the style keys to the standard Google Maps API map types.. Defaults to None.

[]
Source code in geemap/foliumap.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def setOptions(self, mapTypeId="HYBRID", styles={}, types=[]):
    """Adds Google basemap to the map.

    Args:
        mapTypeId (str, optional): A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'.
        styles ([type], optional): A dictionary of custom MapTypeStyle objects keyed with a name that will appear in the map's Map Type Controls. Defaults to None.
        types ([type], optional): A list of mapTypeIds to make available. If omitted, but opt_styles is specified, appends all of the style keys to the standard Google Maps API map types.. Defaults to None.
    """
    try:
        basemaps[mapTypeId].add_to(self)
    except Exception:
        raise Exception(
            "Basemap can only be one of the following: {}".format(
                ", ".join(basemaps.keys())
            )
        )

set_center(lon, lat, zoom=10)

Centers the map view at a given coordinates with the given zoom level.

Parameters:

Name Type Description Default
lon float

The longitude of the center, in degrees.

required
lat float

The latitude of the center, in degrees.

required
zoom int

The zoom level, from 1 to 24. Defaults to 10.

10
Source code in geemap/foliumap.py
293
294
295
296
297
298
299
300
301
302
303
304
def set_center(self, lon, lat, zoom=10):
    """Centers the map view at a given coordinates with the given zoom level.

    Args:
        lon (float): The longitude of the center, in degrees.
        lat (float): The latitude of the center, in degrees.
        zoom (int, optional): The zoom level, from 1 to 24. Defaults to 10.
    """
    self.fit_bounds([[lat, lon], [lat, lon]], max_zoom=zoom)

    if is_arcpy():
        arc_zoom_to_extent(lon, lat, lon, lat)

set_control_visibility(layerControl=True, fullscreenControl=True, latLngPopup=True)

Sets the visibility of the controls on the map.

Parameters:

Name Type Description Default
layerControl bool

Whether to show the control that allows the user to toggle layers on/off. Defaults to True.

True
fullscreenControl bool

Whether to show the control that allows the user to make the map full-screen. Defaults to True.

True
latLngPopup bool

Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True.

True
Source code in geemap/foliumap.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def set_control_visibility(
    self, layerControl=True, fullscreenControl=True, latLngPopup=True
):
    """Sets the visibility of the controls on the map.

    Args:
        layerControl (bool, optional): Whether to show the control that allows the user to toggle layers on/off. Defaults to True.
        fullscreenControl (bool, optional): Whether to show the control that allows the user to make the map full-screen. Defaults to True.
        latLngPopup (bool, optional): Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True.
    """
    if layerControl:
        folium.LayerControl().add_to(self)
    if fullscreenControl:
        plugins.Fullscreen().add_to(self)
    if latLngPopup:
        folium.LatLngPopup().add_to(self)

set_plot_options(**kwargs)

Sets plotting options.

Source code in geemap/foliumap.py
2814
2815
2816
2817
2818
2819
def set_plot_options(
    self,
    **kwargs,
):
    """Sets plotting options."""
    print("The folium plotting backend does not support this function.")

split_map(left_layer='TERRAIN', right_layer='OpenTopoMap', left_args={}, right_args={}, left_label=None, right_label=None, left_position='bottomleft', right_position='bottomright', **kwargs)

Adds a split-panel map.

Parameters:

Name Type Description Default
left_layer str

The left tile layer. Can be a local file path, HTTP URL, or a basemap name. Defaults to 'TERRAIN'.

'TERRAIN'
right_layer str

The right tile layer. Can be a local file path, HTTP URL, or a basemap name. Defaults to 'OpenTopoMap'.

'OpenTopoMap'
left_args dict

The arguments for the left tile layer. Defaults to {}.

{}
right_args dict

The arguments for the right tile layer. Defaults to {}.

{}
Source code in geemap/foliumap.py
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
def split_map(
    self,
    left_layer="TERRAIN",
    right_layer="OpenTopoMap",
    left_args={},
    right_args={},
    left_label=None,
    right_label=None,
    left_position="bottomleft",
    right_position="bottomright",
    **kwargs,
):
    """Adds a split-panel map.

    Args:
        left_layer (str, optional): The left tile layer. Can be a local file path, HTTP URL, or a basemap name. Defaults to 'TERRAIN'.
        right_layer (str, optional): The right tile layer. Can be a local file path, HTTP URL, or a basemap name. Defaults to 'OpenTopoMap'.
        left_args (dict, optional): The arguments for the left tile layer. Defaults to {}.
        right_args (dict, optional): The arguments for the right tile layer. Defaults to {}.
    """
    if "max_zoom" not in left_args:
        left_args["max_zoom"] = 100
    if "max_native_zoom" not in left_args:
        left_args["max_native_zoom"] = 100

    if "max_zoom" not in right_args:
        right_args["max_zoom"] = 100
    if "max_native_zoom" not in right_args:
        right_args["max_native_zoom"] = 100

    if "layer_name" not in left_args:
        left_args["layer_name"] = "Left Layer"

    if "layer_name" not in right_args:
        right_args["layer_name"] = "Right Layer"

    bounds = None

    try:
        if left_label is not None:
            left_name = left_label
        else:
            left_name = "Left Layer"

        if right_label is not None:
            right_name = right_label
        else:
            right_name = "Right Layer"

        if left_layer in basemaps.keys():
            left_layer = basemaps[left_layer]
        elif isinstance(left_layer, str):
            if left_layer.startswith("http") and left_layer.endswith(".tif"):
                url = cog_tile(left_layer, **left_args)
                bbox = cog_bounds(left_layer)
                bounds = [(bbox[1], bbox[0]), (bbox[3], bbox[2])]
                left_layer = folium.raster_layers.TileLayer(
                    tiles=url,
                    name=left_name,
                    attr=" ",
                    overlay=True,
                )
            elif os.path.exists(left_layer):
                left_layer, left_client = get_local_tile_layer(
                    left_layer,
                    tile_format="folium",
                    return_client=True,
                    **left_args,
                )
                bounds = image_bounds(left_client)

            else:
                left_layer = folium.raster_layers.TileLayer(
                    tiles=left_layer,
                    name=left_name,
                    attr=" ",
                    overlay=True,
                    **left_args,
                )
        elif isinstance(left_layer, folium.raster_layers.TileLayer) or isinstance(
            left_layer, folium.WmsTileLayer
        ):
            pass
        else:
            raise ValueError(
                f"left_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
            )

        if right_layer in basemaps.keys():
            right_layer = basemaps[right_layer]
        elif isinstance(right_layer, str):
            if right_layer.startswith("http") and right_layer.endswith(".tif"):
                url = cog_tile(right_layer, **right_args)
                bbox = cog_bounds(right_layer)
                bounds = [(bbox[1], bbox[0]), (bbox[3], bbox[2])]
                right_layer = folium.raster_layers.TileLayer(
                    tiles=url,
                    name=right_name,
                    attr=" ",
                    overlay=True,
                )
            elif os.path.exists(right_layer):
                right_layer, right_client = get_local_tile_layer(
                    right_layer,
                    tile_format="folium",
                    return_client=True,
                    **right_args,
                )
                bounds = image_bounds(right_client)
            else:
                right_layer = folium.raster_layers.TileLayer(
                    tiles=right_layer,
                    name=right_name,
                    attr=" ",
                    overlay=True,
                    **right_args,
                )
        elif isinstance(right_layer, folium.raster_layers.TileLayer) or isinstance(
            left_layer, folium.WmsTileLayer
        ):
            pass
        else:
            raise ValueError(
                f"right_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
            )

        control = folium.plugins.SideBySideLayers(
            layer_left=left_layer, layer_right=right_layer
        )
        left_layer.add_to(self)
        right_layer.add_to(self)
        control.add_to(self)

        if left_label is not None:
            if "<" not in left_label:
                left_label = f"<h4>{left_label}</h4>"
            self.add_html(left_label, position=left_position)

        if right_label is not None:
            if "<" not in right_label:
                right_label = f"<h4>{right_label}</h4>"
            self.add_html(right_label, position=right_position)
        if bounds is not None:
            self.fit_bounds(bounds)

    except Exception as e:
        print("The provided layers are invalid!")
        raise ValueError(e)

st_draw_features(st_component)

Get the draw features of the map.

Parameters:

Name Type Description Default
st_folium streamlit - folium

The streamlit component.

required

Returns:

Name Type Description
list

The draw features of the map.

Source code in geemap/foliumap.py
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
def st_draw_features(self, st_component):
    """Get the draw features of the map.

    Args:
        st_folium (streamlit-folium): The streamlit component.

    Returns:
        list: The draw features of the map.
    """

    return st_component["all_drawings"]

st_fit_bounds()

Fit the map to the bounds of the map.

Returns:

Type Description

folium.Map: The map.

Source code in geemap/foliumap.py
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
def st_fit_bounds(self):
    """Fit the map to the bounds of the map.

    Returns:
        folium.Map: The map.
    """

    try:
        import streamlit as st

        if "map_bounds" in st.session_state:
            bounds = st.session_state["map_bounds"]

            self.fit_bounds(bounds)

    except Exception as e:
        raise Exception(e)

st_last_click(st_component)

Get the last click feature of the map.

Parameters:

Name Type Description Default
st_folium streamlit - folium

The streamlit component.

required

Returns:

Name Type Description
str

The last click of the map.

Source code in geemap/foliumap.py
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
def st_last_click(self, st_component):
    """Get the last click feature of the map.

    Args:
        st_folium (streamlit-folium): The streamlit component.

    Returns:
        str: The last click of the map.
    """

    coords = st_component["last_clicked"]
    return (coords["lat"], coords["lng"])

st_last_draw(st_component)

Get the last draw feature of the map.

Parameters:

Name Type Description Default
st_folium streamlit - folium

The streamlit component.

required

Returns:

Name Type Description
str

The last draw of the map.

Source code in geemap/foliumap.py
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
def st_last_draw(self, st_component):
    """Get the last draw feature of the map.

    Args:
        st_folium (streamlit-folium): The streamlit component.

    Returns:
        str: The last draw of the map.
    """

    return st_component["last_active_drawing"]

st_map_bounds(st_component)

Get the bounds of the map in the format of (miny, minx, maxy, maxx).

Parameters:

Name Type Description Default
st_folium streamlit - folium

The streamlit component.

required

Returns:

Name Type Description
tuple

The bounds of the map.

Source code in geemap/foliumap.py
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
def st_map_bounds(self, st_component):
    """Get the bounds of the map in the format of (miny, minx, maxy, maxx).

    Args:
        st_folium (streamlit-folium): The streamlit component.

    Returns:
        tuple: The bounds of the map.
    """

    bounds = st_component["bounds"]
    south = bounds["_southWest"]["lat"]
    west = bounds["_southWest"]["lng"]
    north = bounds["_northEast"]["lat"]
    east = bounds["_northEast"]["lng"]

    bounds = [[south, west], [north, east]]
    return bounds

st_map_center(st_component)

Get the center of the map.

Parameters:

Name Type Description Default
st_folium streamlit - folium

The streamlit component.

required

Returns:

Name Type Description
tuple

The center of the map.

Source code in geemap/foliumap.py
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
def st_map_center(self, st_component):
    """Get the center of the map.

    Args:
        st_folium (streamlit-folium): The streamlit component.

    Returns:
        tuple: The center of the map.
    """

    bounds = st_component["bounds"]
    west = bounds["_southWest"]["lng"]
    south = bounds["_southWest"]["lat"]
    east = bounds["_northEast"]["lng"]
    north = bounds["_northEast"]["lat"]
    return (south + (north - south) / 2, west + (east - west) / 2)

to_gradio(width='100%', height='500px', **kwargs)

Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190

Parameters:

Name Type Description Default
width str

The width of the map. Defaults to '100%'.

'100%'
height str

The height of the map. Defaults to '500px'.

'500px'

Returns:

Name Type Description
str

The HTML string to use in Gradio.

Source code in geemap/foliumap.py
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
def to_gradio(self, width="100%", height="500px", **kwargs):
    """Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as
        attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190

    Args:
        width (str, optional): The width of the map. Defaults to '100%'.
        height (str, optional): The height of the map. Defaults to '500px'.

    Returns:
        str: The HTML string to use in Gradio.
    """

    if isinstance(width, int):
        width = f"{width}px"
    if isinstance(height, int):
        height = f"{height}px"

    html = self.to_html()
    lines = html.split("\n")
    output = []
    skipped_lines = []
    for index, line in enumerate(lines):
        if index in skipped_lines:
            continue
        if line.lstrip().startswith('{"attribution":'):
            continue
        elif "on(L.Draw.Event.CREATED, function(e)" in line:
            for i in range(14):
                skipped_lines.append(index + i)
        elif "L.Control.geocoder" in line:
            for i in range(5):
                skipped_lines.append(index + i)
        elif "function(e)" in line:
            print(
                f"Warning: The folium plotting backend does not support functions in code blocks. Please delete line {index + 1}."
            )
        else:
            output.append(line + "\n")

    return f"""<iframe style="width: {width}; height: {height}" name="result" allow="midi; geolocation; microphone; camera;
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms
    allow-scripts allow-same-origin allow-popups
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
    allowpaymentrequest="" frameborder="0" srcdoc='{"".join(output)}'></iframe>"""

to_html(filename=None, **kwargs)

Exports a map as an HTML file.

Parameters:

Name Type Description Default
filename str

File path to the output HTML. Defaults to None.

None

Raises:

Type Description
ValueError

If it is an invalid HTML file.

Returns:

Name Type Description
str

A string containing the HTML code.

Source code in geemap/foliumap.py
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
def to_html(self, filename=None, **kwargs):
    """Exports a map as an HTML file.

    Args:
        filename (str, optional): File path to the output HTML. Defaults to None.

    Raises:
        ValueError: If it is an invalid HTML file.

    Returns:
        str: A string containing the HTML code.
    """

    if self.options["layersControl"]:
        self.add_layer_control()

    if filename is not None:
        if not filename.endswith(".html"):
            raise ValueError("The output file extension must be html.")
        filename = os.path.abspath(filename)
        out_dir = os.path.dirname(filename)
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)
        self.save(filename, **kwargs)
    else:
        filename = os.path.abspath(random_string() + ".html")
        self.save(filename, **kwargs)
        out_html = ""
        with open(filename) as f:
            lines = f.readlines()
            out_html = "".join(lines)
        os.remove(filename)
        return out_html

to_streamlit(width=None, height=600, scrolling=False, add_layer_control=True, bidirectional=False, **kwargs)

Renders folium.Figure or folium.Map in a Streamlit app. This method is a static Streamlit Component, meaning, no information is passed back from Leaflet on browser interaction.

Parameters:

Name Type Description Default
width int

Width of the map. Defaults to None.

None
height int

Height of the map. Defaults to 600.

600
scrolling bool

Whether to allow the map to scroll. Defaults to False.

False
add_layer_control bool

Whether to add the layer control. Defaults to True.

True
bidirectional bool

Whether to add bidirectional functionality to the map. The streamlit-folium package is required to use the bidirectional functionality. Defaults to False.

False

Raises:

Type Description
ImportError

If streamlit is not installed.

Returns:

Type Description

streamlit.components: components.html object.

Source code in geemap/foliumap.py
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
def to_streamlit(
    self,
    width=None,
    height=600,
    scrolling=False,
    add_layer_control=True,
    bidirectional=False,
    **kwargs,
):
    """Renders `folium.Figure` or `folium.Map` in a Streamlit app. This method is a static Streamlit Component, meaning, no information is passed back from Leaflet on browser interaction.

    Args:
        width (int, optional): Width of the map. Defaults to None.
        height (int, optional): Height of the map. Defaults to 600.
        scrolling (bool, optional): Whether to allow the map to scroll. Defaults to False.
        add_layer_control (bool, optional): Whether to add the layer control. Defaults to True.
        bidirectional (bool, optional): Whether to add bidirectional functionality to the map. The streamlit-folium package is required to use the bidirectional functionality. Defaults to False.

    Raises:
        ImportError: If streamlit is not installed.

    Returns:
        streamlit.components: components.html object.
    """

    try:
        import streamlit.components.v1 as components

        if add_layer_control:
            self.add_layer_control()

        if bidirectional:
            from streamlit_folium import st_folium

            output = st_folium(self, width=width, height=height)
            return output
        else:
            # if responsive:
            #     make_map_responsive = """
            #     <style>
            #     [title~="st.iframe"] { width: 100%}
            #     </style>
            #     """
            #     st.markdown(make_map_responsive, unsafe_allow_html=True)
            return components.html(
                self.to_html(), width=width, height=height, scrolling=scrolling
            )

    except Exception as e:
        raise Exception(e)

zoom_to_bounds(bounds)

Zooms to a bounding box in the form of [minx, miny, maxx, maxy].

Parameters:

Name Type Description Default
bounds list | tuple

A list/tuple containing minx, miny, maxx, maxy values for the bounds.

required
Source code in geemap/foliumap.py
308
309
310
311
312
313
314
315
def zoom_to_bounds(self, bounds):
    """Zooms to a bounding box in the form of [minx, miny, maxx, maxy].

    Args:
        bounds (list | tuple): A list/tuple containing minx, miny, maxx, maxy values for the bounds.
    """
    #  The folium fit_bounds method takes lat/lon bounds in the form [[south, west], [north, east]].
    self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])

zoom_to_gdf(gdf)

Zooms to the bounding box of a GeoPandas GeoDataFrame.

Parameters:

Name Type Description Default
gdf GeoDataFrame

A GeoPandas GeoDataFrame.

required
Source code in geemap/foliumap.py
317
318
319
320
321
322
323
324
def zoom_to_gdf(self, gdf):
    """Zooms to the bounding box of a GeoPandas GeoDataFrame.

    Args:
        gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
    """
    bounds = gdf.total_bounds
    self.zoom_to_bounds(bounds)

PlanetaryComputerEndpoint

Bases: TitilerEndpoint

This class contains the methods for the Microsoft Planetary Computer endpoint.

Source code in geemap/common.py
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
class PlanetaryComputerEndpoint(TitilerEndpoint):
    """This class contains the methods for the Microsoft Planetary Computer endpoint."""

    def __init__(
        self,
        endpoint="https://planetarycomputer.microsoft.com/api/data/v1",
        name="item",
        TileMatrixSetId="WebMercatorQuad",
    ):
        """Initialize the PlanetaryComputerEndpoint object.

        Args:
            endpoint (str, optional): The endpoint of the titiler server. Defaults to "https://planetarycomputer.microsoft.com/api/data/v1".
            name (str, optional): The name to be used in the file path. Defaults to "item".
            TileMatrixSetId (str, optional): The TileMatrixSetId to be used in the file path. Defaults to "WebMercatorQuad".
        """
        super().__init__(endpoint, name, TileMatrixSetId)

    def url_for_stac_collection(self):
        return f"{self.endpoint}/collection/{self.TileMatrixSetId}/tilejson.json"

    def url_for_collection_assets(self):
        return f"{self.endpoint}/collection/assets"

    def url_for_collection_bounds(self):
        return f"{self.endpoint}/collection/bounds"

    def url_for_collection_info(self):
        return f"{self.endpoint}/collection/info"

    def url_for_collection_info_geojson(self):
        return f"{self.endpoint}/collection/info.geojson"

    def url_for_collection_pixel_value(self, lon, lat):
        return f"{self.endpoint}/collection/point/{lon},{lat}"

    def url_for_collection_wmts(self):
        return f"{self.endpoint}/collection/{self.TileMatrixSetId}/WMTSCapabilities.xml"

    def url_for_collection_lat_lon_assets(self, lng, lat):
        return f"{self.endpoint}/collection/{lng},{lat}/assets"

    def url_for_collection_bbox_assets(self, minx, miny, maxx, maxy):
        return f"{self.endpoint}/collection/{minx},{miny},{maxx},{maxy}/assets"

    def url_for_stac_mosaic(self, searchid):
        return f"{self.endpoint}/mosaic/{searchid}/{self.TileMatrixSetId}/tilejson.json"

    def url_for_mosaic_info(self, searchid):
        return f"{self.endpoint}/mosaic/{searchid}/info"

    def url_for_mosaic_lat_lon_assets(self, searchid, lon, lat):
        return f"{self.endpoint}/mosaic/{searchid}/{lon},{lat}/assets"

__init__(endpoint='https://planetarycomputer.microsoft.com/api/data/v1', name='item', TileMatrixSetId='WebMercatorQuad')

Initialize the PlanetaryComputerEndpoint object.

Parameters:

Name Type Description Default
endpoint str

The endpoint of the titiler server. Defaults to "https://planetarycomputer.microsoft.com/api/data/v1".

'https://planetarycomputer.microsoft.com/api/data/v1'
name str

The name to be used in the file path. Defaults to "item".

'item'
TileMatrixSetId str

The TileMatrixSetId to be used in the file path. Defaults to "WebMercatorQuad".

'WebMercatorQuad'
Source code in geemap/common.py
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
def __init__(
    self,
    endpoint="https://planetarycomputer.microsoft.com/api/data/v1",
    name="item",
    TileMatrixSetId="WebMercatorQuad",
):
    """Initialize the PlanetaryComputerEndpoint object.

    Args:
        endpoint (str, optional): The endpoint of the titiler server. Defaults to "https://planetarycomputer.microsoft.com/api/data/v1".
        name (str, optional): The name to be used in the file path. Defaults to "item".
        TileMatrixSetId (str, optional): The TileMatrixSetId to be used in the file path. Defaults to "WebMercatorQuad".
    """
    super().__init__(endpoint, name, TileMatrixSetId)

SideBySideLayers

Bases: JSCSSMixin, Layer

Creates a SideBySideLayers that takes two Layers and adds a sliding control with the leaflet-side-by-side plugin. Uses the Leaflet leaflet-side-by-side plugin https://github.com/digidem/leaflet-side-by-side. Adopted from https://github.com/python-visualization/folium/pull/1292/files. Parameters


layer_left: Layer. The left Layer within the side by side control. Must be created and added to the map before being passed to this class. layer_right: Layer. The right Layer within the side by side control. Must be created and added to the map before being passed to this class. Examples


sidebyside = SideBySideLayers(layer_left, layer_right) sidebyside.add_to(m)

Source code in geemap/foliumap.py
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
class SideBySideLayers(JSCSSMixin, Layer):
    """
    Creates a SideBySideLayers that takes two Layers and adds a sliding
    control with the leaflet-side-by-side plugin.
    Uses the Leaflet leaflet-side-by-side plugin https://github.com/digidem/leaflet-side-by-side.
    Adopted from https://github.com/python-visualization/folium/pull/1292/files.
    Parameters
    ----------
    layer_left: Layer.
        The left Layer within the side by side control.
        Must be created and added to the map before being passed to this class.
    layer_right: Layer.
        The right Layer within the side by side control.
        Must be created and added to the map before being passed to this class.
    Examples
    --------
    >>> sidebyside = SideBySideLayers(layer_left, layer_right)
    >>> sidebyside.add_to(m)
    """

    _template = Template(
        """
        {% macro script(this, kwargs) %}
            var {{ this.get_name() }} = L.control.sideBySide(
                {{ this.layer_left.get_name() }}, {{ this.layer_right.get_name() }}
            ).addTo({{ this._parent.get_name() }});
        {% endmacro %}
        """
    )

    default_js = [
        (
            "leaflet.sidebyside",
            "https://cdn.jsdelivr.net/gh/digidem/leaflet-side-by-side@gh-pages/leaflet-side-by-side.min.js",
        ),
    ]

    def __init__(self, layer_left, layer_right):
        super().__init__(control=False)
        self._name = "SideBySideLayers"
        self.layer_left = layer_left
        self.layer_right = layer_right

SplitControl

Bases: Layer

Creates a SplitControl that takes two Layers and adds a sliding control with the leaflet-side-by-side plugin. Uses the Leaflet leaflet-side-by-side plugin https://github.com/digidem/leaflet-side-by-side Parameters. The source code is adapted from https://github.com/python-visualization/folium/pull/1292


layer_left: Layer. The left Layer within the side by side control. Must be created and added to the map before being passed to this class. layer_right: Layer. The right Layer within the side by side control. Must be created and added to the map before being passed to this class. name : string, default None The name of the Layer, as it will appear in LayerControls. overlay : bool, default True Adds the layer as an optional overlay (True) or the base layer (False). control : bool, default True Whether the Layer will be included in LayerControls. show: bool, default True Whether the layer will be shown on opening (only for overlays). Examples


sidebyside = SideBySideLayers(layer_left, layer_right) sidebyside.add_to(m)

Source code in geemap/foliumap.py
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
class SplitControl(Layer):
    """
    Creates a SplitControl that takes two Layers and adds a sliding control with the leaflet-side-by-side plugin.
    Uses the Leaflet leaflet-side-by-side plugin https://github.com/digidem/leaflet-side-by-side Parameters.
    The source code is adapted from https://github.com/python-visualization/folium/pull/1292
    ----------
    layer_left: Layer.
        The left Layer within the side by side control.
        Must  be created and added to the map before being passed to this class.
    layer_right: Layer.
        The right Layer within the side by side control.
        Must  be created and added to the map before being passed to this class.
    name : string, default None
        The name of the Layer, as it will appear in LayerControls.
    overlay : bool, default True
        Adds the layer as an optional overlay (True) or the base layer (False).
    control : bool, default True
        Whether the Layer will be included in LayerControls.
    show: bool, default True
        Whether the layer will be shown on opening (only for overlays).
    Examples
    --------
    >>> sidebyside = SideBySideLayers(layer_left, layer_right)
    >>> sidebyside.add_to(m)
    """

    _template = Template(
        """
        {% macro script(this, kwargs) %}
            var {{ this.get_name() }} = L.control.sideBySide(
                {{ this.layer_left.get_name() }}, {{ this.layer_right.get_name() }}
            ).addTo({{ this._parent.get_name() }});
        {% endmacro %}
        """
    )

    def __init__(
        self, layer_left, layer_right, name=None, overlay=True, control=False, show=True
    ):
        super(SplitControl, self).__init__(
            name=name, overlay=overlay, control=control, show=show
        )
        self._name = "SplitControl"
        self.layer_left = layer_left
        self.layer_right = layer_right

    def render(self, **kwargs):
        super(SplitControl, self).render()

        figure = self.get_root()
        assert isinstance(figure, Figure), (
            "You cannot render this Element " "if it is not in a Figure."
        )

        figure.header.add_child(
            JavascriptLink(
                "https://raw.githack.com/digidem/leaflet-side-by-side/gh-pages/leaflet-side-by-side.js"
            ),  # noqa
            name="leaflet.sidebyside",
        )

TitilerEndpoint

This class contains the methods for the titiler endpoint.

Source code in geemap/common.py
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
class TitilerEndpoint:
    """This class contains the methods for the titiler endpoint."""

    def __init__(
        self,
        endpoint="https://titiler.xyz",
        name="stac",
        TileMatrixSetId="WebMercatorQuad",
    ):
        """Initialize the TitilerEndpoint object.

        Args:
            endpoint (str, optional): The endpoint of the titiler server. Defaults to "https://titiler.xyz".
            name (str, optional): The name to be used in the file path. Defaults to "stac".
            TileMatrixSetId (str, optional): The TileMatrixSetId to be used in the file path. Defaults to "WebMercatorQuad".
        """
        self.endpoint = endpoint
        self.name = name
        self.TileMatrixSetId = TileMatrixSetId

    def url_for_stac_item(self):
        return f"{self.endpoint}/{self.name}/{self.TileMatrixSetId}/tilejson.json"

    def url_for_stac_assets(self):
        return f"{self.endpoint}/{self.name}/assets"

    def url_for_stac_bounds(self):
        return f"{self.endpoint}/{self.name}/bounds"

    def url_for_stac_info(self):
        return f"{self.endpoint}/{self.name}/info"

    def url_for_stac_info_geojson(self):
        return f"{self.endpoint}/{self.name}/info.geojson"

    def url_for_stac_statistics(self):
        return f"{self.endpoint}/{self.name}/statistics"

    def url_for_stac_pixel_value(self, lon, lat):
        return f"{self.endpoint}/{self.name}/point/{lon},{lat}"

    def url_for_stac_wmts(self):
        return (
            f"{self.endpoint}/{self.name}/{self.TileMatrixSetId}/WMTSCapabilities.xml"
        )

__init__(endpoint='https://titiler.xyz', name='stac', TileMatrixSetId='WebMercatorQuad')

Initialize the TitilerEndpoint object.

Parameters:

Name Type Description Default
endpoint str

The endpoint of the titiler server. Defaults to "https://titiler.xyz".

'https://titiler.xyz'
name str

The name to be used in the file path. Defaults to "stac".

'stac'
TileMatrixSetId str

The TileMatrixSetId to be used in the file path. Defaults to "WebMercatorQuad".

'WebMercatorQuad'
Source code in geemap/common.py
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
def __init__(
    self,
    endpoint="https://titiler.xyz",
    name="stac",
    TileMatrixSetId="WebMercatorQuad",
):
    """Initialize the TitilerEndpoint object.

    Args:
        endpoint (str, optional): The endpoint of the titiler server. Defaults to "https://titiler.xyz".
        name (str, optional): The name to be used in the file path. Defaults to "stac".
        TileMatrixSetId (str, optional): The TileMatrixSetId to be used in the file path. Defaults to "WebMercatorQuad".
    """
    self.endpoint = endpoint
    self.name = name
    self.TileMatrixSetId = TileMatrixSetId

add_crs(filename, epsg)

Add a CRS to a raster dataset.

Parameters:

Name Type Description Default
filename str

The filename of the raster dataset.

required
epsg int | str

The EPSG code of the CRS.

required
Source code in geemap/common.py
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
def add_crs(filename, epsg):
    """Add a CRS to a raster dataset.

    Args:
        filename (str): The filename of the raster dataset.
        epsg (int | str): The EPSG code of the CRS.

    """
    try:
        import rasterio
    except ImportError:
        raise ImportError(
            "rasterio is required for adding a CRS to a raster. Please install it using 'pip install rasterio'."
        )

    if not os.path.exists(filename):
        raise ValueError("filename must exist.")

    if isinstance(epsg, int):
        epsg = f"EPSG:{epsg}"
    elif isinstance(epsg, str):
        epsg = "EPSG:" + epsg
    else:
        raise ValueError("epsg must be an integer or string.")

    crs = rasterio.crs.CRS({"init": epsg})
    with rasterio.open(filename, mode="r+") as src:
        src.crs = crs

add_image_to_gif(in_gif, out_gif, in_image, xy=None, image_size=(80, 80), circle_mask=False)

Adds an image logo to a GIF image.

Parameters:

Name Type Description Default
in_gif str

Input file path to the GIF image.

required
out_gif str

Output file path to the GIF image.

required
in_image str

Input file path to the image.

required
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
image_size tuple

Resize image. Defaults to (80, 80).

(80, 80)
circle_mask bool

Whether to apply a circle mask to the image. This only works with non-png images. Defaults to False.

False
Source code in geemap/timelapse.py
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
def add_image_to_gif(
    in_gif, out_gif, in_image, xy=None, image_size=(80, 80), circle_mask=False
):
    """Adds an image logo to a GIF image.

    Args:
        in_gif (str): Input file path to the GIF image.
        out_gif (str): Output file path to the GIF image.
        in_image (str): Input file path to the image.
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        image_size (tuple, optional): Resize image. Defaults to (80, 80).
        circle_mask (bool, optional): Whether to apply a circle mask to the image. This only works with non-png images. Defaults to False.
    """
    # import io
    import warnings

    from PIL import Image, ImageDraw, ImageSequence

    warnings.simplefilter("ignore")

    in_gif = os.path.abspath(in_gif)

    is_url = False
    if in_image.startswith("http"):
        is_url = True

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if (not is_url) and (not os.path.exists(in_image)):
        print("The provided logo file does not exist.")
        return

    out_dir = check_dir((os.path.dirname(out_gif)))
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    try:
        gif = Image.open(in_gif)
    except Exception as e:
        print("An error occurred while opening the image.")
        print(e)
        return

    logo_raw_image = None
    try:
        if in_image.startswith("http"):
            logo_raw_image = open_image_from_url(in_image)
        else:
            in_image = os.path.abspath(in_image)
            logo_raw_image = Image.open(in_image)
    except Exception as e:
        print(e)

    logo_raw_size = logo_raw_image.size

    ratio = max(
        logo_raw_size[0] / image_size[0],
        logo_raw_size[1] / image_size[1],
    )
    image_resize = (int(logo_raw_size[0] / ratio), int(logo_raw_size[1] / ratio))
    image_size = min(logo_raw_size[0], image_size[0]), min(
        logo_raw_size[1], image_size[1]
    )

    logo_image = logo_raw_image.convert("RGBA")
    logo_image.thumbnail(image_size, Image.LANCZOS)

    gif_width, gif_height = gif.size
    mask_im = None

    if circle_mask:
        mask_im = Image.new("L", image_size, 0)
        draw = ImageDraw.Draw(mask_im)
        draw.ellipse((0, 0, image_size[0], image_size[1]), fill=255)

    if has_transparency(logo_raw_image):
        mask_im = logo_image.copy()

    if xy is None:
        # default logo location is 5% width and 5% height of the image.
        delta = 10
        xy = (gif_width - image_resize[0] - delta, gif_height - image_resize[1] - delta)
        # xy = (int(0.05 * gif_width), int(0.05 * gif_height))
    elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
        print("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")
        return
    elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
        x, y = xy
        if (x > 0) and (x < gif_width) and (y > 0) and (y < gif_height):
            pass
        else:
            print(
                "xy is out of bounds. x must be within [0, {}], and y must be within [0, {}]".format(
                    gif_width, gif_height
                )
            )
            return
    elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
        x, y = xy
        if ("%" in x) and ("%" in y):
            try:
                x = int(float(x.replace("%", "")) / 100.0 * gif_width)
                y = int(float(y.replace("%", "")) / 100.0 * gif_height)
                xy = (x, y)
            except Exception:
                raise Exception(
                    "The specified xy is invalid. It must be formatted like this ('10%', '10%')"
                )

    else:
        raise Exception(
            "The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
        )

    try:
        frames = []
        for _, frame in enumerate(ImageSequence.Iterator(gif)):
            frame = frame.convert("RGBA")
            frame.paste(logo_image, xy, mask_im)

            b = io.BytesIO()
            frame.save(b, format="GIF")
            frame = Image.open(b)
            frames.append(frame)

        frames[0].save(out_gif, save_all=True, append_images=frames[1:])
    except Exception as e:
        print(e)

add_overlay(collection, overlay_data, color='black', width=1, opacity=1.0, region=None)

Adds an overlay to an image collection.

Parameters:

Name Type Description Default
collection ImageCollection

The image collection to add the overlay to.

required
overlay_data str | Geometry | FeatureCollection

The overlay data to add to the image collection. It can be an HTTP URL to a GeoJSON file.

required
color str

The color of the overlay. Defaults to 'black'.

'black'
width int

The width of the overlay. Defaults to 1.

1
opacity float

The opacity of the overlay. Defaults to 1.0.

1.0
region Geometry | FeatureCollection

The region of interest to add the overlay to. Defaults to None.

None

Returns:

Type Description
ImageCollection

ee.ImageCollection: An ImageCollection with the overlay added.

Source code in geemap/timelapse.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def add_overlay(
    collection: ee.ImageCollection,
    overlay_data: Union[str, ee.Geometry, ee.FeatureCollection],
    color: str = "black",
    width: int = 1,
    opacity: float = 1.0,
    region: Union[ee.Geometry, ee.FeatureCollection] = None,
) -> ee.ImageCollection:
    """Adds an overlay to an image collection.

    Args:
        collection (ee.ImageCollection): The image collection to add the overlay to.
        overlay_data (str | ee.Geometry | ee.FeatureCollection): The overlay data to add to the image collection. It can be an HTTP URL to a GeoJSON file.
        color (str, optional): The color of the overlay. Defaults to 'black'.
        width (int, optional): The width of the overlay. Defaults to 1.
        opacity (float, optional): The opacity of the overlay. Defaults to 1.0.
        region (ee.Geometry | ee.FeatureCollection, optional): The region of interest to add the overlay to. Defaults to None.

    Returns:
        ee.ImageCollection: An ImageCollection with the overlay added.
    """

    # Some common administrative boundaries.
    public_assets = ["continents", "countries", "us_states", "china"]

    if not isinstance(collection, ee.ImageCollection):
        raise Exception("The collection must be an ee.ImageCollection.")

    if not isinstance(overlay_data, ee.FeatureCollection):
        if isinstance(overlay_data, str):
            try:
                if overlay_data.lower() in public_assets:
                    overlay_data = ee.FeatureCollection(
                        f"users/giswqs/public/{overlay_data.lower()}"
                    )
                elif overlay_data.startswith("http") and overlay_data.endswith(
                    ".geojson"
                ):
                    overlay_data = geojson_to_ee(overlay_data)
                else:
                    overlay_data = ee.FeatureCollection(overlay_data)

            except Exception as e:
                print(
                    "The overlay_data must be a valid ee.FeatureCollection, a valid ee.FeatureCollection asset id, or http url to a geojson file."
                )
                raise Exception(e)
        elif isinstance(overlay_data, ee.Feature):
            overlay_data = ee.FeatureCollection([overlay_data])
        elif isinstance(overlay_data, ee.Geometry):
            overlay_data = ee.FeatureCollection([ee.Feature(overlay_data)])
        else:
            raise Exception(
                "The overlay_data must be a valid ee.FeatureCollection or a valid ee.FeatureCollection asset id."
            )

    try:
        if region is not None:
            overlay_data = overlay_data.filterBounds(region)

        empty = ee.Image().byte()
        image = empty.paint(
            **{
                "featureCollection": overlay_data,
                "color": 1,
                "width": width,
            }
        ).visualize(**{"palette": check_color(color), "opacity": opacity})
        blend_col = collection.map(
            lambda img: img.blend(image).set(
                "system:time_start", img.get("system:time_start")
            )
        )
        return blend_col
    except Exception as e:
        print("Error in add_overlay:")
        raise Exception(e)

add_progress_bar_to_gif(in_gif, out_gif, progress_bar_color='blue', progress_bar_height=5, duration=100, loop=0)

Adds a progress bar to a GIF image.

Parameters:

Name Type Description Default
in_gif str

The file path to the input GIF image.

required
out_gif str

The file path to the output GIF image.

required
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'blue'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
duration int

controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.

100
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
Source code in geemap/timelapse.py
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
def add_progress_bar_to_gif(
    in_gif,
    out_gif,
    progress_bar_color="blue",
    progress_bar_height=5,
    duration=100,
    loop=0,
):
    """Adds a progress bar to a GIF image.

    Args:
        in_gif (str): The file path to the input GIF image.
        out_gif (str): The file path to the output GIF image.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        duration (int, optional): controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

    """
    import io
    import warnings

    from PIL import Image, ImageDraw, ImageSequence

    warnings.simplefilter("ignore")

    in_gif = os.path.abspath(in_gif)
    out_gif = os.path.abspath(out_gif)

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    progress_bar_color = check_color(progress_bar_color)

    try:
        image = Image.open(in_gif)
    except Exception as e:
        raise Exception("An error occurred while opening the gif.")

    count = image.n_frames
    W, H = image.size
    progress_bar_widths = [i * 1.0 / count * W for i in range(1, count + 1)]
    progress_bar_shapes = [
        [(0, H - progress_bar_height), (x, H)] for x in progress_bar_widths
    ]

    try:
        frames = []
        # Loop over each frame in the animated image
        for index, frame in enumerate(ImageSequence.Iterator(image)):
            # Draw the text on the frame
            frame = frame.convert("RGB")
            draw = ImageDraw.Draw(frame)
            # w, h = draw.textsize(text[index])
            draw.rectangle(progress_bar_shapes[index], fill=progress_bar_color)
            del draw

            b = io.BytesIO()
            frame.save(b, format="GIF")
            frame = Image.open(b)

            frames.append(frame)
        # https://www.pythoninformer.com/python-libraries/pillow/creating-animated-gif/
        # Save the frames as a new image

        frames[0].save(
            out_gif,
            save_all=True,
            append_images=frames[1:],
            duration=duration,
            loop=loop,
            optimize=True,
        )
    except Exception as e:
        raise Exception(e)

add_text_to_gif(in_gif, out_gif, xy=None, text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#000000', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, duration=100, loop=0)

Adds animated text to a GIF image.

Parameters:

Name Type Description Default
in_gif str

The file path to the input GIF image.

required
out_gif str

The file path to the output GIF image.

required
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#000000'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
duration int

controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.

100
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
Source code in geemap/timelapse.py
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
def add_text_to_gif(
    in_gif,
    out_gif,
    xy=None,
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#000000",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    duration=100,
    loop=0,
):
    """Adds animated text to a GIF image.

    Args:
        in_gif (str): The file path to the input GIF image.
        out_gif (str): The file path to the output GIF image.
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        duration (int, optional): controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

    """
    # import io
    import warnings

    import importlib.resources
    from PIL import Image, ImageDraw, ImageFont, ImageSequence

    warnings.simplefilter("ignore")

    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)
    default_font = os.path.join(pkg_dir, "data/fonts/arial.ttf")

    in_gif = os.path.abspath(in_gif)
    out_gif = os.path.abspath(out_gif)

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    if font_type == "arial.ttf":
        font = ImageFont.truetype(default_font, font_size)
    elif font_type == "alibaba.otf":
        default_font = os.path.join(pkg_dir, "data/fonts/alibaba.otf")
        font = ImageFont.truetype(default_font, font_size)
    else:
        try:
            font_list = system_fonts(show_full_path=True)
            font_names = [os.path.basename(f) for f in font_list]
            if (font_type in font_list) or (font_type in font_names):
                font = ImageFont.truetype(font_type, font_size)
            else:
                print(
                    "The specified font type could not be found on your system. Using the default font instead."
                )
                font = ImageFont.truetype(default_font, font_size)
        except Exception as e:
            print(e)
            font = ImageFont.truetype(default_font, font_size)

    color = check_color(font_color)
    progress_bar_color = check_color(progress_bar_color)

    try:
        image = Image.open(in_gif)
    except Exception as e:
        print("An error occurred while opening the gif.")
        print(e)
        return

    count = image.n_frames
    W, H = image.size
    progress_bar_widths = [i * 1.0 / count * W for i in range(1, count + 1)]
    progress_bar_shapes = [
        [(0, H - progress_bar_height), (x, H)] for x in progress_bar_widths
    ]

    if xy is None:
        # default text location is 5% width and 5% height of the image.
        xy = (int(0.05 * W), int(0.05 * H))
    elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
        print("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")
        return
    elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
        x, y = xy
        if (x > 0) and (x < W) and (y > 0) and (y < H):
            pass
        else:
            print(
                f"xy is out of bounds. x must be within [0, {W}], and y must be within [0, {H}]"
            )
            return
    elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
        x, y = xy
        if ("%" in x) and ("%" in y):
            try:
                x = int(float(x.replace("%", "")) / 100.0 * W)
                y = int(float(y.replace("%", "")) / 100.0 * H)
                xy = (x, y)
            except Exception:
                raise Exception(
                    "The specified xy is invalid. It must be formatted like this ('10%', '10%')"
                )
    else:
        print(
            "The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
        )
        return

    if text_sequence is None:
        text = [str(x) for x in range(1, count + 1)]
    elif isinstance(text_sequence, int):
        text = [str(x) for x in range(text_sequence, text_sequence + count + 1)]
    elif isinstance(text_sequence, str):
        try:
            text_sequence = int(text_sequence)
            text = [str(x) for x in range(text_sequence, text_sequence + count + 1)]
        except Exception:
            text = [text_sequence] * count
    elif isinstance(text_sequence, list) and len(text_sequence) != count:
        print(
            f"The length of the text sequence must be equal to the number ({count}) of frames in the gif."
        )
        return
    else:
        text = [str(x) for x in text_sequence]

    try:
        frames = []
        # Loop over each frame in the animated image
        for index, frame in enumerate(ImageSequence.Iterator(image)):
            # Draw the text on the frame
            frame = frame.convert("RGB")
            draw = ImageDraw.Draw(frame)
            # w, h = draw.textsize(text[index])
            draw.text(xy, text[index], font=font, fill=color)
            if add_progress_bar:
                draw.rectangle(progress_bar_shapes[index], fill=progress_bar_color)
            del draw

            b = io.BytesIO()
            frame.save(b, format="GIF")
            frame = Image.open(b)

            frames.append(frame)
        # https://www.pythoninformer.com/python-libraries/pillow/creating-animated-gif/
        # Save the frames as a new image

        frames[0].save(
            out_gif,
            save_all=True,
            append_images=frames[1:],
            duration=duration,
            loop=loop,
            optimize=True,
        )
    except Exception as e:
        print(e)

adjust_longitude(in_fc)

Adjusts longitude if it is less than -180 or greater than 180.

Parameters:

Name Type Description Default
in_fc dict

The input dictionary containing coordinates.

required

Returns:

Name Type Description
dict

A dictionary containing the converted longitudes

Source code in geemap/common.py
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
def adjust_longitude(in_fc):
    """Adjusts longitude if it is less than -180 or greater than 180.

    Args:
        in_fc (dict): The input dictionary containing coordinates.

    Returns:
        dict: A dictionary containing the converted longitudes
    """
    try:
        keys = in_fc.keys()

        if "geometry" in keys:
            coordinates = in_fc["geometry"]["coordinates"]

            if in_fc["geometry"]["type"] == "Point":
                longitude = coordinates[0]
                if longitude < -180:
                    longitude = 360 + longitude
                elif longitude > 180:
                    longitude = longitude - 360
                in_fc["geometry"]["coordinates"][0] = longitude

            elif in_fc["geometry"]["type"] == "Polygon":
                for index1, item in enumerate(coordinates):
                    for index2, element in enumerate(item):
                        longitude = element[0]
                        if longitude < -180:
                            longitude = 360 + longitude
                        elif longitude > 180:
                            longitude = longitude - 360
                        in_fc["geometry"]["coordinates"][index1][index2][0] = longitude

            elif in_fc["geometry"]["type"] == "LineString":
                for index, element in enumerate(coordinates):
                    longitude = element[0]
                    if longitude < -180:
                        longitude = 360 + longitude
                    elif longitude > 180:
                        longitude = longitude - 360
                    in_fc["geometry"]["coordinates"][index][0] = longitude

        elif "type" in keys:
            coordinates = in_fc["coordinates"]

            if in_fc["type"] == "Point":
                longitude = coordinates[0]
                if longitude < -180:
                    longitude = 360 + longitude
                elif longitude > 180:
                    longitude = longitude - 360
                in_fc["coordinates"][0] = longitude

            elif in_fc["type"] == "Polygon":
                for index1, item in enumerate(coordinates):
                    for index2, element in enumerate(item):
                        longitude = element[0]
                        if longitude < -180:
                            longitude = 360 + longitude
                        elif longitude > 180:
                            longitude = longitude - 360
                        in_fc["coordinates"][index1][index2][0] = longitude

            elif in_fc["type"] == "LineString":
                for index, element in enumerate(coordinates):
                    longitude = element[0]
                    if longitude < -180:
                        longitude = 360 + longitude
                    elif longitude > 180:
                        longitude = longitude - 360
                    in_fc["coordinates"][index][0] = longitude

        return in_fc

    except Exception as e:
        print(e)
        return None

annual_NAIP(year, region)

Create an NAIP mosaic of a specified year for a specified region.

Parameters:

Name Type Description Default
year int

The specified year to create the mosaic for.

required
region object

ee.Geometry

required

Returns:

Name Type Description
object

ee.Image

Source code in geemap/common.py
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
def annual_NAIP(year, region):
    """Create an NAIP mosaic of a specified year for a specified region.

    Args:
        year (int): The specified year to create the mosaic for.
        region (object): ee.Geometry

    Returns:
        object: ee.Image
    """

    start_date = ee.Date.fromYMD(year, 1, 1)
    end_date = ee.Date.fromYMD(year, 12, 31)
    collection = (
        ee.ImageCollection("USDA/NAIP/DOQQ")
        .filterDate(start_date, end_date)
        .filterBounds(region)
    )

    time_start = ee.Date(
        ee.List(collection.aggregate_array("system:time_start")).sort().get(0)
    )
    time_end = ee.Date(
        ee.List(collection.aggregate_array("system:time_end")).sort().get(-1)
    )
    image = ee.Image(collection.mosaic().clip(region))
    NDWI = ee.Image(image).normalizedDifference(["G", "N"]).select(["nd"], ["ndwi"])
    NDVI = ee.Image(image).normalizedDifference(["N", "R"]).select(["nd"], ["ndvi"])
    image = image.addBands(NDWI)
    image = image.addBands(NDVI)
    return image.set({"system:time_start": time_start, "system:time_end": time_end})

api_docs()

Open a browser and navigate to the geemap API documentation.

Source code in geemap/common.py
3387
3388
3389
3390
3391
3392
def api_docs():
    """Open a browser and navigate to the geemap API documentation."""
    import webbrowser

    url = "https://geemap.org/geemap"
    webbrowser.open_new_tab(url)

arc_active_map()

Get the active map in ArcGIS Pro.

Returns:

Type Description

arcpy.Map: The active map in ArcGIS Pro.

Source code in geemap/common.py
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
def arc_active_map():
    """Get the active map in ArcGIS Pro.

    Returns:
        arcpy.Map: The active map in ArcGIS Pro.
    """
    if is_arcpy():
        import arcpy

        aprx = arcpy.mp.ArcGISProject("CURRENT")
        m = aprx.activeMap
        return m
    else:
        return None

arc_active_view()

Get the active view in ArcGIS Pro.

Returns:

Type Description

arcpy.MapView: The active view in ArcGIS Pro.

Source code in geemap/common.py
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
def arc_active_view():
    """Get the active view in ArcGIS Pro.

    Returns:
        arcpy.MapView: The active view in ArcGIS Pro.
    """
    if is_arcpy():
        import arcpy

        aprx = arcpy.mp.ArcGISProject("CURRENT")
        view = aprx.activeView
        return view
    else:
        return None

arc_add_layer(url, name=None, shown=True, opacity=1.0)

Add a layer to the active map in ArcGIS Pro.

Parameters:

Name Type Description Default
url str

The URL of the tile layer to add.

required
name str

The name of the layer. Defaults to None.

None
shown bool

Whether the layer is shown. Defaults to True.

True
opacity float

The opacity of the layer. Defaults to 1.0.

1.0
Source code in geemap/common.py
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
def arc_add_layer(url, name=None, shown=True, opacity=1.0):
    """Add a layer to the active map in ArcGIS Pro.

    Args:
        url (str): The URL of the tile layer to add.
        name (str, optional): The name of the layer. Defaults to None.
        shown (bool, optional): Whether the layer is shown. Defaults to True.
        opacity (float, optional): The opacity of the layer. Defaults to 1.0.
    """
    if is_arcpy():
        m = arc_active_map()
        if m is not None:
            m.addDataFromPath(url)
            if isinstance(name, str):
                layers = m.listLayers("Tiled service layer")
                if len(layers) > 0:
                    layer = layers[0]
                    layer.name = name
                    layer.visible = shown
                    layer.transparency = 100 - (opacity * 100)

arc_zoom_to_extent(xmin, ymin, xmax, ymax)

Zoom to an extent in ArcGIS Pro.

Parameters:

Name Type Description Default
xmin float

The minimum x value of the extent.

required
ymin float

The minimum y value of the extent.

required
xmax float

The maximum x value of the extent.

required
ymax float

The maximum y value of the extent.

required
Source code in geemap/common.py
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
def arc_zoom_to_extent(xmin, ymin, xmax, ymax):
    """Zoom to an extent in ArcGIS Pro.

    Args:
        xmin (float): The minimum x value of the extent.
        ymin (float): The minimum y value of the extent.
        xmax (float): The maximum x value of the extent.
        ymax (float): The maximum y value of the extent.
    """
    if is_arcpy():
        import arcpy

        view = arc_active_view()
        if view is not None:
            view.camera.setExtent(
                arcpy.Extent(
                    xmin,
                    ymin,
                    xmax,
                    ymax,
                    spatial_reference=arcpy.SpatialReference(4326),
                )
            )

array_mean(arr)

Calculates the mean of an array along the given axis.

Parameters:

Name Type Description Default
arr object

Array to calculate mean.

required

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
def array_mean(arr):
    """Calculates the mean of an array along the given axis.

    Args:
        arr (object): Array to calculate mean.

    Returns:
        object: ee.Number
    """
    total = ee.Array(arr).accum(0).get([-1])
    size = arr.length()
    return ee.Number(total.divide(size))

array_sum(arr)

Accumulates elements of an array along the given axis.

Parameters:

Name Type Description Default
arr object

Array to accumulate.

required

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
def array_sum(arr):
    """Accumulates elements of an array along the given axis.

    Args:
        arr (object): Array to accumulate.

    Returns:
        object: ee.Number
    """
    return ee.Array(arr).accum(0).get([-1])

array_to_image(array, output=None, source=None, dtype=None, compress='deflate', transpose=True, cellsize=None, crs=None, driver='COG', **kwargs)

Save a NumPy array as a GeoTIFF using the projection information from an existing GeoTIFF file.

Parameters:

Name Type Description Default
array ndarray

The NumPy array to be saved as a GeoTIFF.

required
output str

The path to the output image. If None, a temporary file will be created. Defaults to None.

None
source str

The path to an existing GeoTIFF file with map projection information. Defaults to None.

None
dtype dtype

The data type of the output array. Defaults to None.

None
compress str

The compression method. Can be one of the following: "deflate", "lzw", "packbits", "jpeg". Defaults to "deflate".

'deflate'
transpose bool

Whether to transpose the array from (bands, rows, columns) to (rows, columns, bands). Defaults to True.

True
cellsize float

The resolution of the output image in meters. Defaults to None.

None
crs str

The CRS of the output image. Defaults to None.

None
driver str

The driver to use for creating the output file, such as 'GTiff'. Defaults to "COG".

'COG'
**kwargs

Additional keyword arguments to be passed to the rasterio.open() function.

{}
Source code in geemap/common.py
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
def array_to_image(
    array,
    output: str = None,
    source: str = None,
    dtype: str = None,
    compress: str = "deflate",
    transpose: bool = True,
    cellsize: float = None,
    crs: str = None,
    driver: str = "COG",
    **kwargs,
) -> str:
    """Save a NumPy array as a GeoTIFF using the projection information from an existing GeoTIFF file.

    Args:
        array (np.ndarray): The NumPy array to be saved as a GeoTIFF.
        output (str): The path to the output image. If None, a temporary file will be created. Defaults to None.
        source (str, optional): The path to an existing GeoTIFF file with map projection information. Defaults to None.
        dtype (np.dtype, optional): The data type of the output array. Defaults to None.
        compress (str, optional): The compression method. Can be one of the following: "deflate", "lzw", "packbits", "jpeg". Defaults to "deflate".
        transpose (bool, optional): Whether to transpose the array from (bands, rows, columns) to (rows, columns, bands). Defaults to True.
        cellsize (float, optional): The resolution of the output image in meters. Defaults to None.
        crs (str, optional): The CRS of the output image. Defaults to None.
        driver (str, optional): The driver to use for creating the output file, such as 'GTiff'. Defaults to "COG".
        **kwargs: Additional keyword arguments to be passed to the rasterio.open() function.
    """

    import numpy as np
    import rasterio
    import xarray as xr

    if output is None:
        return array_to_memory_file(
            array, source, dtype, compress, transpose, cellsize, crs, driver, **kwargs
        )

    if isinstance(array, xr.DataArray):
        coords = [coord for coord in array.coords]
        if coords[0] == "time":
            x_dim = coords[1]
            y_dim = coords[2]
            if array.dims[0] == "time":
                array = array.isel(time=0)

            array = array.rename({y_dim: "y", x_dim: "x"}).transpose("y", "x")
        array = array.values

    if array.ndim == 3 and transpose:
        array = np.transpose(array, (1, 2, 0))

    out_dir = os.path.dirname(os.path.abspath(output))
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if not output.endswith(".tif"):
        output += ".tif"

    if source is not None:
        with rasterio.open(source) as src:
            crs = src.crs
            transform = src.transform
            if compress is None:
                compress = src.compression
    else:
        if cellsize is None:
            raise ValueError("resolution must be provided if source is not provided")
        if crs is None:
            raise ValueError(
                "crs must be provided if source is not provided, such as EPSG:3857"
            )

        if "transform" not in kwargs:
            # Define the geotransformation parameters
            xmin, ymin, xmax, ymax = (
                0,
                0,
                cellsize * array.shape[1],
                cellsize * array.shape[0],
            )
            transform = rasterio.transform.from_bounds(
                xmin, ymin, xmax, ymax, array.shape[1], array.shape[0]
            )
        else:
            transform = kwargs["transform"]

    if dtype is None:
        # Determine the minimum and maximum values in the array
        min_value = np.min(array)
        max_value = np.max(array)
        # Determine the best dtype for the array
        if min_value >= 0 and max_value <= 1:
            dtype = np.float32
        elif min_value >= 0 and max_value <= 255:
            dtype = np.uint8
        elif min_value >= -128 and max_value <= 127:
            dtype = np.int8
        elif min_value >= 0 and max_value <= 65535:
            dtype = np.uint16
        elif min_value >= -32768 and max_value <= 32767:
            dtype = np.int16
        else:
            dtype = np.float64

    # Convert the array to the best dtype
    array = array.astype(dtype)

    # Define the GeoTIFF metadata
    metadata = {
        "driver": driver,
        "height": array.shape[0],
        "width": array.shape[1],
        "dtype": array.dtype,
        "crs": crs,
        "transform": transform,
    }

    if array.ndim == 2:
        metadata["count"] = 1
    elif array.ndim == 3:
        metadata["count"] = array.shape[2]
    if compress is not None:
        metadata["compress"] = compress

    metadata.update(**kwargs)

    # Create a new GeoTIFF file and write the array to it
    with rasterio.open(output, "w", **metadata) as dst:
        if array.ndim == 2:
            dst.write(array, 1)
        elif array.ndim == 3:
            for i in range(array.shape[2]):
                dst.write(array[:, :, i], i + 1)

array_to_memory_file(array, source=None, dtype=None, compress='deflate', transpose=True, cellsize=None, crs=None, transform=None, driver='COG', **kwargs)

Convert a NumPy array to a memory file.

Parameters:

Name Type Description Default
array ndarray

The input NumPy array.

required
source str

Path to the source file to extract metadata from. Defaults to None.

None
dtype str

The desired data type of the array. Defaults to None.

None
compress str

The compression method for the output file. Defaults to "deflate".

'deflate'
transpose bool

Whether to transpose the array from (bands, rows, columns) to (rows, columns, bands). Defaults to True.

True
cellsize float

The cell size of the array if source is not provided. Defaults to None.

None
crs str

The coordinate reference system of the array if source is not provided. Defaults to None.

None
transform tuple

The affine transformation matrix if source is not provided. Defaults to None.

None
driver str

The driver to use for creating the output file, such as 'GTiff'. Defaults to "COG".

'COG'
**kwargs

Additional keyword arguments to be passed to the rasterio.open() function.

{}

Returns:

Type Description

rasterio.DatasetReader: The rasterio dataset reader object for the converted array.

Source code in geemap/common.py
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
def array_to_memory_file(
    array,
    source: str = None,
    dtype: str = None,
    compress: str = "deflate",
    transpose: bool = True,
    cellsize: float = None,
    crs: str = None,
    transform: tuple = None,
    driver="COG",
    **kwargs,
):
    """Convert a NumPy array to a memory file.

    Args:
        array (numpy.ndarray): The input NumPy array.
        source (str, optional): Path to the source file to extract metadata from. Defaults to None.
        dtype (str, optional): The desired data type of the array. Defaults to None.
        compress (str, optional): The compression method for the output file. Defaults to "deflate".
        transpose (bool, optional): Whether to transpose the array from (bands, rows, columns) to (rows, columns, bands). Defaults to True.
        cellsize (float, optional): The cell size of the array if source is not provided. Defaults to None.
        crs (str, optional): The coordinate reference system of the array if source is not provided. Defaults to None.
        transform (tuple, optional): The affine transformation matrix if source is not provided. Defaults to None.
        driver (str, optional): The driver to use for creating the output file, such as 'GTiff'. Defaults to "COG".
        **kwargs: Additional keyword arguments to be passed to the rasterio.open() function.

    Returns:
        rasterio.DatasetReader: The rasterio dataset reader object for the converted array.
    """
    import rasterio
    import numpy as np
    import xarray as xr

    if isinstance(array, xr.DataArray):
        coords = [coord for coord in array.coords]
        if coords[0] == "time":
            x_dim = coords[1]
            y_dim = coords[2]
            if array.dims[0] == "time":
                array = array.isel(time=0)

            array = array.rename({y_dim: "y", x_dim: "x"}).transpose("y", "x")
        array = array.values

    if array.ndim == 3 and transpose:
        array = np.transpose(array, (1, 2, 0))

    if source is not None:
        with rasterio.open(source) as src:
            crs = src.crs
            transform = src.transform
            if compress is None:
                compress = src.compression
    else:
        if cellsize is None:
            raise ValueError("cellsize must be provided if source is not provided")
        if crs is None:
            raise ValueError(
                "crs must be provided if source is not provided, such as EPSG:3857"
            )

        if "transform" not in kwargs:
            # Define the geotransformation parameters
            xmin, ymin, xmax, ymax = (
                0,
                0,
                cellsize * array.shape[1],
                cellsize * array.shape[0],
            )
            # (west, south, east, north, width, height)
            transform = rasterio.transform.from_bounds(
                xmin, ymin, xmax, ymax, array.shape[1], array.shape[0]
            )
        else:
            transform = kwargs["transform"]

    if dtype is None:
        # Determine the minimum and maximum values in the array
        min_value = np.min(array)
        max_value = np.max(array)
        # Determine the best dtype for the array
        if min_value >= 0 and max_value <= 1:
            dtype = np.float32
        elif min_value >= 0 and max_value <= 255:
            dtype = np.uint8
        elif min_value >= -128 and max_value <= 127:
            dtype = np.int8
        elif min_value >= 0 and max_value <= 65535:
            dtype = np.uint16
        elif min_value >= -32768 and max_value <= 32767:
            dtype = np.int16
        else:
            dtype = np.float64

    # Convert the array to the best dtype
    array = array.astype(dtype)

    # Define the GeoTIFF metadata
    metadata = {
        "driver": driver,
        "height": array.shape[0],
        "width": array.shape[1],
        "dtype": array.dtype,
        "crs": crs,
        "transform": transform,
    }

    if array.ndim == 2:
        metadata["count"] = 1
    elif array.ndim == 3:
        metadata["count"] = array.shape[2]
    if compress is not None:
        metadata["compress"] = compress

    metadata.update(**kwargs)

    # Create a new memory file and write the array to it
    memory_file = rasterio.MemoryFile()
    dst = memory_file.open(**metadata)

    if array.ndim == 2:
        dst.write(array, 1)
    elif array.ndim == 3:
        for i in range(array.shape[2]):
            dst.write(array[:, :, i], i + 1)

    dst.close()

    # Read the dataset from memory
    dataset_reader = rasterio.open(dst.name, mode="r")

    return dataset_reader

bands_to_image_collection(img)

Converts all bands in an image to an image collection.

Parameters:

Name Type Description Default
img object

The image to convert.

required

Returns:

Name Type Description
object

ee.ImageCollection

Source code in geemap/common.py
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
def bands_to_image_collection(img):
    """Converts all bands in an image to an image collection.

    Args:
        img (object): The image to convert.

    Returns:
        object: ee.ImageCollection
    """
    collection = ee.ImageCollection(img.bandNames().map(lambda b: img.select([b])))
    return collection

bar_chart(data=None, x=None, y=None, color=None, descending=True, sort_column=None, max_rows=None, x_label=None, y_label=None, title=None, legend_title=None, width=None, height=500, layout_args={}, **kwargs)

Create a bar chart with plotly.express,

Parameters:

Name Type Description Default
data

DataFrame | array-like | dict | str (local file path or HTTP URL) This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.

None
x

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Either x or y can optionally be a list of column references or array_likes, in which case the data will be treated as if it were 'wide' rather than 'long'.

None
y

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Either x or y can optionally be a list of column references or array_likes, in which case the data will be treated as if it were 'wide' rather than 'long'.

None
color

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.

None
descending bool

Whether to sort the data in descending order. Defaults to True.

True
sort_column str

The column to sort the data. Defaults to None.

None
max_rows int

Maximum number of rows to display. Defaults to None.

None
x_label str

Label for the x axis. Defaults to None.

None
y_label str

Label for the y axis. Defaults to None.

None
title str

Title for the plot. Defaults to None.

None
legend_title str

Title for the legend. Defaults to None.

None
width int

Width of the plot in pixels. Defaults to None.

None
height int

Height of the plot in pixels. Defaults to 500.

500
layout_args dict

Layout arguments for the plot to be passed to fig.update_layout(), such as {'title':'Plot Title', 'title_x':0.5}. Defaults to None.

{}
**kwargs

Any additional arguments to pass to plotly.express.bar(), such as:

pattern_shape: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks. facet_row: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction. facet_col: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction. facet_col_wrap: int Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if facet_row or a marginal is set. facet_row_spacing: float between 0 and 1 Spacing between facet rows, in paper units. Default is 0.03 or 0.0.7 when facet_col_wrap is used. facet_col_spacing: float between 0 and 1 Spacing between facet columns, in paper units Default is 0.02. hover_name: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip. hover_data: list of str or int, or Series or array-like, or dict Either a list of names of columns in data_frame, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ':.3f' or '|%a' or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip. custom_data: list of str or int, or Series or array-like Either names of columns in data_frame, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.) text: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels. base: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position the base of the bar. error_x: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. If error_x_minus is None, error bars will be symmetrical, otherwise error_x is used for the positive direction only. error_x_minus: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored if error_x is None. error_y: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. If error_y_minus is None, error bars will be symmetrical, otherwise error_y is used for the positive direction only. error_y_minus: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored if error_y is None. animation_frame: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames. animation_group: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching animation_groups will be treated as if they describe the same object in each frame. category_orders: dict with str keys and list of str values (default {}) By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered in data_frame (and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired. labels: dict with str keys and str values (default {}) By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed. color_discrete_sequence: list of str Strings should define valid CSS-colors. When color is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling through color_discrete_sequence in the order described in category_orders, unless the value of color is a key in color_discrete_map. Various useful color sequences are available in the plotly.express.colors submodules, specifically plotly.express.colors.qualitative. color_discrete_map: dict with str keys and str values (default {}) String values should define valid CSS-colors Used to override color_discrete_sequence to assign a specific colors to marks corresponding with specific values. Keys in color_discrete_map should be values in the column denoted by color. Alternatively, if the values of color are valid colors, the string 'identity' may be passed to cause them to be used directly. color_continuous_scale: list of str Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by color contains numeric data. Various useful color scales are available in the plotly.express.colors submodules, specifically plotly.express.colors.sequential, plotly.express.colors.diverging and plotly.express.colors.cyclical. pattern_shape_sequence: list of str Strings should define valid plotly.js patterns-shapes. When pattern_shape is set, values in that column are assigned patterns- shapes by cycling through pattern_shape_sequence in the order described in category_orders, unless the value of pattern_shape is a key in pattern_shape_map. pattern_shape_map: dict with str keys and str values (default {}) Strings values define plotly.js patterns-shapes. Used to override pattern_shape_sequences to assign a specific patterns-shapes to lines corresponding with specific values. Keys in pattern_shape_map should be values in the column denoted by pattern_shape. Alternatively, if the values of pattern_shape are valid patterns-shapes names, the string 'identity' may be passed to cause them to be used directly. range_color: list of two numbers If provided, overrides auto-scaling on the continuous color scale. color_continuous_midpoint: number (default None) If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when using plotly.express.colors.diverging color scales as the inputs to color_continuous_scale. opacity: float Value between 0 and 1. Sets the opacity for markers. orientation: str, one of 'h' for horizontal or 'v' for vertical. (default 'v' if x and y are provided and both continuous or both categorical, otherwise 'v'('h') if x(y) is categorical and y(x) is continuous, otherwise 'v'('h') if only x(y) is provided) barmode: str (default 'relative') One of 'group', 'overlay' or 'relative' In 'relative' mode, bars are stacked above zero for positive values and below zero for negative values. In 'overlay' mode, bars are drawn on top of one another. In 'group' mode, bars are placed beside each other. log_x: boolean (default False) If True, the x-axis is log-scaled in cartesian coordinates. log_y: boolean (default False) If True, the y-axis is log-scaled in cartesian coordinates. range_x: list of two numbers If provided, overrides auto-scaling on the x-axis in cartesian coordinates. range_y: list of two numbers If provided, overrides auto-scaling on the y-axis in cartesian coordinates. text_auto: bool or string (default False) If True or a string, the x or y or z values will be displayed as text, depending on the orientation A string like '.2f' will be interpreted as a texttemplate numeric formatting directive. template: str or dict or plotly.graph_objects.layout.Template instance The figure template name (must be a key in plotly.io.templates) or definition.

{}

Returns:

Type Description

plotly.graph_objs._figure.Figure: A plotly figure object.

Source code in geemap/plot.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def bar_chart(
    data=None,
    x=None,
    y=None,
    color=None,
    descending=True,
    sort_column=None,
    max_rows=None,
    x_label=None,
    y_label=None,
    title=None,
    legend_title=None,
    width=None,
    height=500,
    layout_args={},
    **kwargs,
):
    """Create a bar chart with plotly.express,

    Args:
        data: DataFrame | array-like | dict | str (local file path or HTTP URL)
            This argument needs to be passed for column names (and not keyword
            names) to be used. Array-like and dict are transformed internally to a
            pandas DataFrame. Optional: if missing, a DataFrame gets constructed
            under the hood using the other arguments.
        x: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            position marks along the x axis in cartesian coordinates. Either `x` or
            `y` can optionally be a list of column references or array_likes,  in
            which case the data will be treated as if it were 'wide' rather than
            'long'.
        y: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            position marks along the y axis in cartesian coordinates. Either `x` or
            `y` can optionally be a list of column references or array_likes,  in
            which case the data will be treated as if it were 'wide' rather than
            'long'.
        color: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            assign color to marks.
        descending (bool, optional): Whether to sort the data in descending order. Defaults to True.
        sort_column (str, optional): The column to sort the data. Defaults to None.
        max_rows (int, optional): Maximum number of rows to display. Defaults to None.
        x_label (str, optional): Label for the x axis. Defaults to None.
        y_label (str, optional): Label for the y axis. Defaults to None.
        title (str, optional): Title for the plot. Defaults to None.
        legend_title (str, optional): Title for the legend. Defaults to None.
        width (int, optional): Width of the plot in pixels. Defaults to None.
        height (int, optional): Height of the plot in pixels. Defaults to 500.
        layout_args (dict, optional): Layout arguments for the plot to be passed to fig.update_layout(),
            such as {'title':'Plot Title', 'title_x':0.5}. Defaults to None.
        **kwargs: Any additional arguments to pass to plotly.express.bar(), such as:

            pattern_shape: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign pattern shapes to marks.
            facet_row: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to facetted subplots in the vertical direction.
            facet_col: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to facetted subplots in the horizontal direction.
            facet_col_wrap: int
                Maximum number of facet columns. Wraps the column variable at this
                width, so that the column facets span multiple rows. Ignored if 0, and
                forced to 0 if `facet_row` or a `marginal` is set.
            facet_row_spacing: float between 0 and 1
                Spacing between facet rows, in paper units. Default is 0.03 or 0.0.7
                when facet_col_wrap is used.
            facet_col_spacing: float between 0 and 1
                Spacing between facet columns, in paper units Default is 0.02.
            hover_name: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like appear in bold
                in the hover tooltip.
            hover_data: list of str or int, or Series or array-like, or dict
                Either a list of names of columns in `data_frame`, or pandas Series, or
                array_like objects or a dict with column names as keys, with values
                True (for default formatting) False (in order to remove this column
                from hover information), or a formatting string, for example ':.3f' or
                '|%a' or list-like data to appear in the hover tooltip or tuples with a
                bool or formatting string as first element, and list-like data to
                appear in hover as second element Values from these columns appear as
                extra data in the hover tooltip.
            custom_data: list of str or int, or Series or array-like
                Either names of columns in `data_frame`, or pandas Series, or
                array_like objects Values from these columns are extra data, to be used
                in widgets or Dash callbacks for example. This data is not user-visible
                but is included in events emitted by the figure (lasso selection etc.)
            text: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like appear in the
                figure as text labels.
            base: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                position the base of the bar.
            error_x: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size x-axis error bars. If `error_x_minus` is `None`, error bars will
                be symmetrical, otherwise `error_x` is used for the positive direction
                only.
            error_x_minus: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size x-axis error bars in the negative direction. Ignored if `error_x`
                is `None`.
            error_y: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size y-axis error bars. If `error_y_minus` is `None`, error bars will
                be symmetrical, otherwise `error_y` is used for the positive direction
                only.
            error_y_minus: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size y-axis error bars in the negative direction. Ignored if `error_y`
                is `None`.
            animation_frame: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to animation frames.
            animation_group: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                provide object-constancy across animation frames: rows with matching
                `animation_group`s will be treated as if they describe the same object
                in each frame.
            category_orders: dict with str keys and list of str values (default `{}`)
                By default, in Python 3.6+, the order of categorical values in axes,
                legends and facets depends on the order in which these values are first
                encountered in `data_frame` (and no order is guaranteed by default in
                Python below 3.6). This parameter is used to force a specific ordering
                of values per column. The keys of this dict should correspond to column
                names, and the values should be lists of strings corresponding to the
                specific display order desired.
            labels: dict with str keys and str values (default `{}`)
                By default, column names are used in the figure for axis titles, legend
                entries and hovers. This parameter allows this to be overridden. The
                keys of this dict should correspond to column names, and the values
                should correspond to the desired label to be displayed.
            color_discrete_sequence: list of str
                Strings should define valid CSS-colors. When `color` is set and the
                values in the corresponding column are not numeric, values in that
                column are assigned colors by cycling through `color_discrete_sequence`
                in the order described in `category_orders`, unless the value of
                `color` is a key in `color_discrete_map`. Various useful color
                sequences are available in the `plotly.express.colors` submodules,
                specifically `plotly.express.colors.qualitative`.
            color_discrete_map: dict with str keys and str values (default `{}`)
                String values should define valid CSS-colors Used to override
                `color_discrete_sequence` to assign a specific colors to marks
                corresponding with specific values. Keys in `color_discrete_map` should
                be values in the column denoted by `color`. Alternatively, if the
                values of `color` are valid colors, the string `'identity'` may be
                passed to cause them to be used directly.
            color_continuous_scale: list of str
                Strings should define valid CSS-colors This list is used to build a
                continuous color scale when the column denoted by `color` contains
                numeric data. Various useful color scales are available in the
                `plotly.express.colors` submodules, specifically
                `plotly.express.colors.sequential`, `plotly.express.colors.diverging`
                and `plotly.express.colors.cyclical`.
            pattern_shape_sequence: list of str
                Strings should define valid plotly.js patterns-shapes. When
                `pattern_shape` is set, values in that column are assigned patterns-
                shapes by cycling through `pattern_shape_sequence` in the order
                described in `category_orders`, unless the value of `pattern_shape` is
                a key in `pattern_shape_map`.
            pattern_shape_map: dict with str keys and str values (default `{}`)
                Strings values define plotly.js patterns-shapes. Used to override
                `pattern_shape_sequences` to assign a specific patterns-shapes to lines
                corresponding with specific values. Keys in `pattern_shape_map` should
                be values in the column denoted by `pattern_shape`. Alternatively, if
                the values of `pattern_shape` are valid patterns-shapes names, the
                string `'identity'` may be passed to cause them to be used directly.
            range_color: list of two numbers
                If provided, overrides auto-scaling on the continuous color scale.
            color_continuous_midpoint: number (default `None`)
                If set, computes the bounds of the continuous color scale to have the
                desired midpoint. Setting this value is recommended when using
                `plotly.express.colors.diverging` color scales as the inputs to
                `color_continuous_scale`.
            opacity: float
                Value between 0 and 1. Sets the opacity for markers.
            orientation: str, one of `'h'` for horizontal or `'v'` for vertical.
                (default `'v'` if `x` and `y` are provided and both continuous or both
                categorical,  otherwise `'v'`(`'h'`) if `x`(`y`) is categorical and
                `y`(`x`) is continuous,  otherwise `'v'`(`'h'`) if only `x`(`y`) is
                provided)
            barmode: str (default `'relative'`)
                One of `'group'`, `'overlay'` or `'relative'` In `'relative'` mode,
                bars are stacked above zero for positive values and below zero for
                negative values. In `'overlay'` mode, bars are drawn on top of one
                another. In `'group'` mode, bars are placed beside each other.
            log_x: boolean (default `False`)
                If `True`, the x-axis is log-scaled in cartesian coordinates.
            log_y: boolean (default `False`)
                If `True`, the y-axis is log-scaled in cartesian coordinates.
            range_x: list of two numbers
                If provided, overrides auto-scaling on the x-axis in cartesian
                coordinates.
            range_y: list of two numbers
                If provided, overrides auto-scaling on the y-axis in cartesian
                coordinates.
            text_auto: bool or string (default `False`)
                If `True` or a string, the x or y or z values will be displayed as
                text, depending on the orientation A string like `'.2f'` will be
                interpreted as a `texttemplate` numeric formatting directive.
            template: str or dict or plotly.graph_objects.layout.Template instance
                The figure template name (must be a key in plotly.io.templates) or
                definition.


    Returns:
        plotly.graph_objs._figure.Figure: A plotly figure object.
    """

    if isinstance(data, str):
        if data.startswith("http"):
            data = github_raw_url(data)
            data = get_direct_url(data)

        try:
            data = pd.read_csv(data)
        except Exception as e:
            raise ValueError(f"Could not read data from {data}. {e}")

    if not isinstance(data, pd.DataFrame):
        raise ValueError(
            "data must be a pandas DataFrame, a string or an ee.FeatureCollection."
        )

    if descending is not None:
        if sort_column is None:
            if isinstance(y, str):
                sort_column = y
            elif isinstance(y, list):
                sort_column = y[0]
        data.sort_values([sort_column, x], ascending=not (descending), inplace=True)
        if "barmode" not in kwargs:
            kwargs["barmode"] = "group"

    if isinstance(max_rows, int):
        data = data.head(max_rows)

    if "labels" in kwargs:
        labels = kwargs["labels"]
        kwargs.pop("labels")
    else:
        labels = {}

    if x_label is not None:
        labels[x] = x_label
    if y_label is not None:
        if isinstance(y, str):
            labels[y] = y_label
        elif isinstance(y, list):
            labels[y[0]] = y_label

    if isinstance(legend_title, str):
        if "legend" not in layout_args:
            layout_args["legend"] = {}
        layout_args["legend"]["title"] = legend_title

    try:
        fig = px.bar(
            data,
            x=x,
            y=y,
            color=color,
            labels=labels,
            title=title,
            width=width,
            height=height,
            **kwargs,
        )

        if isinstance(layout_args, dict):
            fig.update_layout(**layout_args)

        return fig
    except Exception as e:
        raise ValueError(f"Could not create bar plot. {e}")

bbox_coords(geometry, decimals=4)

Get the bounding box coordinates of a geometry.

Parameters:

Name Type Description Default
geometry Geometry | FeatureCollection

The input geometry.

required
decimals int

The number of decimals to round to. Defaults to 4.

4

Returns:

Name Type Description
list

The bounding box coordinates in the form [west, south, east, north].

Source code in geemap/common.py
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
def bbox_coords(geometry, decimals=4):
    """Get the bounding box coordinates of a geometry.

    Args:
        geometry (ee.Geometry | ee.FeatureCollection): The input geometry.
        decimals (int, optional): The number of decimals to round to. Defaults to 4.

    Returns:
        list: The bounding box coordinates in the form [west, south, east, north].
    """
    if isinstance(geometry, ee.FeatureCollection):
        geometry = geometry.geometry()

    if geometry is not None:
        if not isinstance(geometry, ee.Geometry):
            raise ValueError("geometry must be an ee.Geometry.")

        coords = geometry.bounds().coordinates().getInfo()[0]
        x = [p[0] for p in coords]
        y = [p[1] for p in coords]
        west = round(min(x), decimals)
        east = round(max(x), decimals)
        south = round(min(y), decimals)
        north = round(max(y), decimals)
        return [west, south, east, north]
    else:
        return None

bbox_to_gdf(bbox, crs='EPSG:4326')

Converts a bounding box to a GeoDataFrame.

Parameters:

Name Type Description Default
bbox tuple

A bounding box in the form of a tuple (minx, miny, maxx, maxy).

required
crs str

The coordinate reference system of the bounding box to convert to. Defaults to "EPSG:4326".

'EPSG:4326'

Returns:

Type Description

geopandas.GeoDataFrame: A GeoDataFrame containing the bounding box.

Source code in geemap/common.py
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
def bbox_to_gdf(bbox, crs="EPSG:4326"):
    """Converts a bounding box to a GeoDataFrame.

    Args:
        bbox (tuple): A bounding box in the form of a tuple (minx, miny, maxx, maxy).
        crs (str, optional): The coordinate reference system of the bounding box to convert to. Defaults to "EPSG:4326".

    Returns:
        geopandas.GeoDataFrame: A GeoDataFrame containing the bounding box.
    """
    check_package(name="geopandas", URL="https://geopandas.org")
    from shapely.geometry import box
    import geopandas as gpd

    minx, miny, maxx, maxy = bbox
    geometry = box(minx, miny, maxx, maxy)
    d = {"geometry": [geometry]}
    gdf = gpd.GeoDataFrame(d, crs="EPSG:4326")
    gdf.to_crs(crs=crs, inplace=True)
    return gdf

bbox_to_geojson(bounds)

Convert coordinates of a bounding box to a geojson.

Parameters:

Name Type Description Default
bounds list

A list of coordinates representing [left, bottom, right, top].

required

Returns:

Name Type Description
dict

A geojson feature.

Source code in geemap/common.py
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
def bbox_to_geojson(bounds):
    """Convert coordinates of a bounding box to a geojson.

    Args:
        bounds (list): A list of coordinates representing [left, bottom, right, top].

    Returns:
        dict: A geojson feature.
    """
    return {
        "geometry": {
            "type": "Polygon",
            "coordinates": [
                [
                    [bounds[0], bounds[3]],
                    [bounds[0], bounds[1]],
                    [bounds[2], bounds[1]],
                    [bounds[2], bounds[3]],
                    [bounds[0], bounds[3]],
                ]
            ],
        },
        "type": "Feature",
    }

blend(top_layer, bottom_layer=None, top_vis=None, bottom_vis=None, hillshade=True, expression='a*b', **kwargs)

Create a blended image that is a combination of two images, e.g., DEM and hillshade. This function was inspired by Jesse Anderson. See https://github.com/jessjaco/gee-blend.

Parameters:

Name Type Description Default
top_layer Image

The top layer image, e.g., ee.Image("CGIAR/SRTM90_V4")

required
bottom_layer Image

The bottom layer image. If not specified, it will use the top layer image.

None
top_vis dict

The top layer image vis parameters as a dictionary. Defaults to None.

None
bottom_vis dict

The bottom layer image vis parameters as a dictionary. Defaults to None.

None
hillshade bool

Flag to use hillshade. Defaults to True.

True
expression str

The expression to use for the blend. Defaults to 'a*b'.

'a*b'

Returns:

Type Description

ee.Image: The blended image.

Source code in geemap/common.py
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
def blend(
    top_layer,
    bottom_layer=None,
    top_vis=None,
    bottom_vis=None,
    hillshade=True,
    expression="a*b",
    **kwargs,
):
    """Create a blended image that is a combination of two images, e.g., DEM and hillshade. This function was inspired by Jesse Anderson. See https://github.com/jessjaco/gee-blend.

    Args:
        top_layer (ee.Image): The top layer image, e.g., ee.Image("CGIAR/SRTM90_V4")
        bottom_layer (ee.Image, optional): The bottom layer image. If not specified, it will use the top layer image.
        top_vis (dict, optional): The top layer image vis parameters as a dictionary. Defaults to None.
        bottom_vis (dict, optional): The bottom layer image vis parameters as a dictionary. Defaults to None.
        hillshade (bool, optional): Flag to use hillshade. Defaults to True.
        expression (str, optional): The expression to use for the blend. Defaults to 'a*b'.

    Returns:
        ee.Image: The blended image.
    """
    from box import Box

    if not isinstance(top_layer, ee.Image):
        raise ValueError("top_layer must be an ee.Image.")

    if bottom_layer is None:
        bottom_layer = top_layer

    if not isinstance(bottom_layer, ee.Image):
        raise ValueError("bottom_layer must be an ee.Image.")

    if top_vis is not None:
        if not isinstance(top_vis, dict):
            raise ValueError("top_vis must be a dictionary.")
        elif "palette" in top_vis and isinstance(top_vis["palette"], Box):
            try:
                top_vis["palette"] = top_vis["palette"]["default"]
            except Exception as e:
                print("The provided palette is invalid.")
                raise Exception(e)

    if bottom_vis is not None:
        if not isinstance(bottom_vis, dict):
            raise ValueError("top_vis must be a dictionary.")
        elif "palette" in bottom_vis and isinstance(bottom_vis["palette"], Box):
            try:
                bottom_vis["palette"] = bottom_vis["palette"]["default"]
            except Exception as e:
                print("The provided palette is invalid.")
                raise Exception(e)

    if top_vis is None:
        top_bands = top_layer.bandNames().getInfo()
        top_vis = {"bands": top_bands}
        if hillshade:
            top_vis["palette"] = ["006633", "E5FFCC", "662A00", "D8D8D8", "F5F5F5"]
            top_vis["min"] = 0
            top_vis["max"] = 6000

    if bottom_vis is None:
        bottom_bands = bottom_layer.bandNames().getInfo()
        bottom_vis = {"bands": bottom_bands}
        if hillshade:
            bottom_vis["bands"] = ["hillshade"]

    top = top_layer.visualize(**top_vis).divide(255)

    if hillshade:
        bottom = ee.Terrain.hillshade(bottom_layer).visualize(**bottom_vis).divide(255)
    else:
        bottom = bottom_layer.visualize(**bottom_vis).divide(255)

    if "a" not in expression or ("b" not in expression):
        raise ValueError("expression must contain 'a' and 'b'.")

    result = ee.Image().expression(expression, {"a": top, "b": bottom})
    return result

bounds_to_xy_range(bounds)

Convert bounds to x and y range to be used as input to bokeh map.

Parameters:

Name Type Description Default
bounds list

A list of bounds in the form [(south, west), (north, east)] or [xmin, ymin, xmax, ymax].

required

Returns:

Name Type Description
tuple

A tuple of (x_range, y_range).

Source code in geemap/common.py
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
def bounds_to_xy_range(bounds):
    """Convert bounds to x and y range to be used as input to bokeh map.

    Args:
        bounds (list): A list of bounds in the form [(south, west), (north, east)] or [xmin, ymin, xmax, ymax].

    Returns:
        tuple: A tuple of (x_range, y_range).
    """

    if isinstance(bounds, tuple):
        bounds = list(bounds)
    elif not isinstance(bounds, list):
        raise TypeError("bounds must be a list")

    if len(bounds) == 4:
        west, south, east, north = bounds
    elif len(bounds) == 2:
        south, west = bounds[0]
        north, east = bounds[1]

    xmin, ymin = lnglat_to_meters(west, south)
    xmax, ymax = lnglat_to_meters(east, north)
    x_range = (xmin, xmax)
    y_range = (ymin, ymax)
    return x_range, y_range

build_api_tree(api_dict, output_widget, layout_width='100%')

Builds an Earth Engine API tree view.

Parameters:

Name Type Description Default
api_dict dict

The dictionary containing information about each Earth Engine API function.

required
output_widget object

An Output widget.

required
layout_width str

The percentage width of the widget. Defaults to '100%'.

'100%'

Returns:

Name Type Description
tuple

Returns a tuple containing two items: a tree Output widget and a tree dictionary.

Source code in geemap/common.py
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
def build_api_tree(api_dict, output_widget, layout_width="100%"):
    """Builds an Earth Engine API tree view.

    Args:
        api_dict (dict): The dictionary containing information about each Earth Engine API function.
        output_widget (object): An Output widget.
        layout_width (str, optional): The percentage width of the widget. Defaults to '100%'.

    Returns:
        tuple: Returns a tuple containing two items: a tree Output widget and a tree dictionary.
    """

    warnings.filterwarnings("ignore")

    tree = Tree()
    tree_dict = {}

    names = api_dict.keys()

    def handle_click(event):
        if event["new"]:
            name = event["owner"].name
            values = api_dict[name]

            with output_widget:
                output_widget.outputs = ()
                html_widget = widgets.HTML(value=values["html"])
                display(html_widget)

    for name in names:
        func_list = ee_function_tree(name)
        first = func_list[0]

        if first not in tree_dict.keys():
            tree_dict[first] = Node(first)
            tree_dict[first].opened = False
            tree.add_node(tree_dict[first])

        for index, func in enumerate(func_list):
            if index > 0:
                if func not in tree_dict.keys():
                    node = tree_dict[func_list[index - 1]]
                    node.opened = False
                    tree_dict[func] = Node(func)
                    node.add_node(tree_dict[func])

                    if index == len(func_list) - 1:
                        node = tree_dict[func_list[index]]
                        node.icon = "file"
                        node.observe(handle_click, "selected")

    return tree, tree_dict

build_computed_object_tree(ee_object, layer_name='', opened=False)

Return a tree structure representing an EE object.

The source code was adapted from https://github.com/google/earthengine-jupyter. Credits to Tyler Erickson.

Parameters:

Name Type Description Default
ee_object Union[FeatureCollection, Image, Geometry, Feature]

The Earth Engine object.

required
layer_name str

The name of the layer. Defaults to "".

''
opened bool

Whether to expand the tree. Defaults to False.

False

Returns:

Type Description
dict[str, Any]

dict[str, Any]: The node representing the Earth Engine object information.

Source code in geemap/coreutils.py
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def build_computed_object_tree(
    ee_object: Union[ee.FeatureCollection, ee.Image, ee.Geometry, ee.Feature],
    layer_name: str = "",
    opened: bool = False,
) -> dict[str, Any]:
    """Return a tree structure representing an EE object.

    The source code was adapted from https://github.com/google/earthengine-jupyter.
    Credits to Tyler Erickson.

    Args:
        ee_object (Union[ee.FeatureCollection, ee.Image, ee.Geometry, ee.Feature]):
            The Earth Engine object.
        layer_name (str, optional): The name of the layer. Defaults to "".
        opened (bool, optional): Whether to expand the tree. Defaults to False.

    Returns:
        dict[str, Any]: The node representing the Earth Engine object information.
    """

    # Convert EE object props to dicts. It's easier to traverse the nested structure.
    if isinstance(ee_object, ee.FeatureCollection):
        ee_object = ee_object.map(lambda f: ee.Feature(None, f.toDictionary()))

    layer_info = ee_object.getInfo()
    if not layer_info:
        return {}

    # Strip geometries because they're slow to render as text.
    if "geometry" in layer_info:
        layer_info.pop("geometry")

    # Sort the keys in layer_info and the nested properties.
    if properties := layer_info.get("properties"):
        layer_info["properties"] = dict(sorted(properties.items()))
    ordering_list = ["type", "id", "version", "bands", "properties"]
    layer_info = _order_items(layer_info, ordering_list)

    ee_type = layer_info.get("type", ee_object.__class__.__name__)

    band_info = ""
    if bands := layer_info.get("bands"):
        band_info = f" ({len(bands)} bands)"
    if layer_name:
        layer_name = f"{layer_name}: "

    return new_tree_node(
        f"{layer_name}{ee_type}{band_info}",
        _generate_tree(layer_info, opened),
        expanded=opened,
    )

build_repo_tree(out_dir=None, name='gee_repos')

Builds a repo tree for GEE account.

Parameters:

Name Type Description Default
out_dir str

The output directory for the repos. Defaults to None.

None
name str

The output name for the repo directory. Defaults to 'gee_repos'.

'gee_repos'

Returns:

Name Type Description
tuple

Returns a tuple containing a tree widget, an output widget, and a tree dictionary containing nodes.

Source code in geemap/common.py
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
def build_repo_tree(out_dir=None, name="gee_repos"):
    """Builds a repo tree for GEE account.

    Args:
        out_dir (str): The output directory for the repos. Defaults to None.
        name (str, optional): The output name for the repo directory. Defaults to 'gee_repos'.

    Returns:
        tuple: Returns a tuple containing a tree widget, an output widget, and a tree dictionary containing nodes.
    """

    warnings.filterwarnings("ignore")

    if out_dir is None:
        out_dir = os.path.join(os.path.expanduser("~"))

    repo_dir = os.path.join(out_dir, name)
    if not os.path.exists(repo_dir):
        os.makedirs(repo_dir)

    URLs = {
        # 'Owner': 'https://earthengine.googlesource.com/{ee_user_id()}/default',
        "Writer": "",
        "Reader": "https://github.com/gee-community/geemap",
        "Examples": "https://github.com/giswqs/earthengine-py-examples",
        "Archive": "https://earthengine.googlesource.com/EGU2017-EE101",
    }

    user_id = ee_user_id()
    if user_id is not None:
        URLs["Owner"] = f"https://earthengine.googlesource.com/{ee_user_id()}/default"

    path_widget = widgets.Text(placeholder="Enter the link to a Git repository here...")
    path_widget.layout.width = "475px"
    clone_widget = widgets.Button(
        description="Clone",
        button_style="primary",
        tooltip="Clone the repository to folder.",
    )
    info_widget = widgets.HBox()

    groups = ["Owner", "Writer", "Reader", "Examples", "Archive"]
    for group in groups:
        group_dir = os.path.join(repo_dir, group)
        if not os.path.exists(group_dir):
            os.makedirs(group_dir)

    example_dir = os.path.join(repo_dir, "Examples/earthengine-py-examples")
    if not os.path.exists(example_dir):
        clone_github_repo(URLs["Examples"], out_dir=example_dir)

    left_widget, right_widget, tree_dict = file_browser(
        in_dir=repo_dir,
        add_root_node=False,
        search_description="Filter scripts...",
        use_import=True,
        return_sep_widgets=True,
    )
    info_widget.children = [right_widget]

    def handle_folder_click(event):
        if event["new"]:
            url = ""
            selected = event["owner"]
            if selected.name in URLs.keys():
                url = URLs[selected.name]

            path_widget.value = url
            clone_widget.disabled = False
            info_widget.children = [path_widget, clone_widget]
        else:
            info_widget.children = [right_widget]

    for group in groups:
        dirname = os.path.join(repo_dir, group)
        node = tree_dict[dirname]
        node.observe(handle_folder_click, "selected")

    def handle_clone_click(b):
        url = path_widget.value
        default_dir = os.path.join(repo_dir, "Examples")
        if url == "":
            path_widget.value = "Please enter a valid URL to the repository."
        else:
            for group in groups:
                key = os.path.join(repo_dir, group)
                node = tree_dict[key]
                if node.selected:
                    default_dir = key
            try:
                path_widget.value = "Cloning..."
                clone_dir = os.path.join(default_dir, os.path.basename(url))
                if url.find("github.com") != -1:
                    clone_github_repo(url, out_dir=clone_dir)
                elif url.find("googlesource") != -1:
                    clone_google_repo(url, out_dir=clone_dir)
                path_widget.value = "Cloned to {}".format(clone_dir)
                clone_widget.disabled = True
            except Exception as e:
                path_widget.value = (
                    "An error occurred when trying to clone the repository " + str(e)
                )
                clone_widget.disabled = True

    clone_widget.on_click(handle_clone_click)

    return left_widget, info_widget, tree_dict

center_zoom_to_xy_range(center, zoom)

Convert center and zoom to x and y range to be used as input to bokeh map.

Parameters:

Name Type Description Default
center tuple

A tuple of (latitude, longitude).

required
zoom int

The zoom level.

required

Returns:

Name Type Description
tuple

A tuple of (x_range, y_range).

Source code in geemap/common.py
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
def center_zoom_to_xy_range(center, zoom):
    """Convert center and zoom to x and y range to be used as input to bokeh map.

    Args:
        center (tuple): A tuple of (latitude, longitude).
        zoom (int): The zoom level.

    Returns:
        tuple: A tuple of (x_range, y_range).
    """

    if isinstance(center, tuple) or isinstance(center, list):
        pass
    else:
        raise TypeError("center must be a tuple or list")

    if not isinstance(zoom, int):
        raise TypeError("zoom must be an integer")

    latitude, longitude = center
    x_range = (-179, 179)
    y_range = (-70, 70)
    x_full_length = x_range[1] - x_range[0]
    y_full_length = y_range[1] - y_range[0]

    x_length = x_full_length / 2 ** (zoom - 2)
    y_length = y_full_length / 2 ** (zoom - 2)

    south = latitude - y_length / 2
    north = latitude + y_length / 2
    west = longitude - x_length / 2
    east = longitude + x_length / 2

    xmin, ymin = lnglat_to_meters(west, south)
    xmax, ymax = lnglat_to_meters(east, north)

    x_range = (xmin, xmax)
    y_range = (ymin, ymax)

    return x_range, y_range

check_basemap(basemap)

Check Google basemaps

Parameters:

Name Type Description Default
basemap str

The basemap name.

required

Returns:

Name Type Description
str

The basemap name.

Source code in geemap/common.py
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
def check_basemap(basemap):
    """Check Google basemaps

    Args:
        basemap (str): The basemap name.

    Returns:
        str: The basemap name.
    """
    if isinstance(basemap, str):
        map_dict = {
            "ROADMAP": "Google Maps",
            "SATELLITE": "Google Satellite",
            "TERRAIN": "Google Terrain",
            "HYBRID": "Google Hybrid",
        }

        if basemap.upper() in map_dict.keys():
            return map_dict[basemap.upper()]
        else:
            return basemap
    else:
        return basemap

check_cmap(cmap)

Check the colormap and return a list of colors.

Parameters:

Name Type Description Default
cmap Union[str, List[str], Box]

The colormap to check.

required

Returns:

Type Description
List[str]

List[str]: A list of colors.

Source code in geemap/coreutils.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def check_cmap(cmap: Union[str, List[str]]) -> List[str]:
    """Check the colormap and return a list of colors.

    Args:
        cmap (Union[str, List[str], Box]): The colormap to check.

    Returns:
        List[str]: A list of colors.
    """

    from box import Box
    from .colormaps import get_palette

    if isinstance(cmap, str):
        try:
            palette = get_palette(cmap)
            if isinstance(palette, dict):
                palette = palette["default"]
            return palette
        except Exception as e:
            try:
                return check_color(cmap)
            except Exception as e:
                raise Exception(f"{cmap} is not a valid colormap.")
    elif isinstance(cmap, Box):
        return list(cmap["default"])
    elif isinstance(cmap, list) or isinstance(cmap, tuple):
        return cmap
    else:
        raise Exception(f"{cmap} is not a valid colormap.")

check_color(in_color)

Checks the input color and returns the corresponding hex color code.

Parameters:

Name Type Description Default
in_color Union[str, Tuple[int, int, int]]

It can be a string (e.g., 'red', '#ffff00', 'ffff00', 'ff0') or RGB tuple (e.g., (255, 127, 0)).

required

Returns:

Name Type Description
str str

A hex color code.

Source code in geemap/coreutils.py
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
def check_color(in_color: Union[str, Tuple[int, int, int]]) -> str:
    """Checks the input color and returns the corresponding hex color code.

    Args:
        in_color (Union[str, Tuple[int, int, int]]): It can be a string (e.g.,
            'red', '#ffff00', 'ffff00', 'ff0') or RGB tuple (e.g., (255, 127, 0)).

    Returns:
        str: A hex color code.
    """
    import colour

    out_color = "#000000"  # default black color
    if isinstance(in_color, tuple) and len(in_color) == 3:
        # rescale color if necessary
        if all(isinstance(item, int) for item in in_color):
            in_color = [c / 255.0 for c in in_color]

        return colour.Color(rgb=tuple(in_color)).hex_l

    else:
        # try to guess the color system
        try:
            return colour.Color(in_color).hex_l

        except Exception as e:
            pass

        # try again by adding an extra # (GEE handle hex codes without #)
        try:
            return colour.Color(f"#{in_color}").hex_l

        except Exception as e:
            print(
                f"The provided color ({in_color}) is invalid. Using the default black color."
            )
            print(e)

        return out_color

check_dir(dir_path, make_dirs=True)

Checks if a directory exists and creates it if it does not.

Parameters:

Name Type Description Default
dir_path [str

The path to the directory.

required
make_dirs bool

Whether to create the directory if it does not exist. Defaults to True.

True

Raises:

Type Description
FileNotFoundError

If the directory could not be found.

TypeError

If the input directory path is not a string.

Returns:

Name Type Description
str

The path to the directory.

Source code in geemap/common.py
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
def check_dir(dir_path, make_dirs=True):
    """Checks if a directory exists and creates it if it does not.

    Args:
        dir_path ([str): The path to the directory.
        make_dirs (bool, optional): Whether to create the directory if it does not exist. Defaults to True.

    Raises:
        FileNotFoundError: If the directory could not be found.
        TypeError: If the input directory path is not a string.

    Returns:
        str: The path to the directory.
    """

    if isinstance(dir_path, str):
        if dir_path.startswith("~"):
            dir_path = os.path.expanduser(dir_path)
        else:
            dir_path = os.path.abspath(dir_path)

        if not os.path.exists(dir_path) and make_dirs:
            os.makedirs(dir_path)

        if os.path.exists(dir_path):
            return dir_path
        else:
            raise FileNotFoundError("The provided directory could not be found.")
    else:
        raise TypeError("The provided directory path must be a string.")

check_file_path(file_path, make_dirs=True)

Gets the absolute file path.

Parameters:

Name Type Description Default
file_path [str

The path to the file.

required
make_dirs bool

Whether to create the directory if it does not exist. Defaults to True.

True

Raises:

Type Description
FileNotFoundError

If the directory could not be found.

TypeError

If the input directory path is not a string.

Returns:

Name Type Description
str

The absolute path to the file.

Source code in geemap/common.py
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
def check_file_path(file_path, make_dirs=True):
    """Gets the absolute file path.

    Args:
        file_path ([str): The path to the file.
        make_dirs (bool, optional): Whether to create the directory if it does not exist. Defaults to True.

    Raises:
        FileNotFoundError: If the directory could not be found.
        TypeError: If the input directory path is not a string.

    Returns:
        str: The absolute path to the file.
    """
    if isinstance(file_path, str):
        if file_path.startswith("~"):
            file_path = os.path.expanduser(file_path)
        else:
            file_path = os.path.abspath(file_path)

        file_dir = os.path.dirname(file_path)
        if not os.path.exists(file_dir) and make_dirs:
            os.makedirs(file_dir)

        return file_path

    else:
        raise TypeError("The provided file path must be a string.")

check_git_install()

Checks if Git is installed.

Returns:

Name Type Description
bool

Returns True if Git is installed, otherwise returns False.

Source code in geemap/common.py
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
def check_git_install():
    """Checks if Git is installed.

    Returns:
        bool: Returns True if Git is installed, otherwise returns False.
    """
    import webbrowser

    cmd = "git --version"
    output = os.popen(cmd).read()

    if "git version" in output:
        return True
    else:
        url = "https://git-scm.com/downloads"
        print(f"Git is not installed. Please download Git from {url} and install it.")
        webbrowser.open_new_tab(url)
        return False

check_html_string(html_string)

Check if an HTML string contains local images and convert them to base64.

Parameters:

Name Type Description Default
html_string str

The HTML string.

required

Returns:

Name Type Description
str

The HTML string with local images converted to base64.

Source code in geemap/common.py
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
def check_html_string(html_string):
    """Check if an HTML string contains local images and convert them to base64.

    Args:
        html_string (str): The HTML string.

    Returns:
        str: The HTML string with local images converted to base64.
    """
    import re
    import base64

    # Search for img tags with src attribute
    img_regex = r'<img[^>]+src\s*=\s*["\']([^"\':]+)["\'][^>]*>'

    for match in re.findall(img_regex, html_string):
        with open(match, "rb") as img_file:
            img_data = img_file.read()
            base64_data = base64.b64encode(img_data).decode("utf-8")
            html_string = html_string.replace(
                'src="{}"'.format(match),
                'src="data:image/png;base64,' + base64_data + '"',
            )

    return html_string

check_install(package)

Checks whether a package is installed. If not, it will install the package.

Parameters:

Name Type Description Default
package str

The name of the package to check.

required
Source code in geemap/common.py
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
def check_install(package):
    """Checks whether a package is installed. If not, it will install the package.

    Args:
        package (str): The name of the package to check.
    """
    import subprocess

    try:
        __import__(package)
        # print('{} is already installed.'.format(package))
    except ImportError:
        print(f"{package} is not installed. Installing ...")
        try:
            subprocess.check_call(["python", "-m", "pip", "install", package])
        except Exception as e:
            print(f"Failed to install {package}")
            print(e)
        print(f"{package} has been installed successfully.")

check_map_functions(input_lines)

Extracts Earth Engine map function

Parameters:

Name Type Description Default
input_lines list

List of Earth Engine JavaScrips

required

Returns:

Name Type Description
list

Output JavaScript with map function

Source code in geemap/conversion.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def check_map_functions(input_lines):
    """Extracts Earth Engine map function

    Args:
        input_lines (list): List of Earth Engine JavaScrips

    Returns:
        list: Output JavaScript with map function
    """
    output_lines = []
    currentNumOfNestedFuncs = 0
    for index, line in enumerate(input_lines):
        if (
            line.strip().endswith(".map(")
            and input_lines[index + 1].strip().replace(" ", "").startswith("function(")
        ) or (
            line.strip().endswith(".map(function(")
            and input_lines[index + 1].strip().replace(" ", "").endswith("{")
        ):
            input_lines[index + 1] = line + input_lines[index + 1]
            continue

        if (
            ".map(function" in line.replace(" ", "")
            or "returnfunction" in line.replace(" ", "")
            or "function(" in line.replace(" ", "")
        ):
            try:
                bracket_index = line.index("{")
                matching_line_index, matching_char_index = find_matching_bracket(
                    input_lines, index, bracket_index
                )

                func_start_index = line.index("function")
                func_name = "func_" + random_string()
                func_header = line[func_start_index:].replace(
                    "function", "function " + func_name
                )
                output_lines.append("\n")
                output_lines.append(func_header)

                currentNumOfNestedFuncs += 1

                new_lines = input_lines[index + 1 : matching_line_index]

                new_lines = check_map_functions(new_lines)

                for sub_index, tmp_line in enumerate(new_lines):
                    output_lines.append(("    " * currentNumOfNestedFuncs) + tmp_line)
                    if "{" in tmp_line:
                        currentNumOfNestedFuncs += 1
                    if "}" in tmp_line:
                        currentNumOfNestedFuncs -= 1
                    input_lines[index + 1 + sub_index] = ""

                currentNumOfNestedFuncs -= 1

                header_line = line[:func_start_index] + func_name
                header_line = header_line.rstrip()

                func_footer = input_lines[matching_line_index][
                    : matching_char_index + 1
                ]
                output_lines.append(func_footer)

                footer_line = input_lines[matching_line_index][
                    matching_char_index + 1 :
                ].strip()
                if footer_line == ")" or footer_line == ");":
                    header_line = header_line + footer_line
                    footer_line = ""

                input_lines[matching_line_index] = footer_line

                output_lines.append(header_line)
                # output_lines.append(footer_line)
            except Exception as e:
                print(
                    f"An error occurred: {e}. The closing curly bracket could not be found in Line {index+1}: {line}. Please reformat the function definition and make sure that both the opening and closing curly brackets appear on the same line as the function keyword. "
                )
        else:
            output_lines.append(line)

    return output_lines

check_titiler_endpoint(titiler_endpoint=None)

Returns the default titiler endpoint.

Returns:

Name Type Description
object

A titiler endpoint.

Source code in geemap/common.py
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
def check_titiler_endpoint(titiler_endpoint=None):
    """Returns the default titiler endpoint.

    Returns:
        object: A titiler endpoint.
    """
    if titiler_endpoint is None:
        if os.environ.get("TITILER_ENDPOINT") is not None:
            titiler_endpoint = os.environ.get("TITILER_ENDPOINT")

            if titiler_endpoint == "planetary-computer":
                titiler_endpoint = PlanetaryComputerEndpoint()
        else:
            titiler_endpoint = "https://titiler.xyz"
    elif titiler_endpoint in ["planetary-computer", "pc"]:
        titiler_endpoint = PlanetaryComputerEndpoint()

    return titiler_endpoint

classify(data, column, cmap=None, colors=None, labels=None, scheme='Quantiles', k=5, legend_kwds=None, classification_kwds=None)

Classify a dataframe column using a variety of classification schemes.

Parameters:

Name Type Description Default
data str | DataFrame | GeoDataFrame

The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe.

required
column str

The column to classify.

required
cmap str

The name of a colormap recognized by matplotlib. Defaults to None.

None
colors list

A list of colors to use for the classification. Defaults to None.

None
labels list

A list of labels to use for the legend. Defaults to None.

None
scheme str

Name of a choropleth classification scheme (requires mapclassify). Name of a choropleth classification scheme (requires mapclassify). A mapclassify.MapClassifier object will be used under the hood. Supported are all schemes provided by mapclassify (e.g. 'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled', 'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced', 'JenksCaspallSampled', 'MaxP', 'MaximumBreaks', 'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean', 'UserDefined'). Arguments can be passed in classification_kwds.

'Quantiles'
k int

Number of classes (ignored if scheme is None or if column is categorical). Default to 5.

5
legend_kwds dict

Keyword arguments to pass to :func:matplotlib.pyplot.legend or matplotlib.pyplot.colorbar. Defaults to None. Keyword arguments to pass to :func:matplotlib.pyplot.legend or Additional accepted keywords when scheme is specified: fmt : string A formatting specification for the bin edges of the classes in the legend. For example, to have no decimals: {"fmt": "{:.0f}"}. labels : list-like A list of legend labels to override the auto-generated labblels. Needs to have the same number of elements as the number of classes (k). interval : boolean (default False) An option to control brackets from mapclassify legend. If True, open/closed interval brackets are shown in the legend.

None
classification_kwds dict

Keyword arguments to pass to mapclassify. Defaults to None.

None

Returns:

Type Description

pd.DataFrame, dict: A pandas dataframe with the classification applied and a legend dictionary.

Source code in geemap/common.py
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
def classify(
    data,
    column,
    cmap=None,
    colors=None,
    labels=None,
    scheme="Quantiles",
    k=5,
    legend_kwds=None,
    classification_kwds=None,
):
    """Classify a dataframe column using a variety of classification schemes.

    Args:
        data (str | pd.DataFrame | gpd.GeoDataFrame): The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe.
        column (str): The column to classify.
        cmap (str, optional): The name of a colormap recognized by matplotlib. Defaults to None.
        colors (list, optional): A list of colors to use for the classification. Defaults to None.
        labels (list, optional): A list of labels to use for the legend. Defaults to None.
        scheme (str, optional): Name of a choropleth classification scheme (requires mapclassify).
            Name of a choropleth classification scheme (requires mapclassify).
            A mapclassify.MapClassifier object will be used
            under the hood. Supported are all schemes provided by mapclassify (e.g.
            'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled',
            'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced',
            'JenksCaspallSampled', 'MaxP', 'MaximumBreaks',
            'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean',
            'UserDefined'). Arguments can be passed in classification_kwds.
        k (int, optional): Number of classes (ignored if scheme is None or if column is categorical). Default to 5.
        legend_kwds (dict, optional): Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or `matplotlib.pyplot.colorbar`. Defaults to None.
            Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or
            Additional accepted keywords when `scheme` is specified:
            fmt : string
                A formatting specification for the bin edges of the classes in the
                legend. For example, to have no decimals: ``{"fmt": "{:.0f}"}``.
            labels : list-like
                A list of legend labels to override the auto-generated labblels.
                Needs to have the same number of elements as the number of
                classes (`k`).
            interval : boolean (default False)
                An option to control brackets from mapclassify legend.
                If True, open/closed interval brackets are shown in the legend.
        classification_kwds (dict, optional): Keyword arguments to pass to mapclassify. Defaults to None.

    Returns:
        pd.DataFrame, dict: A pandas dataframe with the classification applied and a legend dictionary.
    """

    import numpy as np
    import pandas as pd
    import geopandas as gpd
    import matplotlib as mpl
    import matplotlib.pyplot as plt

    try:
        import mapclassify
    except ImportError:
        raise ImportError(
            'mapclassify is required for this function. Install with "pip install mapclassify".'
        )

    if isinstance(data, gpd.GeoDataFrame) or isinstance(data, pd.DataFrame):
        df = data
    else:
        try:
            df = gpd.read_file(data)
        except Exception:
            raise TypeError(
                "Data must be a GeoDataFrame or a path to a file that can be read by geopandas.read_file()."
            )

    if df.empty:
        warnings.warn(
            "The GeoDataFrame you are attempting to plot is "
            "empty. Nothing has been displayed.",
            UserWarning,
        )
        return

    columns = df.columns.values.tolist()
    if column not in columns:
        raise ValueError(
            f"{column} is not a column in the GeoDataFrame. It must be one of {columns}."
        )

    # Convert categorical data to numeric
    init_column = None
    value_list = None
    if np.issubdtype(df[column].dtype, np.object0):
        value_list = df[column].unique().tolist()
        value_list.sort()
        df["category"] = df[column].replace(value_list, range(0, len(value_list)))
        init_column = column
        column = "category"
        k = len(value_list)

    if legend_kwds is not None:
        legend_kwds = legend_kwds.copy()

    # To accept pd.Series and np.arrays as column
    if isinstance(column, (np.ndarray, pd.Series)):
        if column.shape[0] != df.shape[0]:
            raise ValueError(
                "The dataframe and given column have different number of rows."
            )
        else:
            values = column

            # Make sure index of a Series matches index of df
            if isinstance(values, pd.Series):
                values = values.reindex(df.index)
    else:
        values = df[column]

    values = df[column]
    nan_idx = np.asarray(pd.isna(values), dtype="bool")

    if cmap is None:
        cmap = "Blues"
    try:
        cmap = plt.get_cmap(cmap, k)
    except:
        cmap = plt.cm.get_cmap(cmap, k)
    if colors is None:
        colors = [mpl.colors.rgb2hex(cmap(i))[1:] for i in range(cmap.N)]
        colors = ["#" + i for i in colors]
    elif isinstance(colors, list):
        colors = [check_color(i) for i in colors]
    elif isinstance(colors, str):
        colors = [check_color(colors)] * k

    allowed_schemes = [
        "BoxPlot",
        "EqualInterval",
        "FisherJenks",
        "FisherJenksSampled",
        "HeadTailBreaks",
        "JenksCaspall",
        "JenksCaspallForced",
        "JenksCaspallSampled",
        "MaxP",
        "MaximumBreaks",
        "NaturalBreaks",
        "Quantiles",
        "Percentiles",
        "StdMean",
        "UserDefined",
    ]

    if scheme.lower() not in [s.lower() for s in allowed_schemes]:
        raise ValueError(
            f"{scheme} is not a valid scheme. It must be one of {allowed_schemes}."
        )

    if classification_kwds is None:
        classification_kwds = {}
    if "k" not in classification_kwds:
        classification_kwds["k"] = k

    binning = mapclassify.classify(
        np.asarray(values[~nan_idx]), scheme, **classification_kwds
    )
    df["category"] = binning.yb
    df["color"] = [colors[i] for i in df["category"]]

    if legend_kwds is None:
        legend_kwds = {}

    if "interval" not in legend_kwds:
        legend_kwds["interval"] = True

    if "fmt" not in legend_kwds:
        if np.issubdtype(df[column].dtype, np.floating):
            legend_kwds["fmt"] = "{:.2f}"
        else:
            legend_kwds["fmt"] = "{:.0f}"

    if labels is None:
        # set categorical to True for creating the legend
        if legend_kwds is not None and "labels" in legend_kwds:
            if len(legend_kwds["labels"]) != binning.k:
                raise ValueError(
                    "Number of labels must match number of bins, "
                    "received {} labels for {} bins".format(
                        len(legend_kwds["labels"]), binning.k
                    )
                )
            else:
                labels = list(legend_kwds.pop("labels"))
        else:
            # fmt = "{:.2f}"
            if legend_kwds is not None and "fmt" in legend_kwds:
                fmt = legend_kwds.pop("fmt")

            labels = binning.get_legend_classes(fmt)
            if legend_kwds is not None:
                show_interval = legend_kwds.pop("interval", False)
            else:
                show_interval = False
            if not show_interval:
                labels = [c[1:-1] for c in labels]

        if init_column is not None:
            labels = value_list
    elif isinstance(labels, list):
        if len(labels) != len(colors):
            raise ValueError("The number of labels must match the number of colors.")
    else:
        raise ValueError("labels must be a list or None.")

    legend_dict = dict(zip(labels, colors))
    df["category"] = df["category"] + 1
    return df, legend_dict

clip_image(image, mask, output)

Clip an image by mask.

Parameters:

Name Type Description Default
image str

Path to the image file in GeoTIFF format.

required
mask str | list | dict

The mask used to extract the image. It can be a path to vector datasets (e.g., GeoJSON, Shapefile), a list of coordinates, or m.user_roi.

required
output str

Path to the output file.

required

Raises:

Type Description
ImportError

If the fiona or rasterio package is not installed.

FileNotFoundError

If the image is not found.

ValueError

If the mask is not a valid GeoJSON or raster file.

FileNotFoundError

If the mask file is not found.

Source code in geemap/common.py
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
def clip_image(image, mask, output):
    """Clip an image by mask.

    Args:
        image (str): Path to the image file in GeoTIFF format.
        mask (str | list | dict): The mask used to extract the image. It can be a path to vector datasets (e.g., GeoJSON, Shapefile), a list of coordinates, or m.user_roi.
        output (str): Path to the output file.

    Raises:
        ImportError: If the fiona or rasterio package is not installed.
        FileNotFoundError: If the image is not found.
        ValueError: If the mask is not a valid GeoJSON or raster file.
        FileNotFoundError: If the mask file is not found.
    """
    try:
        import fiona
        import rasterio
        import rasterio.mask
    except ImportError as e:
        raise ImportError(e)

    if not os.path.exists(image):
        raise FileNotFoundError(f"{image} does not exist.")

    if not output.endswith(".tif"):
        raise ValueError("Output must be a tif file.")

    output = check_file_path(output)

    if isinstance(mask, ee.Geometry):
        mask = mask.coordinates().getInfo()[0]

    if isinstance(mask, str):
        if mask.startswith("http"):
            mask = download_file(mask, output)
        if not os.path.exists(mask):
            raise FileNotFoundError(f"{mask} does not exist.")
    elif isinstance(mask, list) or isinstance(mask, dict):
        if isinstance(mask, list):
            geojson = {
                "type": "FeatureCollection",
                "features": [
                    {
                        "type": "Feature",
                        "properties": {},
                        "geometry": {"type": "Polygon", "coordinates": [mask]},
                    }
                ],
            }
        else:
            geojson = {
                "type": "FeatureCollection",
                "features": [mask],
            }
        mask = temp_file_path(".geojson")
        with open(mask, "w") as f:
            json.dump(geojson, f)

    with fiona.open(mask, "r") as shapefile:
        shapes = [feature["geometry"] for feature in shapefile]

    with rasterio.open(image) as src:
        out_image, out_transform = rasterio.mask.mask(src, shapes, crop=True)
        out_meta = src.meta

    out_meta.update(
        {
            "driver": "GTiff",
            "height": out_image.shape[1],
            "width": out_image.shape[2],
            "transform": out_transform,
        }
    )

    with rasterio.open(output, "w", **out_meta) as dest:
        dest.write(out_image)

clone_github_repo(url, out_dir)

Clones a GitHub repository.

Parameters:

Name Type Description Default
url str

The link to the GitHub repository

required
out_dir str

The output directory for the cloned repository.

required
Source code in geemap/common.py
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
def clone_github_repo(url, out_dir):
    """Clones a GitHub repository.

    Args:
        url (str): The link to the GitHub repository
        out_dir (str): The output directory for the cloned repository.
    """

    repo_name = os.path.basename(url)
    # url_zip = os.path.join(url, 'archive/master.zip')
    url_zip = url + "/archive/master.zip"

    if os.path.exists(out_dir):
        print(
            "The specified output directory already exists. Please choose a new directory."
        )
        return

    parent_dir = os.path.dirname(out_dir)
    out_file_path = os.path.join(parent_dir, repo_name + ".zip")

    try:
        urllib.request.urlretrieve(url_zip, out_file_path)
    except Exception:
        print("The provided URL is invalid. Please double check the URL.")
        return

    with zipfile.ZipFile(out_file_path, "r") as zip_ref:
        zip_ref.extractall(parent_dir)

    src = out_file_path.replace(".zip", "-master")
    os.rename(src, out_dir)
    os.remove(out_file_path)

clone_google_repo(url, out_dir=None)

Clones an Earth Engine repository from https://earthengine.googlesource.com, such as https://earthengine.googlesource.com/users/google/datasets

Parameters:

Name Type Description Default
url str

The link to the Earth Engine repository

required
out_dir str

The output directory for the cloned repository. Defaults to None.

None
Source code in geemap/common.py
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
def clone_google_repo(url, out_dir=None):
    """Clones an Earth Engine repository from https://earthengine.googlesource.com, such as https://earthengine.googlesource.com/users/google/datasets

    Args:
        url (str): The link to the Earth Engine repository
        out_dir (str, optional): The output directory for the cloned repository. Defaults to None.
    """
    repo_name = os.path.basename(url)

    if out_dir is None:
        out_dir = os.path.join(os.getcwd(), repo_name)

    if not os.path.exists(os.path.dirname(out_dir)):
        os.makedirs(os.path.dirname(out_dir))

    if os.path.exists(out_dir):
        print(
            "The specified output directory already exists. Please choose a new directory."
        )
        return

    if check_git_install():
        cmd = f'git clone "{url}" "{out_dir}"'
        os.popen(cmd).read()

clone_repo(out_dir='.', unzip=True)

Clones the geemap GitHub repository.

Parameters:

Name Type Description Default
out_dir str

Output folder for the repo. Defaults to '.'.

'.'
unzip bool

Whether to unzip the repository. Defaults to True.

True
Source code in geemap/common.py
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
def clone_repo(out_dir=".", unzip=True):
    """Clones the geemap GitHub repository.

    Args:
        out_dir (str, optional): Output folder for the repo. Defaults to '.'.
        unzip (bool, optional): Whether to unzip the repository. Defaults to True.
    """
    url = "https://github.com/gee-community/geemap/archive/master.zip"
    filename = "geemap-master.zip"
    download_from_url(url, out_file_name=filename, out_dir=out_dir, unzip=unzip)

cog_bands(url, titiler_endpoint=None, timeout=300)

Get band names of a Cloud Optimized GeoTIFF (COG).

Parameters:

Name Type Description Default
url str

HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif

required
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A list of band names

Source code in geemap/common.py
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
def cog_bands(url, titiler_endpoint=None, timeout=300):
    """Get band names of a Cloud Optimized GeoTIFF (COG).

    Args:
        url (str): HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A list of band names
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    url = get_direct_url(url)
    r = requests.get(
        f"{titiler_endpoint}/cog/info",
        params={
            "url": url,
        },
        timeout=timeout,
    ).json()

    bands = [b[0] for b in r["band_descriptions"]]
    return bands

cog_bounds(url, titiler_endpoint=None, timeout=300)

Get the bounding box of a Cloud Optimized GeoTIFF (COG).

Parameters:

Name Type Description Default
url str

HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif

required
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A list of values representing [left, bottom, right, top]

Source code in geemap/common.py
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
def cog_bounds(url, titiler_endpoint=None, timeout=300):
    """Get the bounding box of a Cloud Optimized GeoTIFF (COG).

    Args:
        url (str): HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A list of values representing [left, bottom, right, top]
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    url = get_direct_url(url)

    r = requests.get(
        f"{titiler_endpoint}/cog/bounds", params={"url": url}, timeout=timeout
    ).json()

    if "bounds" in r.keys():
        bounds = r["bounds"]
    else:
        bounds = None
    return bounds

cog_center(url, titiler_endpoint=None)

Get the centroid of a Cloud Optimized GeoTIFF (COG).

Parameters:

Name Type Description Default
url str

HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif

required
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None

Returns:

Name Type Description
tuple

A tuple representing (longitude, latitude)

Source code in geemap/common.py
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
def cog_center(url, titiler_endpoint=None):
    """Get the centroid of a Cloud Optimized GeoTIFF (COG).

    Args:
        url (str): HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".

    Returns:
        tuple: A tuple representing (longitude, latitude)
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    url = get_direct_url(url)
    bounds = cog_bounds(url, titiler_endpoint)
    center = ((bounds[0] + bounds[2]) / 2, (bounds[1] + bounds[3]) / 2)  # (lat, lon)
    return center

cog_info(url, titiler_endpoint=None, return_geojson=False, timeout=300)

Get band statistics of a Cloud Optimized GeoTIFF (COG).

Parameters:

Name Type Description Default
url str

HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif

required
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A dictionary of band info.

Source code in geemap/common.py
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
def cog_info(url, titiler_endpoint=None, return_geojson=False, timeout=300):
    """Get band statistics of a Cloud Optimized GeoTIFF (COG).

    Args:
        url (str): HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A dictionary of band info.
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    url = get_direct_url(url)
    info = "info"
    if return_geojson:
        info = "info.geojson"

    r = requests.get(
        f"{titiler_endpoint}/cog/{info}",
        params={
            "url": url,
        },
        timeout=timeout,
    ).json()

    return r

cog_mosaic(links, titiler_endpoint=None, username='anonymous', layername=None, overwrite=False, verbose=True, timeout=300, **kwargs)

Creates a COG mosaic from a list of COG URLs.

Parameters:

Name Type Description Default
links list

A list containing COG HTTP URLs.

required
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
username str

User name for the titiler endpoint. Defaults to "anonymous".

'anonymous'
layername [type]

Layer name to use. Defaults to None.

None
overwrite bool

Whether to overwrite the layer name if existing. Defaults to False.

False
verbose bool

Whether to print out descriptive information. Defaults to True.

True
timeout int

Timeout in seconds. Defaults to 300.

300

Raises:

Type Description
Exception

If the COG mosaic fails to create.

Returns:

Name Type Description
str

The tile URL for the COG mosaic.

Source code in geemap/common.py
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
def cog_mosaic(
    links,
    titiler_endpoint=None,
    username="anonymous",
    layername=None,
    overwrite=False,
    verbose=True,
    timeout=300,
    **kwargs,
):
    """Creates a COG mosaic from a list of COG URLs.

    Args:
        links (list): A list containing COG HTTP URLs.
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        username (str, optional): User name for the titiler endpoint. Defaults to "anonymous".
        layername ([type], optional): Layer name to use. Defaults to None.
        overwrite (bool, optional): Whether to overwrite the layer name if existing. Defaults to False.
        verbose (bool, optional): Whether to print out descriptive information. Defaults to True.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Raises:
        Exception: If the COG mosaic fails to create.

    Returns:
        str: The tile URL for the COG mosaic.
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if layername is None:
        layername = "layer_" + random_string(5)

    try:
        if verbose:
            print("Creating COG masaic ...")

        # Create token
        r = requests.post(
            f"{titiler_endpoint}/tokens/create",
            json={"username": username, "scope": ["mosaic:read", "mosaic:create"]},
        ).json()
        token = r["token"]

        # Create mosaic
        requests.post(
            f"{titiler_endpoint}/mosaicjson/create",
            json={
                "username": username,
                "layername": layername,
                "files": links,
                # "overwrite": overwrite
            },
            params={
                "access_token": token,
            },
        ).json()

        r2 = requests.get(
            f"{titiler_endpoint}/mosaicjson/{username}.{layername}/tilejson.json",
            timeout=timeout,
        ).json()

        return r2["tiles"][0]

    except Exception as e:
        raise Exception(e)

cog_mosaic_from_file(filepath, skip_rows=0, titiler_endpoint=None, username='anonymous', layername=None, overwrite=False, verbose=True, **kwargs)

Creates a COG mosaic from a csv/txt file stored locally for through HTTP URL.

Parameters:

Name Type Description Default
filepath str

Local path or HTTP URL to the csv/txt file containing COG URLs.

required
skip_rows int

The number of rows to skip in the file. Defaults to 0.

0
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
username str

User name for the titiler endpoint. Defaults to "anonymous".

'anonymous'
layername [type]

Layer name to use. Defaults to None.

None
overwrite bool

Whether to overwrite the layer name if existing. Defaults to False.

False
verbose bool

Whether to print out descriptive information. Defaults to True.

True

Returns:

Name Type Description
str

The tile URL for the COG mosaic.

Source code in geemap/common.py
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
def cog_mosaic_from_file(
    filepath,
    skip_rows=0,
    titiler_endpoint=None,
    username="anonymous",
    layername=None,
    overwrite=False,
    verbose=True,
    **kwargs,
):
    """Creates a COG mosaic from a csv/txt file stored locally for through HTTP URL.

    Args:
        filepath (str): Local path or HTTP URL to the csv/txt file containing COG URLs.
        skip_rows (int, optional): The number of rows to skip in the file. Defaults to 0.
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        username (str, optional): User name for the titiler endpoint. Defaults to "anonymous".
        layername ([type], optional): Layer name to use. Defaults to None.
        overwrite (bool, optional): Whether to overwrite the layer name if existing. Defaults to False.
        verbose (bool, optional): Whether to print out descriptive information. Defaults to True.

    Returns:
        str: The tile URL for the COG mosaic.
    """
    import urllib

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    links = []
    if filepath.startswith("http"):
        data = urllib.request.urlopen(filepath)
        for line in data:
            links.append(line.decode("utf-8").strip())

    else:
        with open(filepath) as f:
            links = [line.strip() for line in f.readlines()]

    links = links[skip_rows:]
    # print(links)
    mosaic = cog_mosaic(
        links, titiler_endpoint, username, layername, overwrite, verbose, **kwargs
    )
    return mosaic

cog_pixel_value(lon, lat, url, bidx=None, titiler_endpoint=None, timeout=300, **kwargs)

Get pixel value from COG.

Parameters:

Name Type Description Default
lon float

Longitude of the pixel.

required
lat float

Latitude of the pixel.

required
url str

HTTP URL to a COG, e.g., 'https://github.com/opengeos/data/releases/download/raster/Libya-2023-07-01.tif'

required
bidx str

Dataset band indexes (e.g bidx=1, bidx=1&bidx=2&bidx=3). Defaults to None.

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A dictionary of band info.

Source code in geemap/common.py
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
def cog_pixel_value(
    lon,
    lat,
    url,
    bidx=None,
    titiler_endpoint=None,
    timeout=300,
    **kwargs,
):
    """Get pixel value from COG.

    Args:
        lon (float): Longitude of the pixel.
        lat (float): Latitude of the pixel.
        url (str): HTTP URL to a COG, e.g., 'https://github.com/opengeos/data/releases/download/raster/Libya-2023-07-01.tif'
        bidx (str, optional): Dataset band indexes (e.g bidx=1, bidx=1&bidx=2&bidx=3). Defaults to None.
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A dictionary of band info.
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    url = get_direct_url(url)
    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    kwargs["url"] = url
    if bidx is not None:
        kwargs["bidx"] = bidx

    r = requests.get(
        f"{titiler_endpoint}/cog/point/{lon},{lat}", params=kwargs, timeout=timeout
    ).json()
    bands = cog_bands(url, titiler_endpoint)
    # if isinstance(titiler_endpoint, str):
    #     r = requests.get(f"{titiler_endpoint}/cog/point/{lon},{lat}", params=kwargs).json()
    # else:
    #     r = requests.get(
    #         titiler_endpoint.url_for_stac_pixel_value(lon, lat), params=kwargs
    #     ).json()

    if "detail" in r:
        print(r["detail"])
        return None
    else:
        values = r["values"]
        result = dict(zip(bands, values))
        return result

cog_stats(url, titiler_endpoint=None, timeout=300)

Get band statistics of a Cloud Optimized GeoTIFF (COG).

Parameters:

Name Type Description Default
url str

HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif

required
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A dictionary of band statistics.

Source code in geemap/common.py
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
def cog_stats(url, titiler_endpoint=None, timeout=300):
    """Get band statistics of a Cloud Optimized GeoTIFF (COG).

    Args:
        url (str): HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A dictionary of band statistics.
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    url = get_direct_url(url)
    r = requests.get(
        f"{titiler_endpoint}/cog/statistics",
        params={
            "url": url,
        },
        timeout=timeout,
    ).json()

    return r

cog_tile(url, bands=None, titiler_endpoint=None, timeout=300, proxies=None, **kwargs)

Get a tile layer from a Cloud Optimized GeoTIFF (COG). Source code adapted from https://developmentseed.org/titiler/examples/notebooks/Working_with_CloudOptimizedGeoTIFF_simple/

Parameters:

Name Type Description Default
url str

HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif

required
titiler_endpoint str

Titiler endpoint. Defaults to "https://titiler.xyz".

None
timeout int

Timeout in seconds. Defaults to 300.

300
proxies dict

Proxies to use. Defaults to None.

None

Returns:

Name Type Description
tuple

Returns the COG Tile layer URL and bounds.

Source code in geemap/common.py
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
def cog_tile(
    url,
    bands=None,
    titiler_endpoint=None,
    timeout=300,
    proxies=None,
    **kwargs,
):
    """Get a tile layer from a Cloud Optimized GeoTIFF (COG).
        Source code adapted from https://developmentseed.org/titiler/examples/notebooks/Working_with_CloudOptimizedGeoTIFF_simple/

    Args:
        url (str): HTTP URL to a COG, e.g., https://opendata.digitalglobe.com/events/mauritius-oil-spill/post-event/2020-08-12/105001001F1B5B00/105001001F1B5B00.tif
        titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
        timeout (int, optional): Timeout in seconds. Defaults to 300.
        proxies (dict, optional): Proxies to use. Defaults to None.

    Returns:
        tuple: Returns the COG Tile layer URL and bounds.
    """

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    url = get_direct_url(url)

    kwargs["url"] = url

    band_names = cog_bands(url, titiler_endpoint)

    if bands is None and "bidx" not in kwargs:
        if len(band_names) >= 3:
            kwargs["bidx"] = [1, 2, 3]
    elif bands is not None and "bidx" not in kwargs:
        if all(isinstance(x, int) for x in bands):
            kwargs["bidx"] = bands
        elif all(isinstance(x, str) for x in bands):
            kwargs["bidx"] = [band_names.index(x) + 1 for x in bands]
        else:
            raise ValueError("Bands must be a list of integers or strings.")

    if "palette" in kwargs:
        kwargs["colormap_name"] = kwargs.pop("palette")

    if "colormap" in kwargs:
        kwargs["colormap_name"] = kwargs.pop("colormap")

    if "rescale" not in kwargs:
        stats = cog_stats(url, titiler_endpoint)
        percentile_2 = min([stats[s]["percentile_2"] for s in stats])
        percentile_98 = max([stats[s]["percentile_98"] for s in stats])
        kwargs["rescale"] = f"{percentile_2},{percentile_98}"

    TileMatrixSetId = "WebMercatorQuad"
    if "TileMatrixSetId" in kwargs.keys():
        TileMatrixSetId = kwargs["TileMatrixSetId"]
        kwargs.pop("TileMatrixSetId")

    r = requests.get(
        f"{titiler_endpoint}/cog/{TileMatrixSetId}/tilejson.json",
        params=kwargs,
        timeout=timeout,
        proxies=proxies,
    ).json()

    return r["tiles"][0]

cog_validate(source, verbose=False)

Validate Cloud Optimized Geotiff.

Parameters:

Name Type Description Default
source str

A dataset path or URL. Will be opened in "r" mode.

required
verbose bool

Whether to print the output of the validation. Defaults to False.

False

Raises:

Type Description
ImportError

If the rio-cogeo package is not installed.

FileNotFoundError

If the provided file could not be found.

Returns:

Name Type Description
tuple

A tuple containing the validation results (True is src_path is a valid COG, List of validation errors, and a list of validation warnings).

Source code in geemap/common.py
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
def cog_validate(source, verbose=False):
    """Validate Cloud Optimized Geotiff.

    Args:
        source (str): A dataset path or URL. Will be opened in "r" mode.
        verbose (bool, optional): Whether to print the output of the validation. Defaults to False.

    Raises:
        ImportError: If the rio-cogeo package is not installed.
        FileNotFoundError: If the provided file could not be found.

    Returns:
        tuple: A tuple containing the validation results (True is src_path is a valid COG, List of validation errors, and a list of validation warnings).
    """
    try:
        from rio_cogeo.cogeo import cog_validate, cog_info
    except ImportError:
        raise ImportError(
            "The rio-cogeo package is not installed. Please install it with `pip install rio-cogeo` or `conda install rio-cogeo -c conda-forge`."
        )

    if not source.startswith("http"):
        source = check_file_path(source)

        if not os.path.exists(source):
            raise FileNotFoundError("The provided input file could not be found.")

    if verbose:
        return cog_info(source)
    else:
        return cog_validate(source)

column_stats(collection, column, stats_type)

Aggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.

Parameters:

Name Type Description Default
collection FeatureCollection

The input feature collection to calculate statistics.

required
column str

The name of the column to calculate statistics.

required
stats_type str

The type of statistics to calculate.

required

Returns:

Name Type Description
dict

The dictionary containing information about the requested statistics.

Source code in geemap/common.py
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
def column_stats(collection, column, stats_type):
    """Aggregates over a given property of the objects in a collection, calculating the sum, min, max, mean,
    sample standard deviation, sample variance, total standard deviation and total variance of the selected property.

    Args:
        collection (FeatureCollection): The input feature collection to calculate statistics.
        column (str): The name of the column to calculate statistics.
        stats_type (str): The type of statistics to calculate.

    Returns:
        dict: The dictionary containing information about the requested statistics.
    """
    stats_type = stats_type.lower()
    allowed_stats = ["min", "max", "mean", "median", "sum", "stdDev", "variance"]
    if stats_type not in allowed_stats:
        print(
            "The stats type must be one of the following: {}".format(
                ",".join(allowed_stats)
            )
        )
        return

    stats_dict = {
        "min": ee.Reducer.min(),
        "max": ee.Reducer.max(),
        "mean": ee.Reducer.mean(),
        "median": ee.Reducer.median(),
        "sum": ee.Reducer.sum(),
        "stdDev": ee.Reducer.stdDev(),
        "variance": ee.Reducer.variance(),
    }

    selectors = [column]
    stats = collection.reduceColumns(
        **{"selectors": selectors, "reducer": stats_dict[stats_type]}
    )

    return stats

connect_postgis(database, host='localhost', user=None, password=None, port=5432, use_env_var=False)

Connects to a PostGIS database.

Parameters:

Name Type Description Default
database str

Name of the database

required
host str

Hosting server for the database. Defaults to "localhost".

'localhost'
user str

User name to access the database. Defaults to None.

None
password str

Password to access the database. Defaults to None.

None
port int

Port number to connect to at the server host. Defaults to 5432.

5432
use_env_var bool

Whether to use environment variables. It set to True, user and password are treated as an environment variables with default values user="SQL_USER" and password="SQL_PASSWORD". Defaults to False.

False

Raises:

Type Description
ValueError

If user is not specified.

ValueError

If password is not specified.

Returns:

Type Description
Source code in geemap/common.py
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
def connect_postgis(
    database, host="localhost", user=None, password=None, port=5432, use_env_var=False
):
    """Connects to a PostGIS database.

    Args:
        database (str): Name of the database
        host (str, optional): Hosting server for the database. Defaults to "localhost".
        user (str, optional): User name to access the database. Defaults to None.
        password (str, optional): Password to access the database. Defaults to None.
        port (int, optional): Port number to connect to at the server host. Defaults to 5432.
        use_env_var (bool, optional): Whether to use environment variables. It set to True, user and password are treated as an environment variables with default values user="SQL_USER" and password="SQL_PASSWORD". Defaults to False.

    Raises:
        ValueError: If user is not specified.
        ValueError: If password is not specified.

    Returns:
        [type]: [description]
    """
    check_package(name="geopandas", URL="https://geopandas.org")
    check_package(
        name="sqlalchemy",
        URL="https://docs.sqlalchemy.org/en/14/intro.html#installation",
    )

    from sqlalchemy import create_engine

    if use_env_var:
        if user is not None:
            user = os.getenv(user)
        else:
            user = os.getenv("SQL_USER")

        if password is not None:
            password = os.getenv(password)
        else:
            password = os.getenv("SQL_PASSWORD")

        if user is None:
            raise ValueError("user is not specified.")
        if password is None:
            raise ValueError("password is not specified.")

    connection_string = f"postgresql://{user}:{password}@{host}:{port}/{database}"
    engine = create_engine(connection_string)

    return engine

convert_for_loop(line)

Converts JavaScript for loop to Python for loop.

Parameters:

Name Type Description Default
line str

Input JavaScript for loop

required

Returns:

Name Type Description
str

Converted Python for loop.

Source code in geemap/conversion.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def convert_for_loop(line):
    """Converts JavaScript for loop to Python for loop.

    Args:
        line (str): Input JavaScript for loop

    Returns:
        str: Converted Python for loop.
    """
    new_line = ""
    if "var " in line:
        line = line.replace("var ", "")
    start_index = line.index("(")
    end_index = line.index(")")

    prefix = line[:(start_index)]
    suffix = line[(end_index + 1) :]

    params = line[(start_index + 1) : end_index]

    if " in " in params and params.count(";") == 0:
        new_line = prefix + "{}:".format(params) + suffix
        return new_line

    items = params.split("=")
    param_name = items[0].strip()
    items = params.split(";")

    subitems = []

    for item in items:
        subitems.append(item.split(" ")[-1])

    start = subitems[0]
    end = subitems[1]
    step = subitems[2]

    if "++" in step:
        step = 1
    elif "--" in step:
        step = -1

    prefix = line[:(start_index)]
    suffix = line[(end_index + 1) :]
    new_line = (
        prefix
        + "{} in range({}, {}, {}):".format(param_name, start, end, step)
        + suffix
    )

    return new_line

convert_lidar(source, destination=None, point_format_id=None, file_version=None, **kwargs)

Converts a Las from one point format to another Automatically upgrades the file version if source file version is not compatible with the new point_format_id

Parameters:

Name Type Description Default
source str | LasBase

The source data to be converted.

required
destination str

The destination file path. Defaults to None.

None
point_format_id int

The new point format id (the default is None, which won't change the source format id).

None
file_version str

The new file version. None by default which means that the file_version may be upgraded for compatibility with the new point_format. The file version will not be downgraded.

None

Returns:

Type Description

aspy.lasdatas.base.LasBase: The converted LasData object.

Source code in geemap/common.py
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
def convert_lidar(
    source, destination=None, point_format_id=None, file_version=None, **kwargs
):
    """Converts a Las from one point format to another Automatically upgrades the file version if source file version
        is not compatible with the new point_format_id

    Args:
        source (str | laspy.lasdatas.base.LasBase): The source data to be converted.
        destination (str, optional): The destination file path. Defaults to None.
        point_format_id (int, optional): The new point format id (the default is None, which won't change the source format id).
        file_version (str, optional): The new file version. None by default which means that the file_version may be upgraded
            for compatibility with the new point_format. The file version will not be downgraded.

    Returns:
        aspy.lasdatas.base.LasBase: The converted LasData object.
    """
    try:
        import laspy
    except ImportError:
        print(
            "The laspy package is required for this function. Use `pip install laspy[lazrs,laszip]` to install it."
        )
        return

    if isinstance(source, str):
        source = read_lidar(source)

    las = laspy.convert(
        source, point_format_id=point_format_id, file_version=file_version
    )

    if destination is None:
        return las
    else:
        destination = check_file_path(destination)
        write_lidar(las, destination, **kwargs)
        return destination

coords_to_geojson(coords)

Convert a list of bbox coordinates representing [left, bottom, right, top] to geojson FeatureCollection.

Parameters:

Name Type Description Default
coords list

A list of bbox coordinates representing [left, bottom, right, top].

required

Returns:

Name Type Description
dict

A geojson FeatureCollection.

Source code in geemap/common.py
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
def coords_to_geojson(coords):
    """Convert a list of bbox coordinates representing [left, bottom, right, top] to geojson FeatureCollection.

    Args:
        coords (list): A list of bbox coordinates representing [left, bottom, right, top].

    Returns:
        dict: A geojson FeatureCollection.
    """

    features = []
    for bbox in coords:
        features.append(bbox_to_geojson(bbox))
    return {"type": "FeatureCollection", "features": features}

copy_credentials_to_colab()

Copies ee credentials from Google Drive to Google Colab.

Source code in geemap/common.py
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
def copy_credentials_to_colab():
    """Copies ee credentials from Google Drive to Google Colab."""
    src = "/content/drive/My Drive/.config/earthengine/credentials"
    dst = "/root/.config/earthengine/credentials"

    wd = os.path.dirname(dst)
    if not os.path.exists(wd):
        os.makedirs(wd)

    shutil.copyfile(src, dst)

copy_credentials_to_drive()

Copies ee credentials from Google Colab to Google Drive.

Source code in geemap/common.py
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
def copy_credentials_to_drive():
    """Copies ee credentials from Google Colab to Google Drive."""
    src = "/root/.config/earthengine/credentials"
    dst = "/content/drive/My Drive/.config/earthengine/credentials"

    wd = os.path.dirname(dst)
    if not os.path.exists(wd):
        os.makedirs(wd)

    shutil.copyfile(src, dst)

create_code_cell(code='', where='below')

Creates a code cell in the IPython Notebook.

Parameters:

Name Type Description Default
code str

Code to fill the new code cell with. Defaults to ''.

''
where str

Where to add the new code cell. It can be one of the following: above, below, at_bottom. Defaults to 'below'.

'below'
Source code in geemap/coreutils.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def create_code_cell(code: str = "", where: str = "below") -> None:
    """Creates a code cell in the IPython Notebook.

    Args:
        code (str, optional): Code to fill the new code cell with. Defaults to ''.
        where (str, optional): Where to add the new code cell. It can be one of
            the following: above, below, at_bottom. Defaults to 'below'.
    """

    import base64
    import pyperclip

    try:
        pyperclip.copy(str(code))
    except Exception as e:
        pass

    encoded_code = (base64.b64encode(str.encode(code))).decode()
    display(
        Javascript(
            """
        var code = IPython.notebook.insert_cell_{0}('code');
        code.set_text(atob("{1}"));
    """.format(
                where, encoded_code
            )
        )
    )

create_colorbar(width=150, height=30, palette=['blue', 'green', 'red'], add_ticks=True, add_labels=True, labels=None, vertical=False, out_file=None, font_type='arial.ttf', font_size=12, font_color='black', add_outline=True, outline_color='black')

Creates a colorbar based on the provided palette.

Parameters:

Name Type Description Default
width int

Width of the colorbar in pixels. Defaults to 150.

150
height int

Height of the colorbar in pixels. Defaults to 30.

30
palette list

Palette for the colorbar. Each color can be provided as a string (e.g., 'red'), a hex string (e.g., '#ff0000'), or an RGB tuple (255, 0, 255). Defaults to ['blue', 'green', 'red'].

['blue', 'green', 'red']
add_ticks bool

Whether to add tick markers to the colorbar. Defaults to True.

True
add_labels bool

Whether to add labels to the colorbar. Defaults to True.

True
labels list

A list of labels to add to the colorbar. Defaults to None.

None
vertical bool

Whether to rotate the colorbar vertically. Defaults to False.

False
out_file str

File path to the output colorbar in png format. Defaults to None.

None
font_type str

Font type to use for labels. Defaults to 'arial.ttf'.

'arial.ttf'
font_size int

Font size to use for labels. Defaults to 12.

12
font_color str

Font color to use for labels. Defaults to 'black'.

'black'
add_outline bool

Whether to add an outline to the colorbar. Defaults to True.

True
outline_color str

Color for the outline of the colorbar. Defaults to 'black'.

'black'

Returns:

Name Type Description
str

File path of the output colorbar in png format.

Source code in geemap/common.py
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
def create_colorbar(
    width=150,
    height=30,
    palette=["blue", "green", "red"],
    add_ticks=True,
    add_labels=True,
    labels=None,
    vertical=False,
    out_file=None,
    font_type="arial.ttf",
    font_size=12,
    font_color="black",
    add_outline=True,
    outline_color="black",
):
    """Creates a colorbar based on the provided palette.

    Args:
        width (int, optional): Width of the colorbar in pixels. Defaults to 150.
        height (int, optional): Height of the colorbar in pixels. Defaults to 30.
        palette (list, optional): Palette for the colorbar. Each color can be provided as a string (e.g., 'red'), a hex string (e.g., '#ff0000'), or an RGB tuple (255, 0, 255). Defaults to ['blue', 'green', 'red'].
        add_ticks (bool, optional): Whether to add tick markers to the colorbar. Defaults to True.
        add_labels (bool, optional): Whether to add labels to the colorbar. Defaults to True.
        labels (list, optional): A list of labels to add to the colorbar. Defaults to None.
        vertical (bool, optional): Whether to rotate the colorbar vertically. Defaults to False.
        out_file (str, optional): File path to the output colorbar in png format. Defaults to None.
        font_type (str, optional): Font type to use for labels. Defaults to 'arial.ttf'.
        font_size (int, optional): Font size to use for labels. Defaults to 12.
        font_color (str, optional): Font color to use for labels. Defaults to 'black'.
        add_outline (bool, optional): Whether to add an outline to the colorbar. Defaults to True.
        outline_color (str, optional): Color for the outline of the colorbar. Defaults to 'black'.

    Returns:
        str: File path of the output colorbar in png format.

    """
    import decimal

    # import io
    from colour import Color
    from PIL import Image, ImageDraw, ImageFont

    warnings.simplefilter("ignore")
    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)

    if out_file is None:
        filename = "colorbar_" + random_string() + ".png"
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        out_file = os.path.join(out_dir, filename)
    elif not out_file.endswith(".png"):
        print("The output file must end with .png")
        return
    else:
        out_file = os.path.abspath(out_file)

    if not os.path.exists(os.path.dirname(out_file)):
        os.makedirs(os.path.dirname(out_file))

    im = Image.new("RGBA", (width, height))
    ld = im.load()

    def float_range(start, stop, step):
        while start < stop:
            yield float(start)
            start += decimal.Decimal(step)

    n_colors = len(palette)
    decimal_places = 2
    rgb_colors = [Color(check_color(c)).rgb for c in palette]
    keys = [
        round(c, decimal_places)
        for c in list(float_range(0, 1.0001, 1.0 / (n_colors - 1)))
    ]

    heatmap = []
    for index, item in enumerate(keys):
        pair = [item, rgb_colors[index]]
        heatmap.append(pair)

    def gaussian(x, a, b, c, d=0):
        return a * math.exp(-((x - b) ** 2) / (2 * c**2)) + d

    def pixel(x, width=100, map=[], spread=1):
        width = float(width)
        r = sum(
            [
                gaussian(x, p[1][0], p[0] * width, width / (spread * len(map)))
                for p in map
            ]
        )
        g = sum(
            [
                gaussian(x, p[1][1], p[0] * width, width / (spread * len(map)))
                for p in map
            ]
        )
        b = sum(
            [
                gaussian(x, p[1][2], p[0] * width, width / (spread * len(map)))
                for p in map
            ]
        )
        return min(1.0, r), min(1.0, g), min(1.0, b)

    for x in range(im.size[0]):
        r, g, b = pixel(x, width=width, map=heatmap)
        r, g, b = [int(256 * v) for v in (r, g, b)]
        for y in range(im.size[1]):
            ld[x, y] = r, g, b

    if add_outline:
        draw = ImageDraw.Draw(im)
        draw.rectangle(
            [(0, 0), (width - 1, height - 1)], outline=check_color(outline_color)
        )
        del draw

    if add_ticks:
        tick_length = height * 0.1
        x = [key * width for key in keys]
        y_top = height - tick_length
        y_bottom = height
        draw = ImageDraw.Draw(im)
        for i in x:
            shape = [(i, y_top), (i, y_bottom)]
            draw.line(shape, fill="black", width=0)
        del draw

    if vertical:
        im = im.transpose(Image.ROTATE_90)

    width, height = im.size

    if labels is None:
        labels = [str(c) for c in keys]
    elif len(labels) == 2:
        try:
            lowerbound = float(labels[0])
            upperbound = float(labels[1])
            step = (upperbound - lowerbound) / (len(palette) - 1)
            labels = [str(lowerbound + c * step) for c in range(0, len(palette))]
        except Exception as e:
            print(e)
            print("The labels are invalid.")
            return
    elif len(labels) == len(palette):
        labels = [str(c) for c in labels]
    else:
        print("The labels must have the same length as the palette.")
        return

    if add_labels:
        default_font = os.path.join(pkg_dir, "data/fonts/arial.ttf")
        if font_type == "arial.ttf":
            font = ImageFont.truetype(default_font, font_size)
        else:
            try:
                font_list = system_fonts(show_full_path=True)
                font_names = [os.path.basename(f) for f in font_list]
                if (font_type in font_list) or (font_type in font_names):
                    font = ImageFont.truetype(font_type, font_size)
                else:
                    print(
                        "The specified font type could not be found on your system. Using the default font instead."
                    )
                    font = ImageFont.truetype(default_font, font_size)
            except Exception as e:
                print(e)
                font = ImageFont.truetype(default_font, font_size)

        font_color = check_color(font_color)

        draw = ImageDraw.Draw(im)
        w, h = draw.textsize(labels[0], font=font)

        for label in labels:
            w_tmp, h_tmp = draw.textsize(label, font)
            if w_tmp > w:
                w = w_tmp
            if h_tmp > h:
                h = h_tmp

        W, H = width + w * 2, height + h * 2
        background = Image.new("RGBA", (W, H))
        draw = ImageDraw.Draw(background)

        if vertical:
            xy = (0, h)
        else:
            xy = (w, 0)
        background.paste(im, xy, im)

        for index, label in enumerate(labels):
            w_tmp, h_tmp = draw.textsize(label, font)

            if vertical:
                spacing = 5
                x = width + spacing
                y = int(height + h - keys[index] * height - h_tmp / 2 - 1)
                draw.text((x, y), label, font=font, fill=font_color)

            else:
                x = int(keys[index] * width + w - w_tmp / 2)
                spacing = int(h * 0.05)
                y = height + spacing
                draw.text((x, y), label, font=font, fill=font_color)

        im = background.copy()

    im.save(out_file)
    return out_file

create_contours(image, min_value, max_value, interval, kernel=None, region=None, values=None)

Creates contours from an image. Code adapted from https://mygeoblog.com/2017/01/28/contour-lines-in-gee. Credits to MyGeoBlog.

Parameters:

Name Type Description Default
image Image

An image to create contours.

required
min_value float

The minimum value of contours.

required
max_value float

The maximum value of contours.

required
interval float

The interval between contours.

required
kernel Kernel

The kernel to use for smoothing image. Defaults to None.

None
region Geometry | FeatureCollection

The region of interest. Defaults to None.

None
values list

A list of values to create contours for. Defaults to None.

None

Raises:

Type Description
TypeError

The image must be an ee.Image.

TypeError

The region must be an ee.Geometry or ee.FeatureCollection.

Returns:

Type Description

ee.Image: The image containing contours.

Source code in geemap/common.py
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
def create_contours(
    image, min_value, max_value, interval, kernel=None, region=None, values=None
):
    """Creates contours from an image. Code adapted from https://mygeoblog.com/2017/01/28/contour-lines-in-gee. Credits to MyGeoBlog.

    Args:
        image (ee.Image): An image to create contours.
        min_value (float): The minimum value of contours.
        max_value (float): The maximum value of contours.
        interval (float):  The interval between contours.
        kernel (ee.Kernel, optional): The kernel to use for smoothing image. Defaults to None.
        region (ee.Geometry | ee.FeatureCollection, optional): The region of interest. Defaults to None.
        values (list, optional): A list of values to create contours for. Defaults to None.

    Raises:
        TypeError: The image must be an ee.Image.
        TypeError: The region must be an ee.Geometry or ee.FeatureCollection.

    Returns:
        ee.Image: The image containing contours.
    """
    if not isinstance(image, ee.Image):
        raise TypeError("The image must be an ee.Image.")
    if region is not None:
        if isinstance(region, ee.FeatureCollection) or isinstance(region, ee.Geometry):
            pass
        else:
            raise TypeError(
                "The region must be an ee.Geometry or ee.FeatureCollection."
            )

    if kernel is None:
        kernel = ee.Kernel.gaussian(5, 3)

    if isinstance(values, list):
        values = ee.List(values)
    elif isinstance(values, ee.List):
        pass

    if values is None:
        values = ee.List.sequence(min_value, max_value, interval)

    def contouring(value):
        mycountour = (
            image.convolve(kernel)
            .subtract(ee.Image.constant(value))
            .zeroCrossing()
            .multiply(ee.Image.constant(value).toFloat())
        )
        return mycountour.mask(mycountour)

    contours = values.map(contouring)

    if region is not None:
        if isinstance(region, ee.FeatureCollection):
            return ee.ImageCollection(contours).mosaic().clipToCollection(region)
        elif isinstance(region, ee.Geometry):
            return ee.ImageCollection(contours).mosaic().clip(region)
    else:
        return ee.ImageCollection(contours).mosaic()

create_download_button(label, data, file_name=None, mime=None, key=None, help=None, on_click=None, args=None, **kwargs)

Streamlit function to create a download button.

Parameters:

Name Type Description Default
label str

A short label explaining to the user what this button is for..

required
data str | list

The contents of the file to be downloaded. See example below for caching techniques to avoid recomputing this data unnecessarily.

required
file_name str

An optional string to use as the name of the file to be downloaded, such as 'my_file.csv'. If not specified, the name will be automatically generated. Defaults to None.

None
mime str

The MIME type of the data. If None, defaults to "text/plain" (if data is of type str or is a textual file) or "application/octet-stream" (if data is of type bytes or is a binary file). Defaults to None.

None
key str

An optional string or integer to use as the unique key for the widget. If this is omitted, a key will be generated for the widget based on its content. Multiple widgets of the same type may not share the same key. Defaults to None.

None
help str

An optional tooltip that gets displayed when the button is hovered over. Defaults to None.

None
on_click str

An optional callback invoked when this button is clicked. Defaults to None.

None
args list

An optional tuple of args to pass to the callback. Defaults to None.

None
kwargs dict

An optional tuple of args to pass to the callback.

{}
Source code in geemap/common.py
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
def create_download_button(
    label,
    data,
    file_name=None,
    mime=None,
    key=None,
    help=None,
    on_click=None,
    args=None,
    **kwargs,
):
    """Streamlit function to create a download button.

    Args:
        label (str): A short label explaining to the user what this button is for..
        data (str | list): The contents of the file to be downloaded. See example below for caching techniques to avoid recomputing this data unnecessarily.
        file_name (str, optional): An optional string to use as the name of the file to be downloaded, such as 'my_file.csv'. If not specified, the name will be automatically generated. Defaults to None.
        mime (str, optional): The MIME type of the data. If None, defaults to "text/plain" (if data is of type str or is a textual file) or "application/octet-stream" (if data is of type bytes or is a binary file). Defaults to None.
        key (str, optional): An optional string or integer to use as the unique key for the widget. If this is omitted, a key will be generated for the widget based on its content. Multiple widgets of the same type may not share the same key. Defaults to None.
        help (str, optional): An optional tooltip that gets displayed when the button is hovered over. Defaults to None.
        on_click (str, optional): An optional callback invoked when this button is clicked. Defaults to None.
        args (list, optional): An optional tuple of args to pass to the callback. Defaults to None.
        kwargs (dict, optional): An optional tuple of args to pass to the callback.

    """
    try:
        import streamlit as st
        import pandas as pd

        if isinstance(data, str):
            if file_name is None:
                file_name = data.split("/")[-1]

            if data.endswith(".csv"):
                data = pd.read_csv(data).to_csv()
                if mime is None:
                    mime = "text/csv"
                return st.download_button(
                    label, data, file_name, mime, key, help, on_click, args, **kwargs
                )
            elif (
                data.endswith(".gif") or data.endswith(".png") or data.endswith(".jpg")
            ):
                if mime is None:
                    mime = f"image/{os.path.splitext(data)[1][1:]}"

                with open(data, "rb") as file:
                    return st.download_button(
                        label,
                        file,
                        file_name,
                        mime,
                        key,
                        help,
                        on_click,
                        args,
                        **kwargs,
                    )

            else:
                return st.download_button(
                    label,
                    label,
                    data,
                    file_name,
                    mime,
                    key,
                    help,
                    on_click,
                    args,
                    **kwargs,
                )

    except ImportError:
        print("Streamlit is not installed. Please run 'pip install streamlit'.")
        return
    except Exception as e:
        raise Exception(e)

Downloads a file from voila. Adopted from https://github.com/voila-dashboards/voila/issues/578

Parameters:

Name Type Description Default
filename str

The file path to the file to download

required
title str

str. Defaults to "Click here to download: ".

'Click here to download: '

Returns:

Name Type Description
str

HTML download URL.

Source code in geemap/common.py
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
def create_download_link(filename, title="Click here to download: "):
    """Downloads a file from voila. Adopted from https://github.com/voila-dashboards/voila/issues/578

    Args:
        filename (str): The file path to the file to download
        title (str, optional): str. Defaults to "Click here to download: ".

    Returns:
        str: HTML download URL.
    """
    import base64

    from IPython.display import HTML

    data = open(filename, "rb").read()
    b64 = base64.b64encode(data)
    payload = b64.decode()
    basename = os.path.basename(filename)
    html = '<a download="{filename}" href="data:text/csv;base64,{payload}" style="color:#0000FF;" target="_blank">{title}</a>'
    html = html.format(payload=payload, title=title + f" {basename}", filename=basename)
    return HTML(html)

create_grid(ee_object, scale, proj=None)

Create a grid covering an Earth Engine object.

Parameters:

Name Type Description Default
ee_object Image | Geometry | FeatureCollection

The Earth Engine object.

required
scale float

The grid cell size.

required
proj str

The projection. Defaults to None.

None

Returns:

Type Description

ee.FeatureCollection: The grid as a feature collection.

Source code in geemap/common.py
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
def create_grid(ee_object, scale, proj=None):
    """Create a grid covering an Earth Engine object.

    Args:
        ee_object (ee.Image | ee.Geometry | ee.FeatureCollection): The Earth Engine object.
        scale (float): The grid cell size.
        proj (str, optional): The projection. Defaults to None.


    Returns:
        ee.FeatureCollection: The grid as a feature collection.
    """

    if isinstance(ee_object, ee.FeatureCollection) or isinstance(ee_object, ee.Image):
        geometry = ee_object.geometry()
    elif isinstance(ee_object, ee.Geometry):
        geometry = ee_object
    else:
        raise ValueError(
            "ee_object must be an ee.FeatureCollection, ee.Image, or ee.Geometry"
        )

    if proj is None:
        proj = geometry.projection()

    grid = geometry.coveringGrid(proj, scale)

    return grid

create_legend(title='Legend', labels=None, colors=None, legend_dict=None, builtin_legend=None, opacity=1.0, position='bottomright', draggable=True, output=None, style={})

Create a legend in HTML format. Reference: https://bit.ly/3oV6vnH

Parameters:

Name Type Description Default
title str

Title of the legend. Defaults to 'Legend'. Defaults to "Legend".

'Legend'
colors list

A list of legend colors. Defaults to None.

None
labels list

A list of legend labels. Defaults to None.

None
legend_dict dict

A dictionary containing legend items as keys and color as values. If provided, legend_keys and legend_colors will be ignored. Defaults to None.

None
builtin_legend str

Name of the builtin legend to add to the map. Defaults to None.

None
opacity float

The opacity of the legend. Defaults to 1.0.

1.0
position str

The position of the legend, can be one of the following: "topleft", "topright", "bottomleft", "bottomright". Defaults to "bottomright".

'bottomright'
draggable bool

If True, the legend can be dragged to a new position. Defaults to True.

True
output str

The output file path (*.html) to save the legend. Defaults to None.

None
style

Additional keyword arguments to style the legend, such as position, bottom, right, z-index, border, background-color, border-radius, padding, font-size, etc. The default style is: style = { 'position': 'fixed', 'z-index': '9999', 'border': '2px solid grey', 'background-color': 'rgba(255, 255, 255, 0.8)', 'border-radius': '5px', 'padding': '10px', 'font-size': '14px', 'bottom': '20px', 'right': '5px' }

{}

Returns:

Name Type Description
str

The HTML code of the legend.

Source code in geemap/common.py
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
def create_legend(
    title="Legend",
    labels=None,
    colors=None,
    legend_dict=None,
    builtin_legend=None,
    opacity=1.0,
    position="bottomright",
    draggable=True,
    output=None,
    style={},
):
    """Create a legend in HTML format. Reference: https://bit.ly/3oV6vnH

    Args:
        title (str, optional): Title of the legend. Defaults to 'Legend'. Defaults to "Legend".
        colors (list, optional): A list of legend colors. Defaults to None.
        labels (list, optional): A list of legend labels. Defaults to None.
        legend_dict (dict, optional): A dictionary containing legend items as keys and color as values.
            If provided, legend_keys and legend_colors will be ignored. Defaults to None.
        builtin_legend (str, optional): Name of the builtin legend to add to the map. Defaults to None.
        opacity (float, optional): The opacity of the legend. Defaults to 1.0.
        position (str, optional): The position of the legend, can be one of the following:
            "topleft", "topright", "bottomleft", "bottomright". Defaults to "bottomright".
        draggable (bool, optional): If True, the legend can be dragged to a new position. Defaults to True.
        output (str, optional): The output file path (*.html) to save the legend. Defaults to None.
        style: Additional keyword arguments to style the legend, such as position, bottom, right, z-index,
            border, background-color, border-radius, padding, font-size, etc. The default style is:
            style = {
                'position': 'fixed',
                'z-index': '9999',
                'border': '2px solid grey',
                'background-color': 'rgba(255, 255, 255, 0.8)',
                'border-radius': '5px',
                'padding': '10px',
                'font-size': '14px',
                'bottom': '20px',
                'right': '5px'
            }

    Returns:
        str: The HTML code of the legend.
    """

    from .legends import builtin_legends

    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)
    legend_template = os.path.join(pkg_dir, "data/template/legend_style.html")

    if draggable:
        legend_template = os.path.join(pkg_dir, "data/template/legend.txt")

    if not os.path.exists(legend_template):
        raise FileNotFoundError("The legend template does not exist.")

    if labels is not None:
        if not isinstance(labels, list):
            print("The legend keys must be a list.")
            return
    else:
        labels = ["One", "Two", "Three", "Four", "etc"]

    if colors is not None:
        if not isinstance(colors, list):
            print("The legend colors must be a list.")
            return
        elif all(isinstance(item, tuple) for item in colors):
            try:
                colors = [rgb_to_hex(x) for x in colors]
            except Exception as e:
                print(e)
        elif all((item.startswith("#") and len(item) == 7) for item in colors):
            pass
        elif all((len(item) == 6) for item in colors):
            pass
        else:
            print("The legend colors must be a list of tuples.")
            return
    else:
        colors = [
            "#8DD3C7",
            "#FFFFB3",
            "#BEBADA",
            "#FB8072",
            "#80B1D3",
        ]

    if len(labels) != len(colors):
        print("The legend keys and values must be the same length.")
        return

    allowed_builtin_legends = builtin_legends.keys()
    if builtin_legend is not None:
        if builtin_legend not in allowed_builtin_legends:
            print(
                "The builtin legend must be one of the following: {}".format(
                    ", ".join(allowed_builtin_legends)
                )
            )
            return
        else:
            legend_dict = builtin_legends[builtin_legend]
            labels = list(legend_dict.keys())
            colors = list(legend_dict.values())

    if legend_dict is not None:
        if not isinstance(legend_dict, dict):
            print("The legend dict must be a dictionary.")
            return
        else:
            labels = list(legend_dict.keys())
            colors = list(legend_dict.values())
            if all(isinstance(item, tuple) for item in colors):
                try:
                    colors = [rgb_to_hex(x) for x in colors]
                except Exception as e:
                    print(e)

    allowed_positions = [
        "topleft",
        "topright",
        "bottomleft",
        "bottomright",
    ]
    if position not in allowed_positions:
        raise ValueError(
            "The position must be one of the following: {}".format(
                ", ".join(allowed_positions)
            )
        )

    if position == "bottomright":
        if "bottom" not in style:
            style["bottom"] = "20px"
        if "right" not in style:
            style["right"] = "5px"
        if "left" in style:
            del style["left"]
        if "top" in style:
            del style["top"]
    elif position == "bottomleft":
        if "bottom" not in style:
            style["bottom"] = "5px"
        if "left" not in style:
            style["left"] = "5px"
        if "right" in style:
            del style["right"]
        if "top" in style:
            del style["top"]
    elif position == "topright":
        if "top" not in style:
            style["top"] = "5px"
        if "right" not in style:
            style["right"] = "5px"
        if "left" in style:
            del style["left"]
        if "bottom" in style:
            del style["bottom"]
    elif position == "topleft":
        if "top" not in style:
            style["top"] = "5px"
        if "left" not in style:
            style["left"] = "5px"
        if "right" in style:
            del style["right"]
        if "bottom" in style:
            del style["bottom"]

    if "position" not in style:
        style["position"] = "fixed"
    if "z-index" not in style:
        style["z-index"] = "9999"
    if "background-color" not in style:
        style["background-color"] = "rgba(255, 255, 255, 0.8)"
    if "padding" not in style:
        style["padding"] = "10px"
    if "border-radius" not in style:
        style["border-radius"] = "5px"
    if "font-size" not in style:
        style["font-size"] = "14px"

    content = []

    with open(legend_template) as f:
        lines = f.readlines()

    if draggable:
        for index, line in enumerate(lines):
            if index < 36:
                content.append(line)
            elif index == 36:
                line = lines[index].replace("Legend", title)
                content.append(line)
            elif index < 39:
                content.append(line)
            elif index == 39:
                for i, color in enumerate(colors):
                    item = f"    <li><span style='background:{check_color(color)};opacity:{opacity};'></span>{labels[i]}</li>\n"
                    content.append(item)
            elif index > 41:
                content.append(line)
        content = content[3:-1]

    else:
        for index, line in enumerate(lines):
            if index < 8:
                content.append(line)
            elif index == 8:
                for key, value in style.items():
                    content.append(
                        "              {}: {};\n".format(key.replace("_", "-"), value)
                    )
            elif index < 17:
                pass
            elif index < 19:
                content.append(line)
            elif index == 19:
                content.append(line.replace("Legend", title))
            elif index < 22:
                content.append(line)
            elif index == 22:
                for index, key in enumerate(labels):
                    color = colors[index]
                    if not color.startswith("#"):
                        color = "#" + color
                    item = "                    <li><span style='background:{};opacity:{};'></span>{}</li>\n".format(
                        color, opacity, key
                    )
                    content.append(item)
            elif index < 33:
                pass
            else:
                content.append(line)

    legend_text = "".join(content)

    if output is not None:
        with open(output, "w") as f:
            f.write(legend_text)
    else:
        return legend_text

create_new_cell(contents, replace=False)

Create a new cell in Jupyter notebook based on the contents.

Parameters:

Name Type Description Default
contents str

A string of Python code.

required
Source code in geemap/conversion.py
721
722
723
724
725
726
727
728
729
730
def create_new_cell(contents, replace=False):
    """Create a new cell in Jupyter notebook based on the contents.

    Args:
        contents (str): A string of Python code.
    """
    from IPython.core.getipython import get_ipython

    shell = get_ipython()
    shell.set_next_input(contents, replace=replace)

create_nlcd_qml(out_qml)

Create a QGIS Layer Style (.qml) for NLCD data

Parameters:

Name Type Description Default
out_qml str

File path to the output qml.

required
Source code in geemap/common.py
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
def create_nlcd_qml(out_qml):
    """Create a QGIS Layer Style (.qml) for NLCD data

    Args:
        out_qml (str): File path to the output qml.
    """
    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)
    data_dir = os.path.join(pkg_dir, "data")
    template_dir = os.path.join(data_dir, "template")
    qml_template = os.path.join(template_dir, "NLCD.qml")

    out_dir = os.path.dirname(out_qml)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    shutil.copyfile(qml_template, out_qml)

create_timelapse(collection, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', date_format=None, out_gif=None, palette=None, vis_params=None, dimensions=768, frames_per_second=10, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=False, colorbar_width=6.0, colorbar_height=0.4, colorbar_label=None, colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color=None, colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False, parallel_scale=1, step=1)

Create a timelapse from any ee.ImageCollection.

Parameters:

Name Type Description Default
collection str | ImageCollection

The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
region Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

A list of band names to use in the timelapse. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
out_gif str

The output gif file path. Defaults to None.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

None
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

10
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
add_colorbar bool

Whether to add a colorbar to the timelapse. Defaults to False.

False
colorbar_width float

Width of the colorbar. Defaults to 6.0.

6.0
colorbar_height float

Height of the colorbar. Defaults to 0.4.

0.4
colorbar_label str

Label for the colorbar. Defaults to None.

None
colorbar_label_size int

Font size for the colorbar label. Defaults to 12.

12
colorbar_label_weight str

Font weight for the colorbar label. Defaults to 'normal'.

'normal'
colorbar_tick_size int

Font size for the colorbar ticks. Defaults to 10.

10
colorbar_bg_color str

Background color for the colorbar, can be color like "white", "black". Defaults to None.

None
colorbar_orientation str

Orientation of the colorbar. Defaults to 'horizontal'.

'horizontal'
colorbar_dpi str

DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.

'figure'
colorbar_xy tuple

Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
colorbar_size tuple

Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).

(300, 300)
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Name Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
def create_timelapse(
    collection,
    start_date,
    end_date,
    region=None,
    bands=None,
    frequency="year",
    reducer="median",
    date_format=None,
    out_gif=None,
    palette=None,
    vis_params=None,
    dimensions=768,
    frames_per_second=10,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    add_colorbar=False,
    colorbar_width=6.0,
    colorbar_height=0.4,
    colorbar_label=None,
    colorbar_label_size=12,
    colorbar_label_weight="normal",
    colorbar_tick_size=10,
    colorbar_bg_color=None,
    colorbar_orientation="horizontal",
    colorbar_dpi="figure",
    colorbar_xy=None,
    colorbar_size=(300, 300),
    loop=0,
    mp4=False,
    fading=False,
    parallel_scale=1,
    step=1,
):
    """Create a timelapse from any ee.ImageCollection.

    Args:
        collection (str | ee.ImageCollection): The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        out_gif (str): The output gif file path. Defaults to None.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
        colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
        colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
        colorbar_label (str, optional): Label for the colorbar. Defaults to None.
        colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
        colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
        colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
        colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
        colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
        colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        str: File path to the timelapse gif.
    """
    import geemap.colormaps as cm

    if not isinstance(collection, ee.ImageCollection):
        if isinstance(collection, str):
            collection = ee.ImageCollection(collection)
        else:
            raise Exception(
                "The collection must be an ee.ImageCollection object or asset id."
            )

    col = create_timeseries(
        collection,
        start_date,
        end_date,
        region=region,
        bands=bands,
        frequency=frequency,
        reducer=reducer,
        drop_empty=True,
        date_format=date_format,
        parallel_scale=parallel_scale,
        step=step,
    )

    # rename the bands to remove the '_reducer' characters from the band names.
    col = col.map(
        lambda img: img.rename(
            img.bandNames().map(lambda name: ee.String(name).replace(f"_{reducer}", ""))
        )
    )

    if out_gif is None:
        out_gif = temp_file_path(".gif")
    else:
        out_gif = check_file_path(out_gif)

    out_dir = os.path.dirname(out_gif)

    if bands is None:
        names = col.first().bandNames().getInfo()
        if len(names) < 3:
            bands = [names[0]]
        else:
            bands = names[:3][::-1]
    elif isinstance(bands, str):
        bands = [bands]
    elif not isinstance(bands, list):
        raise Exception("The bands must be a string or a list of strings.")

    if isinstance(palette, str):
        palette = cm.get_palette(palette, 15)
    elif isinstance(palette, list) or isinstance(palette, tuple):
        pass
    elif palette is not None:
        raise Exception("The palette must be a string or a list of strings.")

    if vis_params is None:
        img = col.first().select(bands)
        scale = collection.first().select(0).projection().nominalScale().multiply(10)
        min_value = min(
            image_min_value(img, region=region, scale=scale).getInfo().values()
        )
        max_value = max(
            image_max_value(img, region=region, scale=scale).getInfo().values()
        )
        vis_params = {"bands": bands, "min": min_value, "max": max_value}

        if len(bands) == 1:
            if palette is not None:
                vis_params["palette"] = palette
            else:
                vis_params["palette"] = cm.palettes.ndvi
    elif isinstance(vis_params, dict):
        if "bands" not in vis_params:
            vis_params["bands"] = bands
        if "min" not in vis_params:
            img = col.first().select(bands)
            scale = (
                collection.first().select(0).projection().nominalScale().multiply(10)
            )
            vis_params["min"] = min(
                image_min_value(img, region=region, scale=scale).getInfo().values()
            )
        if "max" not in vis_params:
            img = col.first().select(bands)
            scale = (
                collection.first().select(0).projection().nominalScale().multiply(10)
            )
            vis_params["max"] = max(
                image_max_value(img, region=region, scale=scale).getInfo().values()
            )
        if palette is None and (len(bands) == 1) and ("palette" not in vis_params):
            vis_params["palette"] = cm.palettes.ndvi
        elif palette is not None and ("palette" not in vis_params):
            vis_params["palette"] = palette
        if len(bands) > 1 and "palette" in vis_params:
            del vis_params["palette"]
    else:
        raise Exception("The vis_params must be a dictionary.")

    col = col.select(bands).map(
        lambda img: img.visualize(**vis_params).set(
            {
                "system:time_start": img.get("system:time_start"),
                "system:date": img.get("system:date"),
            }
        )
    )

    if overlay_data is not None:
        col = add_overlay(
            col, overlay_data, overlay_color, overlay_width, overlay_opacity
        )

    video_args = {}
    video_args["dimensions"] = dimensions
    video_args["region"] = region
    video_args["framesPerSecond"] = frames_per_second
    video_args["crs"] = crs
    video_args["min"] = 0
    video_args["max"] = 255

    # if crs is not None:
    #     video_args["crs"] = crs

    if "palette" in vis_params or len(bands) > 1:
        video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
    else:
        video_args["bands"] = ["vis-gray"]

    if (
        isinstance(dimensions, int)
        and dimensions > 768
        or isinstance(dimensions, str)
        and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
    ):
        count = col.size().getInfo()
        basename = os.path.basename(out_gif)[:-4]
        names = [
            os.path.join(
                out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
            )
            for i in range(count)
        ]
        get_image_collection_thumbnails(
            col,
            out_dir,
            vis_params={
                "min": 0,
                "max": 255,
                "bands": video_args["bands"],
            },
            dimensions=dimensions,
            names=names,
        )
        make_gif(
            names,
            out_gif,
            fps=frames_per_second,
            loop=loop,
            mp4=False,
            clean_up=True,
        )
    else:
        download_ee_video(col, video_args, out_gif)

    if title is not None and isinstance(title, str):
        add_text_to_gif(
            out_gif,
            out_gif,
            xy=title_xy,
            text_sequence=title,
            font_type=font_type,
            font_size=font_size,
            font_color=font_color,
            add_progress_bar=add_progress_bar,
            progress_bar_color=progress_bar_color,
            progress_bar_height=progress_bar_height,
            duration=1000 / frames_per_second,
            loop=loop,
        )
    if add_text:
        if text_sequence is None:
            text_sequence = col.aggregate_array("system:date").getInfo()
        add_text_to_gif(
            out_gif,
            out_gif,
            xy=text_xy,
            text_sequence=text_sequence,
            font_type=font_type,
            font_size=font_size,
            font_color=font_color,
            add_progress_bar=add_progress_bar,
            progress_bar_color=progress_bar_color,
            progress_bar_height=progress_bar_height,
            duration=1000 / frames_per_second,
            loop=loop,
        )
    if add_colorbar:
        colorbar = save_colorbar(
            None,
            colorbar_width,
            colorbar_height,
            vis_params["min"],
            vis_params["max"],
            vis_params["palette"],
            label=colorbar_label,
            label_size=colorbar_label_size,
            label_weight=colorbar_label_weight,
            tick_size=colorbar_tick_size,
            bg_color=colorbar_bg_color,
            orientation=colorbar_orientation,
            dpi=colorbar_dpi,
            show_colorbar=False,
        )
        add_image_to_gif(out_gif, out_gif, colorbar, colorbar_xy, colorbar_size)

    if os.path.exists(out_gif):
        reduce_gif_size(out_gif)

    if isinstance(fading, bool):
        fading = int(fading)
    if fading > 0:
        gif_fading(out_gif, out_gif, duration=fading, verbose=False)

    if mp4:
        out_mp4 = out_gif.replace(".gif", ".mp4")
        gif_to_mp4(out_gif, out_mp4)

    return out_gif

create_timeseries(collection, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1, step=1)

Creates a timeseries from a collection of images by a specified frequency and reducer.

Parameters:

Name Type Description Default
collection str | ImageCollection

The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
region Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

True
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Type Description

ee.ImageCollection: The timeseries.

Source code in geemap/timelapse.py
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
def create_timeseries(
    collection,
    start_date,
    end_date,
    region=None,
    bands=None,
    frequency="year",
    reducer="median",
    drop_empty=True,
    date_format=None,
    parallel_scale=1,
    step=1,
):
    """Creates a timeseries from a collection of images by a specified frequency and reducer.

    Args:
        collection (str | ee.ImageCollection): The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        ee.ImageCollection: The timeseries.
    """
    if not isinstance(collection, ee.ImageCollection):
        if isinstance(collection, str):
            collection = ee.ImageCollection(collection)
        else:
            raise Exception(
                "The collection must be an ee.ImageCollection object or asset id."
            )

    if bands is not None:
        collection = collection.select(bands)
    else:
        bands = collection.first().bandNames()

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
        "week": "YYYY-MM-dd",
        "day": "YYYY-MM-dd",
        "hour": "YYYY-MM-dd HH",
        "minute": "YYYY-MM-dd HH:mm",
        "second": "YYYY-MM-dd HH:mm:ss",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    dates = date_sequence(start_date, end_date, frequency, date_format, step)

    try:
        reducer = eval(f"ee.Reducer.{reducer}()")
    except Exception as e:
        print("The provided reducer is invalid.")
        raise Exception(e)

    def create_image(date):
        start = ee.Date(date)
        if frequency == "quarter":
            end = start.advance(3, "month")
        else:
            end = start.advance(1, frequency)

        if region is None:
            sub_col = collection.filterDate(start, end)
            image = sub_col.reduce(reducer, parallel_scale)

        else:
            sub_col = collection.filterDate(start, end).filterBounds(region)
            image = ee.Image(
                ee.Algorithms.If(
                    ee.Algorithms.ObjectType(region).equals("FeatureCollection"),
                    sub_col.reduce(reducer, parallel_scale).clipToCollection(region),
                    sub_col.reduce(reducer, parallel_scale).clip(region),
                )
            )
        return image.set(
            {
                "system:time_start": ee.Date(date).millis(),
                "system:date": ee.Date(date).format(date_format),
                "empty": sub_col.limit(1).size().eq(0),
            }
        ).rename(bands)

    try:
        images = ee.ImageCollection(dates.map(create_image))
        if drop_empty:
            return images.filterMetadata("empty", "equals", 0)
        else:
            return images
    except Exception as e:
        raise Exception(e)

credentials_in_colab()

Checks if the ee credentials file exists in Google Colab.

Returns:

Name Type Description
bool

Returns True if Google Drive is mounted, False otherwise.

Source code in geemap/common.py
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
def credentials_in_colab():
    """Checks if the ee credentials file exists in Google Colab.

    Returns:
        bool: Returns True if Google Drive is mounted, False otherwise.
    """
    credentials_path = "/root/.config/earthengine/credentials"
    if os.path.exists(credentials_path):
        return True
    else:
        return False

credentials_in_drive()

Checks if the ee credentials file exists in Google Drive.

Returns:

Name Type Description
bool

Returns True if Google Drive is mounted, False otherwise.

Source code in geemap/common.py
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
def credentials_in_drive():
    """Checks if the ee credentials file exists in Google Drive.

    Returns:
        bool: Returns True if Google Drive is mounted, False otherwise.
    """
    credentials_path = "/content/drive/My Drive/.config/earthengine/credentials"
    if os.path.exists(credentials_path):
        return True
    else:
        return False

csv_points_to_shp(in_csv, out_shp, latitude='latitude', longitude='longitude')

Converts a csv file containing points (latitude, longitude) into a shapefile.

Parameters:

Name Type Description Default
in_csv str

File path or HTTP URL to the input csv file. For example, https://raw.githubusercontent.com/giswqs/data/main/world/world_cities.csv

required
out_shp str

File path to the output shapefile.

required
latitude str

Column name for the latitude column. Defaults to 'latitude'.

'latitude'
longitude str

Column name for the longitude column. Defaults to 'longitude'.

'longitude'
Source code in geemap/common.py
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
def csv_points_to_shp(in_csv, out_shp, latitude="latitude", longitude="longitude"):
    """Converts a csv file containing points (latitude, longitude) into a shapefile.

    Args:
        in_csv (str): File path or HTTP URL to the input csv file. For example, https://raw.githubusercontent.com/giswqs/data/main/world/world_cities.csv
        out_shp (str): File path to the output shapefile.
        latitude (str, optional): Column name for the latitude column. Defaults to 'latitude'.
        longitude (str, optional): Column name for the longitude column. Defaults to 'longitude'.

    """
    import whitebox

    if in_csv.startswith("http") and in_csv.endswith(".csv"):
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        out_name = os.path.basename(in_csv)

        if not os.path.exists(out_dir):
            os.makedirs(out_dir)
        download_from_url(in_csv, out_dir=out_dir, verbose=False)
        in_csv = os.path.join(out_dir, out_name)

    wbt = whitebox.WhiteboxTools()
    in_csv = os.path.abspath(in_csv)
    out_shp = os.path.abspath(out_shp)

    if not os.path.exists(in_csv):
        raise Exception("The provided csv file does not exist.")

    with open(in_csv, encoding="utf-8") as csv_file:
        reader = csv.DictReader(csv_file)
        fields = reader.fieldnames
        xfield = fields.index(longitude)
        yfield = fields.index(latitude)

    wbt.csv_points_to_vector(in_csv, out_shp, xfield=xfield, yfield=yfield, epsg=4326)

csv_to_df(in_csv, **kwargs)

Converts a CSV file to pandas dataframe.

Parameters:

Name Type Description Default
in_csv str

File path to the input CSV.

required

Returns:

Type Description

pd.DataFrame: pandas DataFrame

Source code in geemap/common.py
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
def csv_to_df(in_csv, **kwargs):
    """Converts a CSV file to pandas dataframe.

    Args:
        in_csv (str): File path to the input CSV.

    Returns:
        pd.DataFrame: pandas DataFrame
    """
    import pandas as pd

    in_csv = github_raw_url(in_csv)

    try:
        return pd.read_csv(in_csv, **kwargs)
    except Exception as e:
        raise Exception(e)

csv_to_ee(in_csv, latitude='latitude', longitude='longitude', encoding='utf-8', geodesic=True)

Creates points for a CSV file and exports data as a GeoJSON.

Parameters:

Name Type Description Default
in_csv str

The file path to the input CSV file.

required
latitude str

The name of the column containing latitude coordinates. Defaults to "latitude".

'latitude'
longitude str

The name of the column containing longitude coordinates. Defaults to "longitude".

'longitude'
encoding str

The encoding of characters. Defaults to "utf-8".

'utf-8'
geodesic bool

Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

True

Returns:

Name Type Description
ee_object

An ee.Geometry object

Source code in geemap/common.py
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
def csv_to_ee(
    in_csv, latitude="latitude", longitude="longitude", encoding="utf-8", geodesic=True
):
    """Creates points for a CSV file and exports data as a GeoJSON.

    Args:
        in_csv (str): The file path to the input CSV file.
        latitude (str, optional): The name of the column containing latitude coordinates. Defaults to "latitude".
        longitude (str, optional): The name of the column containing longitude coordinates. Defaults to "longitude".
        encoding (str, optional): The encoding of characters. Defaults to "utf-8".
        geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

    Returns:
        ee_object: An ee.Geometry object
    """

    geojson = csv_to_geojson(
        in_csv, latitude=latitude, longitude=longitude, encoding=encoding
    )
    fc = geojson_to_ee(geojson, geodesic=geodesic)
    return fc

csv_to_gdf(in_csv, latitude='latitude', longitude='longitude', encoding='utf-8')

Creates points for a CSV file and converts them to a GeoDataFrame.

Parameters:

Name Type Description Default
in_csv str

The file path to the input CSV file.

required
latitude str

The name of the column containing latitude coordinates. Defaults to "latitude".

'latitude'
longitude str

The name of the column containing longitude coordinates. Defaults to "longitude".

'longitude'
encoding str

The encoding of characters. Defaults to "utf-8".

'utf-8'

Returns:

Name Type Description
object

GeoDataFrame.

Source code in geemap/common.py
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
def csv_to_gdf(in_csv, latitude="latitude", longitude="longitude", encoding="utf-8"):
    """Creates points for a CSV file and converts them to a GeoDataFrame.

    Args:
        in_csv (str): The file path to the input CSV file.
        latitude (str, optional): The name of the column containing latitude coordinates. Defaults to "latitude".
        longitude (str, optional): The name of the column containing longitude coordinates. Defaults to "longitude".
        encoding (str, optional): The encoding of characters. Defaults to "utf-8".

    Returns:
        object: GeoDataFrame.
    """

    check_package(name="geopandas", URL="https://geopandas.org")

    import geopandas as gpd

    out_dir = os.getcwd()

    out_geojson = os.path.join(out_dir, random_string() + ".geojson")
    csv_to_geojson(in_csv, out_geojson, latitude, longitude, encoding)

    gdf = gpd.read_file(out_geojson)
    os.remove(out_geojson)
    return gdf

csv_to_geojson(in_csv, out_geojson=None, latitude='latitude', longitude='longitude', encoding='utf-8')

Creates points for a CSV file and exports data as a GeoJSON.

Parameters:

Name Type Description Default
in_csv str

The file path to the input CSV file.

required
out_geojson str

The file path to the exported GeoJSON. Default to None.

None
latitude str

The name of the column containing latitude coordinates. Defaults to "latitude".

'latitude'
longitude str

The name of the column containing longitude coordinates. Defaults to "longitude".

'longitude'
encoding str

The encoding of characters. Defaults to "utf-8".

'utf-8'
Source code in geemap/common.py
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
def csv_to_geojson(
    in_csv,
    out_geojson=None,
    latitude="latitude",
    longitude="longitude",
    encoding="utf-8",
):
    """Creates points for a CSV file and exports data as a GeoJSON.

    Args:
        in_csv (str): The file path to the input CSV file.
        out_geojson (str): The file path to the exported GeoJSON. Default to None.
        latitude (str, optional): The name of the column containing latitude coordinates. Defaults to "latitude".
        longitude (str, optional): The name of the column containing longitude coordinates. Defaults to "longitude".
        encoding (str, optional): The encoding of characters. Defaults to "utf-8".

    """

    import pandas as pd

    in_csv = github_raw_url(in_csv)

    if out_geojson is not None:
        out_geojson = check_file_path(out_geojson)

    df = pd.read_csv(in_csv)
    geojson = df_to_geojson(
        df, latitude=latitude, longitude=longitude, encoding=encoding
    )

    if out_geojson is None:
        return geojson
    else:
        with open(out_geojson, "w", encoding=encoding) as f:
            f.write(json.dumps(geojson))

csv_to_shp(in_csv, out_shp, latitude='latitude', longitude='longitude', encoding='utf-8')

Converts a csv file with latlon info to a point shapefile.

Parameters:

Name Type Description Default
in_csv str

The input csv file containing longitude and latitude columns.

required
out_shp str

The file path to the output shapefile.

required
latitude str

The column name of the latitude column. Defaults to 'latitude'.

'latitude'
longitude str

The column name of the longitude column. Defaults to 'longitude'.

'longitude'
Source code in geemap/common.py
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
def csv_to_shp(
    in_csv, out_shp, latitude="latitude", longitude="longitude", encoding="utf-8"
):
    """Converts a csv file with latlon info to a point shapefile.

    Args:
        in_csv (str): The input csv file containing longitude and latitude columns.
        out_shp (str): The file path to the output shapefile.
        latitude (str, optional): The column name of the latitude column. Defaults to 'latitude'.
        longitude (str, optional): The column name of the longitude column. Defaults to 'longitude'.
    """
    import shapefile as shp

    if in_csv.startswith("http") and in_csv.endswith(".csv"):
        in_csv = github_raw_url(in_csv)
        in_csv = download_file(in_csv, quiet=True, overwrite=True)

    try:
        points = shp.Writer(out_shp, shapeType=shp.POINT)
        with open(in_csv, encoding=encoding) as csvfile:
            csvreader = csv.DictReader(csvfile)
            header = csvreader.fieldnames
            [points.field(field) for field in header]
            for row in csvreader:
                points.point((float(row[longitude])), (float(row[latitude])))
                points.record(*tuple([row[f] for f in header]))

        out_prj = out_shp.replace(".shp", ".prj")
        with open(out_prj, "w") as f:
            prj_str = 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]] '
            f.write(prj_str)

    except Exception as e:
        raise Exception(e)

csv_to_vector(in_csv, output, latitude='latitude', longitude='longitude', encoding='utf-8', **kwargs)

Creates points for a CSV file and converts them to a vector dataset.

Parameters:

Name Type Description Default
in_csv str

The file path to the input CSV file.

required
output str

The file path to the output vector dataset.

required
latitude str

The name of the column containing latitude coordinates. Defaults to "latitude".

'latitude'
longitude str

The name of the column containing longitude coordinates. Defaults to "longitude".

'longitude'
encoding str

The encoding of characters. Defaults to "utf-8".

'utf-8'
Source code in geemap/common.py
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
def csv_to_vector(
    in_csv,
    output,
    latitude="latitude",
    longitude="longitude",
    encoding="utf-8",
    **kwargs,
):
    """Creates points for a CSV file and converts them to a vector dataset.

    Args:
        in_csv (str): The file path to the input CSV file.
        output (str): The file path to the output vector dataset.
        latitude (str, optional): The name of the column containing latitude coordinates. Defaults to "latitude".
        longitude (str, optional): The name of the column containing longitude coordinates. Defaults to "longitude".
        encoding (str, optional): The encoding of characters. Defaults to "utf-8".

    """
    gdf = csv_to_gdf(in_csv, latitude, longitude, encoding)
    gdf.to_file(output, **kwargs)

date_sequence(start, end, unit, date_format='YYYY-MM-dd', step=1)

Creates a date sequence.

Parameters:

Name Type Description Default
start str

The start date, e.g., '2000-01-01'.

required
end str

The end date, e.g., '2000-12-31'.

required
unit str

One of 'year', 'quarter', 'month' 'week', 'day', 'hour', 'minute', or 'second'.

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

'YYYY-MM-dd'
step int

The step size. Defaults to 1.

1

Returns:

Type Description

ee.List: A list of date sequence.

Source code in geemap/common.py
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
def date_sequence(start, end, unit, date_format="YYYY-MM-dd", step=1):
    """Creates a date sequence.

    Args:
        start (str): The start date, e.g., '2000-01-01'.
        end (str): The end date, e.g., '2000-12-31'.
        unit (str): One of 'year', 'quarter', 'month' 'week', 'day', 'hour', 'minute', or 'second'.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        step (int, optional): The step size. Defaults to 1.

    Returns:
        ee.List: A list of date sequence.
    """

    def get_quarter(d):
        return str((int(d[5:7]) - 1) // 3 * 3 + 1).zfill(2)

    def get_monday(d):
        date_obj = datetime.datetime.strptime(d, "%Y-%m-%d")
        start_of_week = date_obj - datetime.timedelta(days=date_obj.weekday())
        return start_of_week.strftime("%Y-%m-%d")

    if unit == "year":
        start = start[:4] + "-01-01"
    elif unit == "month":
        start = start[:7] + "-01"
    elif unit == "quarter":
        start = start[:5] + get_quarter(start) + "-01"
    elif unit == "week":
        start = get_monday(start)

    start_date = ee.Date(start)
    end_date = ee.Date(end)

    if unit != "quarter":
        count = ee.Number(end_date.difference(start_date, unit)).toInt()
        num_seq = ee.List.sequence(0, count)
        if step > 1:
            num_seq = num_seq.slice(0, num_seq.size(), step)
        date_seq = num_seq.map(
            lambda d: start_date.advance(d, unit).format(date_format)
        )

    else:
        unit = "month"
        count = ee.Number(end_date.difference(start_date, unit)).divide(3).toInt()
        num_seq = ee.List.sequence(0, count.multiply(3), 3)
        date_seq = num_seq.map(
            lambda d: start_date.advance(d, unit).format(date_format)
        )

    return date_seq

delete_dp_report(name)

Deletes a datapane report.

Parameters:

Name Type Description Default
name str

Name of the report to delete.

required
Source code in geemap/foliumap.py
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
def delete_dp_report(name):
    """Deletes a datapane report.

    Args:
        name (str): Name of the report to delete.
    """
    try:
        import datapane as dp

        reports = dp.Report.list()
        items = list(reports)
        names = list(map(lambda item: item["name"], items))
        if name in names:
            report = dp.Report.get(name)
            url = report.blocks[0]["url"]
            # print(f'Deleting {url}...')
            dp.Report.delete(dp.Report.by_id(url))
    except Exception as e:
        print(e)
        return

delete_dp_reports()

Deletes all datapane reports.

Source code in geemap/foliumap.py
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
def delete_dp_reports():
    """Deletes all datapane reports."""
    try:
        import datapane as dp

        reports = dp.Report.list()
        for item in reports:
            print(item["name"])
            report = dp.Report.get(item["name"])
            url = report.blocks[0]["url"]
            print(f"Deleting {url}...")
            dp.Report.delete(dp.Report.by_id(url))
    except Exception as e:
        print(e)
        return

delete_shp(in_shp, verbose=False)

Deletes a shapefile.

Parameters:

Name Type Description Default
in_shp str

The input shapefile to delete.

required
verbose bool

Whether to print out descriptive text. Defaults to False.

False
Source code in geemap/common.py
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
def delete_shp(in_shp, verbose=False):
    """Deletes a shapefile.

    Args:
        in_shp (str): The input shapefile to delete.
        verbose (bool, optional): Whether to print out descriptive text. Defaults to False.
    """
    from pathlib import Path

    in_shp = os.path.abspath(in_shp)
    in_dir = os.path.dirname(in_shp)
    basename = os.path.basename(in_shp).replace(".shp", "")

    files = Path(in_dir).rglob(basename + ".*")

    for file in files:
        filepath = os.path.join(in_dir, str(file))
        try:
            os.remove(filepath)
            if verbose:
                print(f"Deleted {filepath}")
        except Exception as e:
            if verbose:
                print(e)

df_to_ee(df, latitude='latitude', longitude='longitude', **kwargs)

Converts a pandas DataFrame to ee.FeatureCollection.

Parameters:

Name Type Description Default
df DataFrame

An input pandas.DataFrame.

required
latitude str

Column name for the latitude column. Defaults to 'latitude'.

'latitude'
longitude str

Column name for the longitude column. Defaults to 'longitude'.

'longitude'

Raises:

Type Description
TypeError

The input data type must be pandas.DataFrame.

Returns:

Type Description

ee.FeatureCollection: The ee.FeatureCollection converted from the input pandas DataFrame.

Source code in geemap/common.py
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
def df_to_ee(df, latitude="latitude", longitude="longitude", **kwargs):
    """Converts a pandas DataFrame to ee.FeatureCollection.

    Args:
        df (pandas.DataFrame): An input pandas.DataFrame.
        latitude (str, optional): Column name for the latitude column. Defaults to 'latitude'.
        longitude (str, optional): Column name for the longitude column. Defaults to 'longitude'.

    Raises:
        TypeError: The input data type must be pandas.DataFrame.

    Returns:
        ee.FeatureCollection: The ee.FeatureCollection converted from the input pandas DataFrame.
    """
    import pandas as pd

    if not isinstance(df, pd.DataFrame):
        raise TypeError("The input data type must be pandas.DataFrame.")

    geojson = df_to_geojson(df, latitude=latitude, longitude=longitude)
    fc = geojson_to_ee(geojson)

    return fc

df_to_geojson(df, out_geojson=None, latitude='latitude', longitude='longitude', encoding='utf-8')

Creates points for a Pandas DataFrame and exports data as a GeoJSON.

Parameters:

Name Type Description Default
df DataFrame

The input Pandas DataFrame.

required
out_geojson str

The file path to the exported GeoJSON. Default to None.

None
latitude str

The name of the column containing latitude coordinates. Defaults to "latitude".

'latitude'
longitude str

The name of the column containing longitude coordinates. Defaults to "longitude".

'longitude'
encoding str

The encoding of characters. Defaults to "utf-8".

'utf-8'
Source code in geemap/common.py
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
def df_to_geojson(
    df,
    out_geojson=None,
    latitude="latitude",
    longitude="longitude",
    encoding="utf-8",
):
    """Creates points for a Pandas DataFrame and exports data as a GeoJSON.

    Args:
        df (pandas.DataFrame): The input Pandas DataFrame.
        out_geojson (str): The file path to the exported GeoJSON. Default to None.
        latitude (str, optional): The name of the column containing latitude coordinates. Defaults to "latitude".
        longitude (str, optional): The name of the column containing longitude coordinates. Defaults to "longitude".
        encoding (str, optional): The encoding of characters. Defaults to "utf-8".

    """

    from geojson import Feature, FeatureCollection, Point

    if out_geojson is not None:
        out_dir = os.path.dirname(os.path.abspath(out_geojson))
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    features = df.apply(
        lambda row: Feature(
            geometry=Point((float(row[longitude]), float(row[latitude]))),
            properties=dict(row),
        ),
        axis=1,
    ).tolist()

    geojson = FeatureCollection(features=features)

    if out_geojson is None:
        return geojson
    else:
        with open(out_geojson, "w", encoding=encoding) as f:
            f.write(json.dumps(geojson))

dict_to_csv(data_dict, out_csv, by_row=False, timeout=300, proxies=None)

Downloads an ee.Dictionary as a CSV file.

Parameters:

Name Type Description Default
data_dict Dictionary

The input ee.Dictionary.

required
out_csv str

The output file path to the CSV file.

required
by_row bool

Whether to use by row or by column. Defaults to False.

False
timeout int

Timeout in seconds. Defaults to 300 seconds.

300
proxies dict

Proxy settings. Defaults to None.

None
Source code in geemap/common.py
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
def dict_to_csv(data_dict, out_csv, by_row=False, timeout=300, proxies=None):
    """Downloads an ee.Dictionary as a CSV file.

    Args:
        data_dict (ee.Dictionary): The input ee.Dictionary.
        out_csv (str): The output file path to the CSV file.
        by_row (bool, optional): Whether to use by row or by column. Defaults to False.
        timeout (int, optional): Timeout in seconds. Defaults to 300 seconds.
        proxies (dict, optional): Proxy settings. Defaults to None.
    """

    out_dir = os.path.dirname(out_csv)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if not by_row:
        csv_feature = ee.Feature(None, data_dict)
        csv_feat_col = ee.FeatureCollection([csv_feature])
    else:
        keys = data_dict.keys()
        data = keys.map(lambda k: ee.Dictionary({"name": k, "value": data_dict.get(k)}))
        csv_feature = data.map(lambda f: ee.Feature(None, f))
        csv_feat_col = ee.FeatureCollection(csv_feature)

    ee_export_vector(csv_feat_col, out_csv, timeout=timeout, proxies=proxies)

display_html(src, width=950, height=600)

Display an HTML file in a Jupyter Notebook.

Args src (str): File path to HTML file. width (int, optional): Width of the map. Defaults to 950. height (int, optional): Height of the map. Defaults to 600.

Source code in geemap/common.py
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
def display_html(src, width=950, height=600):
    """Display an HTML file in a Jupyter Notebook.

    Args
        src (str): File path to HTML file.
        width (int, optional): Width of the map. Defaults to 950.
        height (int, optional): Height of the map. Defaults to 600.
    """
    if not os.path.isfile(src):
        raise ValueError(f"{src} is not a valid file path.")
    display(IFrame(src=src, width=width, height=height))

download_ee_image(image, filename, region=None, crs=None, crs_transform=None, scale=None, resampling='near', dtype=None, overwrite=True, num_threads=None, max_tile_size=None, max_tile_dim=None, shape=None, scale_offset=False, unmask_value=None, **kwargs)

Download an Earth Engine Image as a GeoTIFF. Images larger than the `Earth Engine size limit are split and downloaded as separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

Parameters:

Name Type Description Default
image Image

The image to be downloaded.

required
filename str

Name of the destination file.

required
region Geometry

Region defined by geojson polygon in WGS84. Defaults to the entire image granule.

None
crs str

Reproject image(s) to this EPSG or WKT CRS. Where image bands have different CRSs, all are re-projected to this CRS. Defaults to the CRS of the minimum scale band.

None
crs_transform list

tuple of float, list of float, rio.Affine, optional List of 6 numbers specifying an affine transform in the specified CRS. In row-major order: [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation]. All bands are re-projected to this transform.

None
scale float

Resample image(s) to this pixel scale (size) (m). Where image bands have different scales, all are resampled to this scale. Defaults to the minimum scale of image bands.

None
resampling ResamplingMethod

Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.

'near'
dtype str

Convert to this data type (uint8, int8, uint16, int16, uint32, int32, float32 or float64). Defaults to auto select a minimum size type that can represent the range of pixel values.

None
overwrite bool

Overwrite the destination file if it exists. Defaults to True.

True
num_threads int

Number of tiles to download concurrently. Defaults to a sensible auto value.

None
max_tile_size

int, optional Maximum tile size (MB). If None, defaults to the Earth Engine download size limit (32 MB).

None
max_tile_dim

int, optional Maximum tile width/height (pixels). If None, defaults to Earth Engine download limit (10000).

None
shape

tuple of int, optional (height, width) dimensions to export (pixels).

None
scale_offset

bool, optional Whether to apply any EE band scales and offsets to the image.

False
unmask_value float

The value to use for pixels that are masked in the input image. If the exported image contains zero values, you should set the unmask value to a non-zero value so that the zero values are not treated as missing data. Defaults to None.

None
Source code in geemap/common.py
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
def download_ee_image(
    image,
    filename,
    region=None,
    crs=None,
    crs_transform=None,
    scale=None,
    resampling="near",
    dtype=None,
    overwrite=True,
    num_threads=None,
    max_tile_size=None,
    max_tile_dim=None,
    shape=None,
    scale_offset=False,
    unmask_value=None,
    **kwargs,
):
    """Download an Earth Engine Image as a GeoTIFF. Images larger than the `Earth Engine size limit are split and downloaded as
        separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

    Args:
        image (ee.Image): The image to be downloaded.
        filename (str): Name of the destination file.
        region (ee.Geometry, optional): Region defined by geojson polygon in WGS84. Defaults to the entire image granule.
        crs (str, optional): Reproject image(s) to this EPSG or WKT CRS.  Where image bands have different CRSs, all are
            re-projected to this CRS. Defaults to the CRS of the minimum scale band.
        crs_transform (list, optional): tuple of float, list of float, rio.Affine, optional
            List of 6 numbers specifying an affine transform in the specified CRS.  In row-major order:
            [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation].  All bands are re-projected to
            this transform.
        scale (float, optional): Resample image(s) to this pixel scale (size) (m).  Where image bands have different scales,
            all are resampled to this scale.  Defaults to the minimum scale of image bands.
        resampling (ResamplingMethod, optional): Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.
        dtype (str, optional): Convert to this data type (`uint8`, `int8`, `uint16`, `int16`, `uint32`, `int32`, `float32`
            or `float64`).  Defaults to auto select a minimum size type that can represent the range of pixel values.
        overwrite (bool, optional): Overwrite the destination file if it exists. Defaults to True.
        num_threads (int, optional): Number of tiles to download concurrently. Defaults to a sensible auto value.
        max_tile_size: int, optional
            Maximum tile size (MB).  If None, defaults to the Earth Engine download size limit (32 MB).
        max_tile_dim: int, optional
            Maximum tile width/height (pixels).  If None, defaults to Earth Engine download limit (10000).
        shape: tuple of int, optional
            (height, width) dimensions to export (pixels).
        scale_offset: bool, optional
            Whether to apply any EE band scales and offsets to the image.
        unmask_value (float, optional): The value to use for pixels that are masked in the input image. If the exported image contains
            zero values, you should set the unmask value to a  non-zero value so that the zero values are not treated as missing data. Defaults to None.

    """

    if os.environ.get("USE_MKDOCS") is not None:
        return

    try:
        import geedim as gd
    except ImportError:
        raise ImportError(
            "Please install geedim using `pip install geedim` or `conda install -c conda-forge geedim`"
        )

    if not isinstance(image, ee.Image):
        raise ValueError("image must be an ee.Image.")

    if unmask_value is not None:
        if isinstance(region, ee.Geometry):
            image = image.clip(region)
        elif isinstance(region, ee.FeatureCollection):
            image = image.clipToCollection(region)
        image = image.unmask(unmask_value, sameFootprint=False)

    if region is not None:
        kwargs["region"] = region

    if crs is not None:
        kwargs["crs"] = crs

    if crs_transform is not None:
        kwargs["crs_transform"] = crs_transform

    if scale is not None:
        kwargs["scale"] = scale

    if resampling is not None:
        kwargs["resampling"] = resampling

    if dtype is not None:
        kwargs["dtype"] = dtype

    if max_tile_size is not None:
        kwargs["max_tile_size"] = max_tile_size

    if max_tile_dim is not None:
        kwargs["max_tile_dim"] = max_tile_dim

    if shape is not None:
        kwargs["shape"] = shape

    if scale_offset:
        kwargs["scale_offset"] = scale_offset

    img = gd.download.BaseImage(image)
    img.download(filename, overwrite=overwrite, num_threads=num_threads, **kwargs)

download_ee_image_collection(collection, out_dir=None, filenames=None, region=None, crs=None, crs_transform=None, scale=None, resampling='near', dtype=None, overwrite=True, num_threads=None, max_tile_size=None, max_tile_dim=None, shape=None, scale_offset=False, unmask_value=None, **kwargs)

Download an Earth Engine ImageCollection as GeoTIFFs. Images larger than the `Earth Engine size limit are split and downloaded as separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

Parameters:

Name Type Description Default
collection ImageCollection

The image collection to be downloaded.

required
out_dir str

The directory to save the downloaded images. Defaults to the current directory.

None
filenames list

A list of filenames to use for the downloaded images. Defaults to the image ID.

None
region Geometry

Region defined by geojson polygon in WGS84. Defaults to the entire image granule.

None
crs str

Reproject image(s) to this EPSG or WKT CRS. Where image bands have different CRSs, all are re-projected to this CRS. Defaults to the CRS of the minimum scale band.

None
crs_transform list

tuple of float, list of float, rio.Affine, optional List of 6 numbers specifying an affine transform in the specified CRS. In row-major order: [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation]. All bands are re-projected to this transform.

None
scale float

Resample image(s) to this pixel scale (size) (m). Where image bands have different scales, all are resampled to this scale. Defaults to the minimum scale of image bands.

None
resampling ResamplingMethod

Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.

'near'
dtype str

Convert to this data type (uint8, int8, uint16, int16, uint32, int32, float32 or float64). Defaults to auto select a minimum size type that can represent the range of pixel values.

None
overwrite bool

Overwrite the destination file if it exists. Defaults to True.

True
num_threads int

Number of tiles to download concurrently. Defaults to a sensible auto value.

None
max_tile_size

int, optional Maximum tile size (MB). If None, defaults to the Earth Engine download size limit (32 MB).

None
max_tile_dim

int, optional Maximum tile width/height (pixels). If None, defaults to Earth Engine download limit (10000).

None
shape

tuple of int, optional (height, width) dimensions to export (pixels).

None
scale_offset

bool, optional Whether to apply any EE band scales and offsets to the image.

False
unmask_value float

The value to use for pixels that are masked in the input image. If the exported image contains zero values, you should set the unmask value to a non-zero value so that the zero values are not treated as missing data. Defaults to None.

None
Source code in geemap/common.py
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
def download_ee_image_collection(
    collection,
    out_dir=None,
    filenames=None,
    region=None,
    crs=None,
    crs_transform=None,
    scale=None,
    resampling="near",
    dtype=None,
    overwrite=True,
    num_threads=None,
    max_tile_size=None,
    max_tile_dim=None,
    shape=None,
    scale_offset=False,
    unmask_value=None,
    **kwargs,
):
    """Download an Earth Engine ImageCollection as GeoTIFFs. Images larger than the `Earth Engine size limit are split and downloaded as
        separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

    Args:
        collection (ee.ImageCollection): The image collection to be downloaded.
        out_dir (str, optional): The directory to save the downloaded images. Defaults to the current directory.
        filenames (list, optional): A list of filenames to use for the downloaded images. Defaults to the image ID.
        region (ee.Geometry, optional): Region defined by geojson polygon in WGS84. Defaults to the entire image granule.
        crs (str, optional): Reproject image(s) to this EPSG or WKT CRS.  Where image bands have different CRSs, all are
            re-projected to this CRS. Defaults to the CRS of the minimum scale band.
        crs_transform (list, optional): tuple of float, list of float, rio.Affine, optional
            List of 6 numbers specifying an affine transform in the specified CRS.  In row-major order:
            [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation].  All bands are re-projected to
            this transform.
        scale (float, optional): Resample image(s) to this pixel scale (size) (m).  Where image bands have different scales,
            all are resampled to this scale.  Defaults to the minimum scale of image bands.
        resampling (ResamplingMethod, optional): Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.
        dtype (str, optional): Convert to this data type (`uint8`, `int8`, `uint16`, `int16`, `uint32`, `int32`, `float32`
            or `float64`).  Defaults to auto select a minimum size type that can represent the range of pixel values.
        overwrite (bool, optional): Overwrite the destination file if it exists. Defaults to True.
        num_threads (int, optional): Number of tiles to download concurrently. Defaults to a sensible auto value.
        max_tile_size: int, optional
            Maximum tile size (MB).  If None, defaults to the Earth Engine download size limit (32 MB).
        max_tile_dim: int, optional
            Maximum tile width/height (pixels).  If None, defaults to Earth Engine download limit (10000).
        shape: tuple of int, optional
            (height, width) dimensions to export (pixels).
        scale_offset: bool, optional
            Whether to apply any EE band scales and offsets to the image.
        unmask_value (float, optional): The value to use for pixels that are masked in the input image. If the exported image contains zero values,
            you should set the unmask value to a  non-zero value so that the zero values are not treated as missing data. Defaults to None.
    """

    if not isinstance(collection, ee.ImageCollection):
        raise ValueError("ee_object must be an ee.ImageCollection.")

    if out_dir is None:
        out_dir = os.getcwd()

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    try:
        count = int(collection.size().getInfo())
        print(f"Total number of images: {count}\n")

        if filenames is not None:
            if len(filenames) != count:
                raise ValueError(
                    f"The number of filenames must match the number of image: {count}"
                )

        for i in range(0, count):
            image = ee.Image(collection.toList(count).get(i))
            if filenames is not None:
                name = filenames[i]
                if not name.endswith(".tif"):
                    name = name + ".tif"
            else:
                name = image.get("system:index").getInfo() + ".tif"
            filename = os.path.join(os.path.abspath(out_dir), name)
            print(f"Downloading {i + 1}/{count}: {name}")
            download_ee_image(
                image,
                filename,
                region,
                crs,
                crs_transform,
                scale,
                resampling,
                dtype,
                overwrite,
                num_threads,
                max_tile_size,
                max_tile_dim,
                shape,
                scale_offset,
                unmask_value,
                **kwargs,
            )

    except Exception as e:
        raise Exception(f"Error downloading image collection: {e}")

download_ee_image_tiles(image, features, out_dir=None, prefix=None, crs=None, crs_transform=None, scale=None, resampling='near', dtype=None, overwrite=True, num_threads=None, max_tile_size=None, max_tile_dim=None, shape=None, scale_offset=False, unmask_value=None, column=None, **kwargs)

Download an Earth Engine Image as small tiles based on ee.FeatureCollection. Images larger than the `Earth Engine size limit are split and downloaded as separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

Parameters:

Name Type Description Default
image Image

The image to be downloaded.

required
features FeatureCollection

The features to loop through to download image.

required
out_dir str

The output directory. Defaults to None.

None
prefix str

The prefix for the output file. Defaults to None.

None
crs str

Reproject image(s) to this EPSG or WKT CRS. Where image bands have different CRSs, all are re-projected to this CRS. Defaults to the CRS of the minimum scale band.

None
crs_transform list

tuple of float, list of float, rio.Affine, optional List of 6 numbers specifying an affine transform in the specified CRS. In row-major order: [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation]. All bands are re-projected to this transform.

None
scale float

Resample image(s) to this pixel scale (size) (m). Where image bands have different scales, all are resampled to this scale. Defaults to the minimum scale of image bands.

None
resampling ResamplingMethod

Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.

'near'
dtype str

Convert to this data type (uint8, int8, uint16, int16, uint32, int32, float32 or float64). Defaults to auto select a minimum size type that can represent the range of pixel values.

None
overwrite bool

Overwrite the destination file if it exists. Defaults to True.

True
num_threads int

Number of tiles to download concurrently. Defaults to a sensible auto value.

None
max_tile_size

int, optional Maximum tile size (MB). If None, defaults to the Earth Engine download size limit (32 MB).

None
max_tile_dim

int, optional Maximum tile width/height (pixels). If None, defaults to Earth Engine download limit (10000).

None
shape

tuple of int, optional (height, width) dimensions to export (pixels).

None
scale_offset

bool, optional Whether to apply any EE band scales and offsets to the image.

False
unmask_value float

The value to use for pixels that are masked in the input image. If the exported image contains zero values, you should set the unmask value to a non-zero value so that the zero values are not treated as missing data. Defaults to None.

None
column str

The column name to use for the filename. Defaults to None.

None
Source code in geemap/common.py
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
def download_ee_image_tiles(
    image,
    features,
    out_dir=None,
    prefix=None,
    crs=None,
    crs_transform=None,
    scale=None,
    resampling="near",
    dtype=None,
    overwrite=True,
    num_threads=None,
    max_tile_size=None,
    max_tile_dim=None,
    shape=None,
    scale_offset=False,
    unmask_value=None,
    column=None,
    **kwargs,
):
    """Download an Earth Engine Image as small tiles based on ee.FeatureCollection. Images larger than the `Earth Engine size limit are split and downloaded as
        separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

    Args:
        image (ee.Image): The image to be downloaded.
        features (ee.FeatureCollection): The features to loop through to download image.
        out_dir (str, optional): The output directory. Defaults to None.
        prefix (str, optional): The prefix for the output file. Defaults to None.
        crs (str, optional): Reproject image(s) to this EPSG or WKT CRS.  Where image bands have different CRSs, all are
            re-projected to this CRS. Defaults to the CRS of the minimum scale band.
        crs_transform (list, optional): tuple of float, list of float, rio.Affine, optional
            List of 6 numbers specifying an affine transform in the specified CRS.  In row-major order:
            [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation].  All bands are re-projected to
            this transform.
        scale (float, optional): Resample image(s) to this pixel scale (size) (m).  Where image bands have different scales,
            all are resampled to this scale.  Defaults to the minimum scale of image bands.
        resampling (ResamplingMethod, optional): Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.
        dtype (str, optional): Convert to this data type (`uint8`, `int8`, `uint16`, `int16`, `uint32`, `int32`, `float32`
            or `float64`).  Defaults to auto select a minimum size type that can represent the range of pixel values.
        overwrite (bool, optional): Overwrite the destination file if it exists. Defaults to True.
        num_threads (int, optional): Number of tiles to download concurrently. Defaults to a sensible auto value.
        max_tile_size: int, optional
            Maximum tile size (MB).  If None, defaults to the Earth Engine download size limit (32 MB).
        max_tile_dim: int, optional
            Maximum tile width/height (pixels).  If None, defaults to Earth Engine download limit (10000).
        shape: tuple of int, optional
            (height, width) dimensions to export (pixels).
        scale_offset: bool, optional
            Whether to apply any EE band scales and offsets to the image.
        unmask_value (float, optional): The value to use for pixels that are masked in the input image. If the exported image contains zero values,
            you should set the unmask value to a  non-zero value so that the zero values are not treated as missing data. Defaults to None.
        column (str, optional): The column name to use for the filename. Defaults to None.

    """
    import time

    start = time.time()

    if os.environ.get("USE_MKDOCS") is not None:
        return

    if not isinstance(features, ee.FeatureCollection):
        raise ValueError("features must be an ee.FeatureCollection.")

    if out_dir is None:
        out_dir = os.getcwd()

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if prefix is None:
        prefix = ""

    count = features.size().getInfo()
    collection = features.toList(count)

    if column is not None:
        names = features.aggregate_array(column).getInfo()
    else:
        names = [str(i + 1).zfill(len(str(count))) for i in range(count)]

    for i in range(count):
        region = ee.Feature(collection.get(i)).geometry()
        filename = os.path.join(
            out_dir, "{}{}.tif".format(prefix, names[i].replace("/", "_"))
        )
        print(f"Downloading {i + 1}/{count}: {filename}")
        download_ee_image(
            image,
            filename,
            region,
            crs,
            crs_transform,
            scale,
            resampling,
            dtype,
            overwrite,
            num_threads,
            max_tile_size,
            max_tile_dim,
            shape,
            scale_offset,
            unmask_value,
            **kwargs,
        )

    print(f"Downloaded {count} tiles in {time.time() - start} seconds.")

download_ee_image_tiles_parallel(image, features, out_dir=None, prefix=None, crs=None, crs_transform=None, scale=None, resampling='near', dtype=None, overwrite=True, num_threads=None, max_tile_size=None, max_tile_dim=None, shape=None, scale_offset=False, unmask_value=None, column=None, job_args={'n_jobs': -1}, ee_init=True, project_id=None, **kwargs)

Download an Earth Engine Image as small tiles based on ee.FeatureCollection. Images larger than the `Earth Engine size limit are split and downloaded as separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

Parameters:

Name Type Description Default
image Image

The image to be downloaded.

required
features FeatureCollection

The features to loop through to download image.

required
out_dir str

The output directory. Defaults to None.

None
prefix str

The prefix for the output file. Defaults to None.

None
crs str

Reproject image(s) to this EPSG or WKT CRS. Where image bands have different CRSs, all are re-projected to this CRS. Defaults to the CRS of the minimum scale band.

None
crs_transform list

tuple of float, list of float, rio.Affine, optional List of 6 numbers specifying an affine transform in the specified CRS. In row-major order: [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation]. All bands are re-projected to this transform.

None
scale float

Resample image(s) to this pixel scale (size) (m). Where image bands have different scales, all are resampled to this scale. Defaults to the minimum scale of image bands.

None
resampling ResamplingMethod

Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.

'near'
dtype str

Convert to this data type (uint8, int8, uint16, int16, uint32, int32, float32 or float64). Defaults to auto select a minimum size type that can represent the range of pixel values.

None
overwrite bool

Overwrite the destination file if it exists. Defaults to True.

True
num_threads int

Number of tiles to download concurrently. Defaults to a sensible auto value.

None
max_tile_size

int, optional Maximum tile size (MB). If None, defaults to the Earth Engine download size limit (32 MB).

None
max_tile_dim

int, optional Maximum tile width/height (pixels). If None, defaults to Earth Engine download limit (10000).

None
shape

tuple of int, optional (height, width) dimensions to export (pixels).

None
scale_offset

bool, optional Whether to apply any EE band scales and offsets to the image.

False
unmask_value float

The value to use for pixels that are masked in the input image. If the exported image contains zero values, you should set the unmask value to a non-zero value so that the zero values are not treated as missing data. Defaults to None.

None
column str

The column name in the feature collection to use as the filename. Defaults to None.

None
job_args dict

The arguments to pass to joblib.Parallel. Defaults to {"n_jobs": -1}.

{'n_jobs': -1}
ee_init bool

Whether to initialize Earth Engine. Defaults to True.

True
project_id str

The Earth Engine project ID. Defaults to None.

None
Source code in geemap/common.py
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
def download_ee_image_tiles_parallel(
    image,
    features,
    out_dir=None,
    prefix=None,
    crs=None,
    crs_transform=None,
    scale=None,
    resampling="near",
    dtype=None,
    overwrite=True,
    num_threads=None,
    max_tile_size=None,
    max_tile_dim=None,
    shape=None,
    scale_offset=False,
    unmask_value=None,
    column=None,
    job_args={"n_jobs": -1},
    ee_init=True,
    project_id=None,
    **kwargs,
):
    """Download an Earth Engine Image as small tiles based on ee.FeatureCollection. Images larger than the `Earth Engine size limit are split and downloaded as
        separate tiles, then re-assembled into a single GeoTIFF. See https://github.com/dugalh/geedim/blob/main/geedim/download.py#L574

    Args:
        image (ee.Image): The image to be downloaded.
        features (ee.FeatureCollection): The features to loop through to download image.
        out_dir (str, optional): The output directory. Defaults to None.
        prefix (str, optional): The prefix for the output file. Defaults to None.
        crs (str, optional): Reproject image(s) to this EPSG or WKT CRS.  Where image bands have different CRSs, all are
            re-projected to this CRS. Defaults to the CRS of the minimum scale band.
        crs_transform (list, optional): tuple of float, list of float, rio.Affine, optional
            List of 6 numbers specifying an affine transform in the specified CRS.  In row-major order:
            [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation].  All bands are re-projected to
            this transform.
        scale (float, optional): Resample image(s) to this pixel scale (size) (m).  Where image bands have different scales,
            all are resampled to this scale.  Defaults to the minimum scale of image bands.
        resampling (ResamplingMethod, optional): Resampling method, can be 'near', 'bilinear', 'bicubic', or 'average'. Defaults to None.
        dtype (str, optional): Convert to this data type (`uint8`, `int8`, `uint16`, `int16`, `uint32`, `int32`, `float32`
            or `float64`).  Defaults to auto select a minimum size type that can represent the range of pixel values.
        overwrite (bool, optional): Overwrite the destination file if it exists. Defaults to True.
        num_threads (int, optional): Number of tiles to download concurrently. Defaults to a sensible auto value.
        max_tile_size: int, optional
            Maximum tile size (MB).  If None, defaults to the Earth Engine download size limit (32 MB).
        max_tile_dim: int, optional
            Maximum tile width/height (pixels).  If None, defaults to Earth Engine download limit (10000).
        shape: tuple of int, optional
            (height, width) dimensions to export (pixels).
        scale_offset: bool, optional
            Whether to apply any EE band scales and offsets to the image.
        unmask_value (float, optional): The value to use for pixels that are masked in the input image. If the exported image contains zero values,
            you should set the unmask value to a  non-zero value so that the zero values are not treated as missing data. Defaults to None.
        column (str, optional): The column name in the feature collection to use as the filename. Defaults to None.
        job_args (dict, optional): The arguments to pass to joblib.Parallel. Defaults to {"n_jobs": -1}.
        ee_init (bool, optional): Whether to initialize Earth Engine. Defaults to True.
        project_id (str, optional): The Earth Engine project ID. Defaults to None.

    """
    import joblib
    import time

    start = time.time()

    if os.environ.get("USE_MKDOCS") is not None:
        return

    if not isinstance(features, ee.FeatureCollection):
        raise ValueError("features must be an ee.FeatureCollection.")

    if out_dir is None:
        out_dir = os.getcwd()

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if prefix is None:
        prefix = ""

    count = features.size().getInfo()
    if column is not None:
        names = features.aggregate_array(column).getInfo()
    else:
        names = [str(i + 1).zfill(len(str(count))) for i in range(count)]
    collection = features.toList(count)

    def download_data(index):
        if ee_init:
            ee_initialize(
                opt_url="https://earthengine-highvolume.googleapis.com",
                project=project_id,
            )
        region = ee.Feature(collection.get(index)).geometry()
        filename = os.path.join(
            out_dir, "{}{}.tif".format(prefix, names[index].replace("/", "_"))
        )
        print(f"Downloading {index + 1}/{count}: {filename}")

        download_ee_image(
            image,
            filename,
            region,
            crs,
            crs_transform,
            scale,
            resampling,
            dtype,
            overwrite,
            num_threads,
            max_tile_size,
            max_tile_dim,
            shape,
            scale_offset,
            unmask_value,
            **kwargs,
        )

    with joblib.Parallel(**job_args) as parallel:
        parallel(joblib.delayed(download_data)(index) for index in range(count))

    end = time.time()
    print(f"Finished in {end - start} seconds.")

download_ee_video(collection, video_args, out_gif, timeout=300, proxies=None)

Downloads a video thumbnail as a GIF image from Earth Engine.

Parameters:

Name Type Description Default
collection object

An ee.ImageCollection.

required
video_args object

Parameters for expring the video thumbnail.

required
out_gif str

File path to the output GIF.

required
timeout int

The number of seconds the request will be timed out. Defaults to 300.

300
proxies dict

A dictionary of proxy servers to use. Defaults to None.

None
Source code in geemap/common.py
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
def download_ee_video(collection, video_args, out_gif, timeout=300, proxies=None):
    """Downloads a video thumbnail as a GIF image from Earth Engine.

    Args:
        collection (object): An ee.ImageCollection.
        video_args (object): Parameters for expring the video thumbnail.
        out_gif (str): File path to the output GIF.
        timeout (int, optional): The number of seconds the request will be timed out. Defaults to 300.
        proxies (dict, optional): A dictionary of proxy servers to use. Defaults to None.
    """

    out_gif = os.path.abspath(out_gif)
    if not out_gif.endswith(".gif"):
        print("The output file must have an extension of .gif.")
        return

    if not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    if "region" in video_args.keys():
        roi = video_args["region"]

        if not isinstance(roi, ee.Geometry):
            try:
                roi = roi.geometry()
            except Exception as e:
                print("Could not convert the provided roi to ee.Geometry")
                print(e)
                return

        video_args["region"] = roi
    if "dimensions" not in video_args:
        video_args["dimensions"] = 768

    try:
        print("Generating URL...")
        url = collection.getVideoThumbURL(video_args)

        print(f"Downloading GIF image from {url}\nPlease wait ...")
        r = requests.get(url, stream=True, timeout=timeout, proxies=proxies)

        if r.status_code != 200:
            print("An error occurred while downloading.")
            print(r.json()["error"]["message"])
            return
        else:
            with open(out_gif, "wb") as fd:
                for chunk in r.iter_content(chunk_size=1024):
                    fd.write(chunk)
            print(f"The GIF image has been saved to: {out_gif}")
    except Exception as e:
        print(e)

download_file(url=None, output=None, quiet=False, proxy=None, speed=None, use_cookies=True, verify=True, id=None, fuzzy=False, resume=False, unzip=True, overwrite=False)

Download a file from URL, including Google Drive shared URL.

Parameters:

Name Type Description Default
url Optional[str]

Google Drive URL is also supported. Defaults to None.

None
output Optional[str]

Output filename. Default is basename of URL.

None
quiet bool

Suppress terminal output. Default is False.

False
proxy Optional[str]

Proxy. Defaults to None.

None
speed Optional[float]

Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None.

None
use_cookies bool

Flag to use cookies. Defaults to True.

True
verify Union[bool, str]

Either a bool, in which case it controls whether the server's TLS certificate is verified, or a string, in which case it must be a path to a CA bundle to use. Default is True.

True
id Optional[str]

Google Drive's file ID. Defaults to None.

None
fuzzy bool

Fuzzy extraction of Google Drive's file Id. Defaults to False.

False
resume bool

Resume the download from existing tmp file if possible. Defaults to False.

False
unzip bool

Unzip the file. Defaults to True.

True
overwrite bool

Overwrite the file if it already exists. Defaults to False.

False

Returns:

Name Type Description
str str

The output file path.

Source code in geemap/coreutils.py
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
def download_file(
    url: Optional[str] = None,
    output: Optional[str] = None,
    quiet: bool = False,
    proxy: Optional[str] = None,
    speed: Optional[float] = None,
    use_cookies: bool = True,
    verify: Union[bool, str] = True,
    id: Optional[str] = None,
    fuzzy: bool = False,
    resume: bool = False,
    unzip: bool = True,
    overwrite: bool = False,
) -> str:
    """Download a file from URL, including Google Drive shared URL.

    Args:
        url (Optional[str], optional): Google Drive URL is also supported.
            Defaults to None.
        output (Optional[str], optional): Output filename. Default is basename of URL.
        quiet (bool, optional): Suppress terminal output. Default is False.
        proxy (Optional[str], optional): Proxy. Defaults to None.
        speed (Optional[float], optional): Download byte size per second (e.g.,
            256KB/s = 256 * 1024). Defaults to None.
        use_cookies (bool, optional): Flag to use cookies. Defaults to True.
        verify (Union[bool, str], optional): Either a bool, in which case it
            controls whether the server's TLS certificate is verified, or a
            string, in which case it must be a path to a CA bundle to use.
            Default is True.
        id (Optional[str], optional): Google Drive's file ID. Defaults to None.
        fuzzy (bool, optional): Fuzzy extraction of Google Drive's file Id.
            Defaults to False.
        resume (bool, optional): Resume the download from existing tmp file if
            possible. Defaults to False.
        unzip (bool, optional): Unzip the file. Defaults to True.
        overwrite (bool, optional): Overwrite the file if it already exists.
            Defaults to False.

    Returns:
        str: The output file path.
    """

    import gdown

    if output is None:
        if isinstance(url, str) and url.startswith("http"):
            output = os.path.basename(url)

    if isinstance(url, str):
        if os.path.exists(os.path.abspath(output)) and (not overwrite):
            print(
                f"{output} already exists. Skip downloading. Set overwrite=True to overwrite."
            )
            return os.path.abspath(output)
        else:
            url = github_raw_url(url)

    if "https://drive.google.com/file/d/" in url:
        fuzzy = True

    output = gdown.download(
        url, output, quiet, proxy, speed, use_cookies, verify, id, fuzzy, resume
    )

    if unzip and output.endswith(".zip"):
        with zipfile.ZipFile(output, "r") as zip_ref:
            if not quiet:
                print("Extracting files...")
            zip_ref.extractall(os.path.dirname(output))

    return os.path.abspath(output)

download_folder(url=None, id=None, output=None, quiet=False, proxy=None, speed=None, use_cookies=True, remaining_ok=False)

Downloads the entire folder from URL.

Parameters:

Name Type Description Default
url str

URL of the Google Drive folder. Must be of the format 'https://drive.google.com/drive/folders/{url}'. Defaults to None.

None
id str

Google Drive's folder ID. Defaults to None.

None
output str

String containing the path of the output folder. Defaults to current working directory.

None
quiet bool

Suppress terminal output. Defaults to False.

False
proxy str

Proxy. Defaults to None.

None
speed float

Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None.

None
use_cookies bool

Flag to use cookies. Defaults to True.

True
resume bool

Resume the download from existing tmp file if possible. Defaults to False.

required

Returns:

Name Type Description
list

List of files downloaded, or None if failed.

Source code in geemap/common.py
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
def download_folder(
    url=None,
    id=None,
    output=None,
    quiet=False,
    proxy=None,
    speed=None,
    use_cookies=True,
    remaining_ok=False,
):
    """Downloads the entire folder from URL.

    Args:
        url (str, optional): URL of the Google Drive folder. Must be of the format 'https://drive.google.com/drive/folders/{url}'. Defaults to None.
        id (str, optional): Google Drive's folder ID. Defaults to None.
        output (str, optional):  String containing the path of the output folder. Defaults to current working directory.
        quiet (bool, optional): Suppress terminal output. Defaults to False.
        proxy (str, optional): Proxy. Defaults to None.
        speed (float, optional): Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None.
        use_cookies (bool, optional): Flag to use cookies. Defaults to True.
        resume (bool, optional): Resume the download from existing tmp file if possible. Defaults to False.

    Returns:
        list: List of files downloaded, or None if failed.
    """
    import gdown

    files = gdown.download_folder(
        url, id, output, quiet, proxy, speed, use_cookies, remaining_ok
    )
    return files

download_from_gdrive(gfile_url, file_name, out_dir='.', unzip=True, verbose=True)

Download a file shared via Google Drive (e.g., https://drive.google.com/file/d/18SUo_HcDGltuWYZs1s7PpOmOq_FvFn04/view?usp=sharing)

Parameters:

Name Type Description Default
gfile_url str

The Google Drive shared file URL

required
file_name str

The output file name to use.

required
out_dir str

The output directory. Defaults to '.'.

'.'
unzip bool

Whether to unzip the output file if it is a zip file. Defaults to True.

True
verbose bool

Whether to display or not the output of the function

True
Source code in geemap/common.py
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
def download_from_gdrive(gfile_url, file_name, out_dir=".", unzip=True, verbose=True):
    """Download a file shared via Google Drive
       (e.g., https://drive.google.com/file/d/18SUo_HcDGltuWYZs1s7PpOmOq_FvFn04/view?usp=sharing)

    Args:
        gfile_url (str): The Google Drive shared file URL
        file_name (str): The output file name to use.
        out_dir (str, optional): The output directory. Defaults to '.'.
        unzip (bool, optional): Whether to unzip the output file if it is a zip file. Defaults to True.
        verbose (bool, optional): Whether to display or not the output of the function
    """
    try:
        from google_drive_downloader import GoogleDriveDownloader as gdd
    except ImportError:
        raise Exception(
            "Please install the google_drive_downloader package using `pip install googledrivedownloader`"
        )

    file_id = gfile_url.split("/")[5]
    if verbose:
        print(f"Google Drive file id: {file_id}")

    dest_path = os.path.join(out_dir, file_name)
    gdd.download_file_from_google_drive(file_id, dest_path, True, unzip)

    return

download_from_url(url, out_file_name=None, out_dir='.', unzip=True, verbose=True)

Download a file from a URL (e.g., https://github.com/giswqs/whitebox/raw/master/examples/testdata.zip)

Parameters:

Name Type Description Default
url str

The HTTP URL to download.

required
out_file_name str

The output file name to use. Defaults to None.

None
out_dir str

The output directory to use. Defaults to '.'.

'.'
unzip bool

Whether to unzip the downloaded file if it is a zip file. Defaults to True.

True
verbose bool

Whether to display or not the output of the function

True
Source code in geemap/common.py
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
def download_from_url(url, out_file_name=None, out_dir=".", unzip=True, verbose=True):
    """Download a file from a URL (e.g., https://github.com/giswqs/whitebox/raw/master/examples/testdata.zip)

    Args:
        url (str): The HTTP URL to download.
        out_file_name (str, optional): The output file name to use. Defaults to None.
        out_dir (str, optional): The output directory to use. Defaults to '.'.
        unzip (bool, optional): Whether to unzip the downloaded file if it is a zip file. Defaults to True.
        verbose (bool, optional): Whether to display or not the output of the function
    """
    in_file_name = os.path.basename(url)

    if out_file_name is None:
        out_file_name = in_file_name
    out_file_path = os.path.join(os.path.abspath(out_dir), out_file_name)

    if verbose:
        print(f"Downloading {url} ...")

    try:
        urllib.request.urlretrieve(url, out_file_path)
    except Exception:
        raise Exception("The URL is invalid. Please double check the URL.")

    final_path = out_file_path

    if unzip:
        # if it is a zip file
        if ".zip" in out_file_name:
            if verbose:
                print(f"Unzipping {out_file_name} ...")
            with zipfile.ZipFile(out_file_path, "r") as zip_ref:
                zip_ref.extractall(out_dir)
            final_path = os.path.join(
                os.path.abspath(out_dir), out_file_name.replace(".zip", "")
            )

        # if it is a tar file
        if ".tar" in out_file_name:
            if verbose:
                print(f"Unzipping {out_file_name} ...")
            with tarfile.open(out_file_path, "r") as tar_ref:
                with tarfile.open(out_file_path, "r") as tar_ref:

                    def is_within_directory(directory, target):
                        abs_directory = os.path.abspath(directory)
                        abs_target = os.path.abspath(target)

                        prefix = os.path.commonprefix([abs_directory, abs_target])

                        return prefix == abs_directory

                    def safe_extract(
                        tar, path=".", members=None, *, numeric_owner=False
                    ):
                        for member in tar.getmembers():
                            member_path = os.path.join(path, member.name)
                            if not is_within_directory(path, member_path):
                                raise Exception("Attempted Path Traversal in Tar File")

                        tar.extractall(path, members, numeric_owner=numeric_owner)

                    safe_extract(tar_ref, out_dir)
            final_path = os.path.join(
                os.path.abspath(out_dir), out_file_name.replace(".tar", "")
            )

    if verbose:
        print(f"Data downloaded to: {final_path}")

    return

download_gee_app(url, out_file=None)

Downloads JavaScript source code from a GEE App

Parameters:

Name Type Description Default
url str

The URL of the GEE App.

required
out_file str

The output file path for the downloaded JavaScript. Defaults to None.

None
Source code in geemap/conversion.py
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
def download_gee_app(url, out_file=None):
    """Downloads JavaScript source code from a GEE App

    Args:
        url (str): The URL of the GEE App.
        out_file (str, optional): The output file path for the downloaded JavaScript. Defaults to None.
    """
    cwd = os.getcwd()
    out_file_name = os.path.basename(url) + ".js"
    out_file_path = os.path.join(cwd, out_file_name)
    items = url.split("/")
    items[3] = "javascript"
    items[4] = items[4] + "-modules.json"
    json_url = "/".join(items)
    print(f"The json url: {json_url}")

    if out_file is not None:
        out_file_path = out_file
        if not out_file_path.endswith("js"):
            out_file_path += ".js"

    out_dir = os.path.dirname(out_file_path)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    json_path = out_file_path + "on"

    try:
        urllib.request.urlretrieve(json_url, json_path)
    except Exception:
        raise Exception("The URL is invalid. Please double check the URL.")

    with open(out_file_path, "w") as f1:
        with open(json_path, encoding="utf-8") as f2:
            lines = f2.readlines()
            for line in lines:
                # print(line)
                items = line.split("\\n")
                for index, item in enumerate(items):
                    if (index > 0) and (index < (len(items) - 1)):
                        item = item.replace('\\"', '"')
                        item = item.replace(r"\\", "\n")
                        item = item.replace("\\r", "")
                        f1.write(item + "\n")
    os.remove(json_path)
    print(f"The JavaScript is saved at: {out_file_path}")

download_ned(region, out_dir=None, return_url=False, download_args={}, **kwargs)

Download the US National Elevation Datasets (NED) for a region.

Parameters:

Name Type Description Default
region str | list

A filepath to a vector dataset or a list of bounds in the form of [minx, miny, maxx, maxy].

required
out_dir str

The directory to download the files to. Defaults to None, which uses the current working directory.

None
return_url bool

Whether to return the download URLs of the files. Defaults to False.

False
download_args dict

A dictionary of arguments to pass to the download_file function. Defaults to {}.

{}

Returns:

Name Type Description
list

A list of the download URLs of the files if return_url is True.

Source code in geemap/common.py
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
def download_ned(region, out_dir=None, return_url=False, download_args={}, **kwargs):
    """Download the US National Elevation Datasets (NED) for a region.

    Args:
        region (str | list): A filepath to a vector dataset or a list of bounds in the form of [minx, miny, maxx, maxy].
        out_dir (str, optional): The directory to download the files to. Defaults to None, which uses the current working directory.
        return_url (bool, optional): Whether to return the download URLs of the files. Defaults to False.
        download_args (dict, optional): A dictionary of arguments to pass to the download_file function. Defaults to {}.

    Returns:
        list: A list of the download URLs of the files if return_url is True.
    """
    import geopandas as gpd

    if out_dir is None:
        out_dir = os.getcwd()
    else:
        out_dir = os.path.abspath(out_dir)

    if isinstance(region, str):
        if region.startswith("http"):
            region = github_raw_url(region)
            region = download_file(region)
        elif not os.path.exists(region):
            raise ValueError("region must be a path or a URL to a vector dataset.")

        roi = gpd.read_file(region, **kwargs)
        roi = roi.to_crs(epsg=4326)
        bounds = roi.total_bounds

    elif isinstance(region, list):
        bounds = region

    else:
        raise ValueError(
            "region must be a filepath or a list of bounds in the form of [minx, miny, maxx, maxy]."
        )
    minx, miny, maxx, maxy = [float(x) for x in bounds]
    tiles = []
    left = abs(math.floor(minx))
    right = abs(math.floor(maxx)) - 1
    upper = math.ceil(maxy)
    bottom = math.ceil(miny) - 1

    for y in range(upper, bottom, -1):
        for x in range(left, right, -1):
            tile_id = "n{}w{}".format(str(y).zfill(2), str(x).zfill(3))
            tiles.append(tile_id)

    links = []
    filepaths = []

    for index, tile in enumerate(tiles):
        tif_url = f"https://prd-tnm.s3.amazonaws.com/StagedProducts/Elevation/13/TIFF/current/{tile}/USGS_13_{tile}.tif"

        r = requests.head(tif_url)
        if r.status_code == 200:
            tif = os.path.join(out_dir, os.path.basename(tif_url))
            links.append(tif_url)
            filepaths.append(tif)
        else:
            print(f"{tif_url} does not exist.")

    if return_url:
        return links
    else:
        for index, link in enumerate(links):
            print(f"Downloading {index + 1} of {len(links)}: {os.path.basename(link)}")
            download_file(link, filepaths[index], **download_args)

dynamic_world(region=None, start_date='2020-01-01', end_date='2021-01-01', clip=False, reducer=None, projection='EPSG:3857', scale=10, return_type='hillshade')

Create 10-m land cover composite based on Dynamic World. The source code is adapted from the following tutorial by Spatial Thoughts: https://developers.google.com/earth-engine/tutorials/community/introduction-to-dynamic-world-pt-1

Parameters:

Name Type Description Default
region Geometry | FeatureCollection

The region of interest.

None
start_date str | Date

The start date of the query. Default to "2020-01-01".

'2020-01-01'
end_date str | Date

The end date of the query. Default to "2021-01-01".

'2021-01-01'
clip bool

Whether to clip the image to the region. Default to False.

False
reducer Reducer

The reducer to be used. Default to None.

None
projection str

The projection to be used for creating hillshade. Default to "EPSG:3857".

'EPSG:3857'
scale int

The scale to be used for creating hillshade. Default to 10.

10
return_type str

The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".

'hillshade'

Returns:

Type Description

ee.Image: The image with the specified return_type.

Source code in geemap/common.py
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
def dynamic_world(
    region=None,
    start_date="2020-01-01",
    end_date="2021-01-01",
    clip=False,
    reducer=None,
    projection="EPSG:3857",
    scale=10,
    return_type="hillshade",
):
    """Create 10-m land cover composite based on Dynamic World. The source code is adapted from the following tutorial by Spatial Thoughts:
    https://developers.google.com/earth-engine/tutorials/community/introduction-to-dynamic-world-pt-1

    Args:
        region (ee.Geometry | ee.FeatureCollection): The region of interest.
        start_date (str | ee.Date): The start date of the query. Default to "2020-01-01".
        end_date (str | ee.Date): The end date of the query. Default to "2021-01-01".
        clip (bool, optional): Whether to clip the image to the region. Default to False.
        reducer (ee.Reducer, optional): The reducer to be used. Default to None.
        projection (str, optional): The projection to be used for creating hillshade. Default to "EPSG:3857".
        scale (int, optional): The scale to be used for creating hillshade. Default to 10.
        return_type (str, optional): The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".

    Returns:
        ee.Image: The image with the specified return_type.
    """

    if return_type not in ["hillshade", "visualize", "class", "probability"]:
        raise ValueError(
            f"{return_type} must be one of 'hillshade', 'visualize', 'class', or 'probability'."
        )

    if reducer is None:
        reducer = ee.Reducer.mode()

    dw = ee.ImageCollection("GOOGLE/DYNAMICWORLD/V1").filter(
        ee.Filter.date(start_date, end_date)
    )

    if isinstance(region, ee.FeatureCollection) or isinstance(region, ee.Geometry):
        dw = dw.filterBounds(region)
    else:
        raise ValueError("region must be an ee.FeatureCollection or ee.Geometry.")

    # Create a Mode Composite
    classification = dw.select("label")
    dwComposite = classification.reduce(reducer)
    if clip and (region is not None):
        if isinstance(region, ee.Geometry):
            dwComposite = dwComposite.clip(region)
        elif isinstance(region, ee.FeatureCollection):
            dwComposite = dwComposite.clipToCollection(region)
        elif isinstance(region, ee.Feature):
            dwComposite = dwComposite.clip(region.geometry())

    dwVisParams = {
        "min": 0,
        "max": 8,
        "palette": [
            "#419BDF",
            "#397D49",
            "#88B053",
            "#7A87C6",
            "#E49635",
            "#DFC35A",
            "#C4281B",
            "#A59B8F",
            "#B39FE1",
        ],
    }

    if return_type == "class":
        return dwComposite
    elif return_type == "visualize":
        return dwComposite.visualize(**dwVisParams)
    else:
        # Create a Top-1 Probability Hillshade Visualization
        probabilityBands = [
            "water",
            "trees",
            "grass",
            "flooded_vegetation",
            "crops",
            "shrub_and_scrub",
            "built",
            "bare",
            "snow_and_ice",
        ]

        # Select probability bands
        probabilityCol = dw.select(probabilityBands)

        # Create a multi-band image with the average pixel-wise probability
        # for each band across the time-period
        meanProbability = probabilityCol.reduce(ee.Reducer.mean())

        # Composites have a default projection that is not suitable
        # for hillshade computation.
        # Set a EPSG:3857 projection with 10m scale
        proj = ee.Projection(projection).atScale(scale)
        meanProbability = meanProbability.setDefaultProjection(proj)

        # Create the Top1 Probability Hillshade
        top1Probability = meanProbability.reduce(ee.Reducer.max())

        if clip and (region is not None):
            if isinstance(region, ee.Geometry):
                top1Probability = top1Probability.clip(region)
            elif isinstance(region, ee.FeatureCollection):
                top1Probability = top1Probability.clipToCollection(region)
            elif isinstance(region, ee.Feature):
                top1Probability = top1Probability.clip(region.geometry())

        if return_type == "probability":
            return top1Probability
        else:
            top1Confidence = top1Probability.multiply(100).int()
            hillshade = ee.Terrain.hillshade(top1Confidence).divide(255)
            rgbImage = dwComposite.visualize(**dwVisParams).divide(255)
            probabilityHillshade = rgbImage.multiply(hillshade)

            return probabilityHillshade

dynamic_world_s2(region=None, start_date='2020-01-01', end_date='2021-01-01', clip=False, cloud_pct=0.35, reducer=None)

Create Sentinel-2 composite for the Dynamic World Land Cover product.

Parameters:

Name Type Description Default
region Geometry | FeatureCollection

The region of interest. Default to None.

None
start_date str | Date

The start date of the query. Default to "2020-01-01".

'2020-01-01'
end_date str | Date

The end date of the query. Default to "2021-01-01".

'2021-01-01'
clip bool

Whether to clip the image to the region. Default to False.

False
cloud_pct float

The percentage of cloud cover to be used for filtering. Default to 0.35.

0.35
reducer Reducer

The reducer to be used for creating image composite. Default to None.

None

Returns:

Type Description

ee.Image: The Sentinel-2 composite.

Source code in geemap/common.py
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
def dynamic_world_s2(
    region=None,
    start_date="2020-01-01",
    end_date="2021-01-01",
    clip=False,
    cloud_pct=0.35,
    reducer=None,
):
    """Create Sentinel-2 composite for the Dynamic World Land Cover product.

    Args:
        region (ee.Geometry | ee.FeatureCollection): The region of interest. Default to None.
        start_date (str | ee.Date): The start date of the query. Default to "2020-01-01".
        end_date (str | ee.Date): The end date of the query. Default to "2021-01-01".
        clip (bool, optional): Whether to clip the image to the region. Default to False.
        cloud_pct (float, optional): The percentage of cloud cover to be used for filtering. Default to 0.35.
        reducer (ee.Reducer, optional): The reducer to be used for creating image composite. Default to None.

    Returns:
        ee.Image: The Sentinel-2 composite.
    """
    s2 = (
        ee.ImageCollection("COPERNICUS/S2_HARMONIZED")
        .filterDate(start_date, end_date)
        .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", cloud_pct * 100))
    )

    if isinstance(region, ee.FeatureCollection) or isinstance(region, ee.Geometry):
        s2 = s2.filterBounds(region)
    else:
        raise ValueError("region must be an ee.FeatureCollection or ee.Geometry.")

    if reducer is None:
        reducer = ee.Reducer.median()

    image = s2.reduce(reducer).rename(s2.first().bandNames())

    if clip and (region is not None):
        if isinstance(region, ee.Geometry):
            image = image.clip(region)
        elif isinstance(region, ee.FeatureCollection):
            image = image.clipToCollection(region)

    return image

dynamic_world_timeseries(region, start_date='2016-01-01', end_date='2021-12-31', cloud_pct=30, frequency='year', reducer='mode', drop_empty=True, date_format=None, return_type='hillshade', parallel_scale=1)

Create Dynamic World timeseries.

Parameters:

Name Type Description Default
region Geometry | FeatureCollection

The region of interest.

required
start_date str | Date

The start date of the query. Default to "2016-01-01".

'2016-01-01'
end_date str | Date

The end date of the query. Default to "2021-12-31".

'2021-12-31'
cloud_pct int

The cloud percentage threshold (<=). Defaults to 30.

30
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to be used. Defaults to "mode".

'mode'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

True
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
return_type str

The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".

'hillshade'
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1

Returns:

Type Description

ee.ImageCollection: An ImageCollection of the Dynamic World land cover timeseries.

Source code in geemap/timelapse.py
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
def dynamic_world_timeseries(
    region,
    start_date="2016-01-01",
    end_date="2021-12-31",
    cloud_pct=30,
    frequency="year",
    reducer="mode",
    drop_empty=True,
    date_format=None,
    return_type="hillshade",
    parallel_scale=1,
):
    """Create Dynamic World timeseries.

    Args:
        region (ee.Geometry | ee.FeatureCollection): The region of interest.
        start_date (str | ee.Date): The start date of the query. Default to "2016-01-01".
        end_date (str | ee.Date): The end date of the query. Default to "2021-12-31".
        cloud_pct (int, optional): The cloud percentage threshold (<=). Defaults to 30.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional): The reducer to be used. Defaults to "mode".
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        return_type (str, optional): The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

    Returns:
        ee.ImageCollection: An ImageCollection of the Dynamic World land cover timeseries.
    """
    if return_type not in ["hillshade", "visualize", "class", "probability"]:
        raise ValueError(
            f"{return_type} must be one of 'hillshade', 'visualize', 'class', or 'probability'."
        )

    if (
        isinstance(region, ee.FeatureCollection)
        or isinstance(region, ee.Feature)
        or isinstance(region, ee.Geometry)
    ):
        pass
    else:
        raise ValueError(
            f"{region} must be one of ee.FeatureCollection, ee.Feature, or ee.Geometry."
        )

    if cloud_pct < 0 or cloud_pct > 100:
        raise ValueError(f"{cloud_pct} must be between 0 and 100.")

    s2 = (
        ee.ImageCollection("COPERNICUS/S2_HARMONIZED")
        .filterDate(start_date, end_date)
        .filterBounds(region)
        .filter(ee.Filter.lte("CLOUDY_PIXEL_PERCENTAGE", cloud_pct))
    )

    ids = s2.aggregate_array("system:index")

    dw = ee.ImageCollection("GOOGLE/DYNAMICWORLD/V1").filter(
        ee.Filter.inList("system:index", ids)
    )

    collection = dw.select("label")

    dwVisParams = {
        "min": 0,
        "max": 8,
        "palette": [
            "#419BDF",
            "#397D49",
            "#88B053",
            "#7A87C6",
            "#E49635",
            "#DFC35A",
            "#C4281B",
            "#A59B8F",
            "#B39FE1",
        ],
    }

    images = create_timeseries(
        collection,
        start_date,
        end_date,
        region,
        None,
        frequency,
        reducer,
        drop_empty,
        date_format,
        parallel_scale,
    )

    if return_type == "class":
        return images
    elif return_type == "visualize":
        result = images.map(lambda img: img.visualize(**dwVisParams))
        return result
    else:
        # Create a Top-1 Probability Hillshade Visualization
        probabilityBands = [
            "water",
            "trees",
            "grass",
            "flooded_vegetation",
            "crops",
            "shrub_and_scrub",
            "built",
            "bare",
            "snow_and_ice",
        ]

        # Select probability bands
        probabilityCol = dw.select(probabilityBands)

        prob_col = create_timeseries(
            probabilityCol,
            start_date,
            end_date,
            region,
            None,
            frequency,
            "mean",
            drop_empty,
            date_format,
            parallel_scale,
        )

        prob_images = ee.ImageCollection(
            prob_col.map(
                lambda img: img.reduce(ee.Reducer.max()).set(
                    "system:time_start", img.get("system:time_start")
                )
            )
        )

        if return_type == "probability":
            return prob_images

        elif return_type == "hillshade":
            count = prob_images.size()
            nums = ee.List.sequence(0, count.subtract(1))

            def create_hillshade(d):
                proj = ee.Projection("EPSG:3857").atScale(10)
                img = ee.Image(images.toList(images.size()).get(d))
                prob_img = ee.Image(prob_images.toList(prob_images.size()).get(d))
                prob_img = prob_img.setDefaultProjection(proj)
                top1Confidence = prob_img.multiply(100).int()
                hillshade = ee.Terrain.hillshade(top1Confidence).divide(255)
                rgbImage = img.visualize(**dwVisParams).divide(255)
                probabilityHillshade = rgbImage.multiply(hillshade)
                return probabilityHillshade.set(
                    "system:time_start", img.get("system:time_start")
                )

            result = ee.ImageCollection(nums.map(create_hillshade))
            return result

edit_download_html(htmlWidget, filename, title='Click here to download: ')

Downloads a file from voila. Adopted from https://github.com/voila-dashboards/voila/issues/578#issuecomment-617668058

Parameters:

Name Type Description Default
htmlWidget object

The HTML widget to display the URL.

required
filename str

File path to download.

required
title str

Download description. Defaults to "Click here to download: ".

'Click here to download: '
Source code in geemap/common.py
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
def edit_download_html(htmlWidget, filename, title="Click here to download: "):
    """Downloads a file from voila. Adopted from https://github.com/voila-dashboards/voila/issues/578#issuecomment-617668058

    Args:
        htmlWidget (object): The HTML widget to display the URL.
        filename (str): File path to download.
        title (str, optional): Download description. Defaults to "Click here to download: ".
    """

    # from IPython.display import HTML
    # import ipywidgets as widgets
    import base64

    # Change widget html temporarily to a font-awesome spinner
    htmlWidget.value = '<i class="fa fa-spinner fa-spin fa-2x fa-fw"></i><span class="sr-only">Loading...</span>'

    # Process raw data
    data = open(filename, "rb").read()
    b64 = base64.b64encode(data)
    payload = b64.decode()

    basename = os.path.basename(filename)

    # Create and assign html to widget
    html = '<a download="{filename}" href="data:text/csv;base64,{payload}" target="_blank">{title}</a>'
    htmlWidget.value = html.format(
        payload=payload, title=title + basename, filename=basename
    )

ee_api_to_csv(outfile=None, timeout=300, proxies=None)

Extracts Earth Engine API documentation from https://developers.google.com/earth-engine/api_docs as a csv file.

Parameters:

Name Type Description Default
outfile str

The output file path to a csv file. Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300
proxies dict

Proxy settings. Defaults to None.

None
Source code in geemap/common.py
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
def ee_api_to_csv(outfile=None, timeout=300, proxies=None):
    """Extracts Earth Engine API documentation from https://developers.google.com/earth-engine/api_docs as a csv file.

    Args:
        outfile (str, optional): The output file path to a csv file. Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.
        proxies (dict, optional): Proxy settings. Defaults to None.
    """
    from bs4 import BeautifulSoup

    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)
    data_dir = os.path.join(pkg_dir, "data")
    template_dir = os.path.join(data_dir, "template")
    csv_file = os.path.join(template_dir, "ee_api_docs.csv")

    if outfile is None:
        outfile = csv_file
    else:
        if not outfile.endswith(".csv"):
            print("The output file must end with .csv")
            return
        else:
            out_dir = os.path.dirname(outfile)
            if not os.path.exists(out_dir):
                os.makedirs(out_dir)

    url = "https://developers.google.com/earth-engine/api_docs"

    try:
        r = requests.get(url, timeout=timeout, proxies=proxies)
        soup = BeautifulSoup(r.content, "html.parser")

        names = []
        descriptions = []
        functions = []
        returns = []
        arguments = []
        types = []
        details = []

        names = [h2.text for h2 in soup.find_all("h2")]
        descriptions = [h2.next_sibling.next_sibling.text for h2 in soup.find_all("h2")]
        func_tables = soup.find_all("table", class_="blue")
        functions = [func_table.find("code").text for func_table in func_tables]
        returns = [func_table.find_all("td")[1].text for func_table in func_tables]

        detail_tables = []
        tables = soup.find_all("table", class_="blue")

        for table in tables:
            item = table.next_sibling
            if item.attrs == {"class": ["details"]}:
                detail_tables.append(item)
            else:
                detail_tables.append("")

        for detail_table in detail_tables:
            if detail_table != "":
                items = [item.text for item in detail_table.find_all("code")]
            else:
                items = ""
            arguments.append(items)

        for detail_table in detail_tables:
            if detail_table != "":
                items = [item.text for item in detail_table.find_all("td")]
                items = items[1::3]
            else:
                items = ""
            types.append(items)

        for detail_table in detail_tables:
            if detail_table != "":
                items = [item.text for item in detail_table.find_all("p")]
            else:
                items = ""
            details.append(items)

        with open(outfile, "w", encoding="utf-8") as csv_file:
            csv_writer = csv.writer(csv_file, delimiter="\t")

            csv_writer.writerow(
                [
                    "name",
                    "description",
                    "function",
                    "returns",
                    "argument",
                    "type",
                    "details",
                ]
            )

            for i in range(len(names)):
                name = names[i]
                description = descriptions[i]
                function = functions[i]
                return_type = returns[i]
                argument = "|".join(arguments[i])
                argu_type = "|".join(types[i])
                detail = "|".join(details[i])

                csv_writer.writerow(
                    [
                        name,
                        description,
                        function,
                        return_type,
                        argument,
                        argu_type,
                        detail,
                    ]
                )

    except Exception as e:
        print(e)

ee_data_html(asset)

Generates HTML from an asset to be used in the HTML widget.

Parameters:

Name Type Description Default
asset dict

A dictionary containing an Earth Engine asset.

required

Returns:

Name Type Description
str

A string containing HTML.

Source code in geemap/common.py
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
def ee_data_html(asset):
    """Generates HTML from an asset to be used in the HTML widget.

    Args:
        asset (dict): A dictionary containing an Earth Engine asset.

    Returns:
        str: A string containing HTML.
    """
    try:
        asset_title = asset.get("title", "Unknown")
        asset_dates = asset.get("dates", "Unknown")
        ee_id_snippet = asset.get("id", "Unknown")
        asset_uid = asset.get("uid", None)
        asset_url = asset.get("asset_url", "")
        code_url = asset.get("sample_code", None)
        thumbnail_url = asset.get("thumbnail_url", None)
        asset_type = asset.get("type", "Unknown")

        if asset_type == "image":
            ee_id_snippet = "ee.Image('{}')".format(ee_id_snippet)
        elif asset_type == "image_collection":
            ee_id_snippet = "ee.ImageCollection('{}')".format(ee_id_snippet)
        elif asset_type == "table":
            ee_id_snippet = "ee.FeatureCollection('{}')".format(ee_id_snippet)

        if not code_url and asset_uid:
            coder_url = f"""https://code.earthengine.google.com/?scriptPath=Examples%3ADatasets%2F{asset_uid}"""
        else:
            coder_url = code_url

        ## ee datasets always have a asset_url, and should have a thumbnail
        catalog = (
            bool(asset_url)
            * f"""
                    <h4>Data Catalog</h4>
                        <p style="margin-left: 40px"><a href="{asset_url.replace('terms-of-use','description')}" target="_blank">Description</a></p>
                        <p style="margin-left: 40px"><a href="{asset_url.replace('terms-of-use','bands')}" target="_blank">Bands</a></p>
                        <p style="margin-left: 40px"><a href="{asset_url.replace('terms-of-use','image-properties')}" target="_blank">Properties</a></p>
                        <p style="margin-left: 40px"><a href="{coder_url}" target="_blank">Example</a></p>
                    """
        )
        thumbnail = (
            bool(thumbnail_url)
            * f"""
                    <h4>Dataset Thumbnail</h4>
                    <img src="{thumbnail_url}">
                    """
        )
        ## only community datasets have a code_url
        alternative = (
            bool(code_url)
            * f"""
                    <h4>Community Catalog</h4>
                        <p style="margin-left: 40px">{asset.get('provider','Provider unknown')}</p>
                        <p style="margin-left: 40px">{asset.get('tags','Tags unknown')}</p>
                        <p style="margin-left: 40px"><a href="{coder_url}" target="_blank">Example</a></p>
                    """
        )

        template = f"""
            <html>
            <body>
                <h3>{asset_title}</h3>
                <h4>Dataset Availability</h4>
                    <p style="margin-left: 40px">{asset_dates}</p>
                <h4>Earth Engine Snippet</h4>
                    <p style="margin-left: 40px">{ee_id_snippet}</p>
                {catalog}
                {alternative}
                {thumbnail}
            </body>
            </html>
        """
        return template

    except Exception as e:
        print(e)

ee_data_thumbnail(asset_id, timeout=300, proxies=None)

Retrieves the thumbnail URL of an Earth Engine asset.

Parameters:

Name Type Description Default
asset_id str

An Earth Engine asset id.

required
timeout int

Timeout in seconds. Defaults to 300.

300
proxies dict

Proxy settings. Defaults to None.

None

Returns:

Name Type Description
str

An http url of the thumbnail.

Source code in geemap/common.py
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
def ee_data_thumbnail(asset_id, timeout=300, proxies=None):
    """Retrieves the thumbnail URL of an Earth Engine asset.

    Args:
        asset_id (str): An Earth Engine asset id.
        timeout (int, optional): Timeout in seconds. Defaults to 300.
        proxies (dict, optional): Proxy settings. Defaults to None.

    Returns:
        str: An http url of the thumbnail.
    """
    import urllib

    from bs4 import BeautifulSoup

    asset_uid = asset_id.replace("/", "_")
    asset_url = "https://developers.google.com/earth-engine/datasets/catalog/{}".format(
        asset_uid
    )
    thumbnail_url = "https://mw1.google.com/ges/dd/images/{}_sample.png".format(
        asset_uid
    )

    r = requests.get(thumbnail_url, timeout=timeout, proxies=proxies)

    try:
        if r.status_code != 200:
            html_page = urllib.request.urlopen(asset_url)
            soup = BeautifulSoup(html_page, features="html.parser")

            for img in soup.findAll("img"):
                if "sample.png" in img.get("src"):
                    thumbnail_url = img.get("src")
                    return thumbnail_url

        return thumbnail_url
    except Exception as e:
        print(e)

ee_export_geojson(ee_object, filename=None, selectors=None, timeout=300, proxies=None)

Exports Earth Engine FeatureCollection to geojson.

Parameters:

Name Type Description Default
ee_object object

ee.FeatureCollection to export.

required
filename str

Output file name. Defaults to None.

None
selectors list

A list of attributes to export. Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300 seconds.

300
proxies dict

Proxy settings. Defaults to None.

None
Source code in geemap/common.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
def ee_export_geojson(
    ee_object, filename=None, selectors=None, timeout=300, proxies=None
):
    """Exports Earth Engine FeatureCollection to geojson.

    Args:
        ee_object (object): ee.FeatureCollection to export.
        filename (str): Output file name. Defaults to None.
        selectors (list, optional): A list of attributes to export. Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300 seconds.
        proxies (dict, optional): Proxy settings. Defaults to None.
    """

    if not isinstance(ee_object, ee.FeatureCollection):
        print("The ee_object must be an ee.FeatureCollection.")
        return

    if filename is None:
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        filename = os.path.join(out_dir, random_string(6) + ".geojson")

    allowed_formats = ["geojson"]
    filename = os.path.abspath(filename)
    basename = os.path.basename(filename)
    name = os.path.splitext(basename)[0]
    filetype = os.path.splitext(basename)[1][1:].lower()

    if not (filetype.lower() in allowed_formats):
        print("The output file type must be geojson.")
        return

    if selectors is None:
        selectors = ee_object.first().propertyNames().getInfo()
        selectors = [".geo"] + selectors

    elif not isinstance(selectors, list):
        print("selectors must be a list, such as ['attribute1', 'attribute2']")
        return
    else:
        allowed_attributes = ee_object.first().propertyNames().getInfo()
        for attribute in selectors:
            if not (attribute in allowed_attributes):
                print(
                    "Attributes must be one chosen from: {} ".format(
                        ", ".join(allowed_attributes)
                    )
                )
                return

    try:
        # print('Generating URL ...')
        url = ee_object.getDownloadURL(
            filetype=filetype, selectors=selectors, filename=name
        )
        # print('Downloading data from {}\nPlease wait ...'.format(url))
        r = None
        r = requests.get(url, stream=True, timeout=timeout, proxies=proxies)

        if r.status_code != 200:
            print("An error occurred while downloading. \n Retrying ...")
            try:
                new_ee_object = ee_object.map(filter_polygons)
                print("Generating URL ...")
                url = new_ee_object.getDownloadURL(
                    filetype=filetype, selectors=selectors, filename=name
                )
                print(f"Downloading data from {url}\nPlease wait ...")
                r = requests.get(url, stream=True, timeout=timeout, proxies=proxies)
            except Exception as e:
                print(e)

        with open(filename, "wb") as fd:
            for chunk in r.iter_content(chunk_size=1024):
                fd.write(chunk)
    except Exception as e:
        print("An error occurred while downloading.")
        if r is not None:
            print(r.json()["error"]["message"])

        return

    with open(filename) as f:
        geojson = f.read()

    return geojson

ee_export_image(ee_object, filename, scale=None, crs=None, crs_transform=None, region=None, dimensions=None, file_per_band=False, format='ZIPPED_GEO_TIFF', unzip=True, unmask_value=None, timeout=300, proxies=None, verbose=True)

Exports an ee.Image as a GeoTIFF.

Parameters:

Name Type Description Default
ee_object object

The ee.Image to download.

required
filename str

Output filename for the exported image.

required
scale float

A default scale to use for any bands that do not specify one; ignored if crs and crs_transform is specified. Defaults to None.

None
crs str

A default CRS string to use for any bands that do not explicitly specify one. Defaults to None.

None
crs_transform list

a default affine transform to use for any bands that do not specify one, of the same format as the crs_transform of bands. Defaults to None.

None
region object

A polygon specifying a region to download; ignored if crs and crs_transform is specified. Defaults to None.

None
dimensions list

An optional array of two integers defining the width and height to which the band is cropped. Defaults to None.

None
file_per_band bool

Whether to produce a different GeoTIFF per band. Defaults to False.

False
format str

One of: "ZIPPED_GEO_TIFF" (GeoTIFF file(s) wrapped in a zip file, default), "GEO_TIFF" (GeoTIFF file), "NPY" (NumPy binary format). If "GEO_TIFF" or "NPY", filePerBand and all band-level transformations will be ignored. Loading a NumPy output results in a structured array.

'ZIPPED_GEO_TIFF'
unzip bool

Whether to unzip the downloaded file. Defaults to True.

True
unmask_value float

The value to use for pixels that are masked in the input image. If the exported image contains zero values, you should set the unmask value to a non-zero value so that the zero values are not treated as missing data. Defaults to None.

None
timeout int

The timeout in seconds for the request. Defaults to 300.

300
proxies dict

A dictionary of proxy servers to use. Defaults to None.

None
verbose bool

Whether to print out descriptive text. Defaults to True.

True
Source code in geemap/common.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def ee_export_image(
    ee_object,
    filename,
    scale=None,
    crs=None,
    crs_transform=None,
    region=None,
    dimensions=None,
    file_per_band=False,
    format="ZIPPED_GEO_TIFF",
    unzip=True,
    unmask_value=None,
    timeout=300,
    proxies=None,
    verbose=True,
):
    """Exports an ee.Image as a GeoTIFF.

    Args:
        ee_object (object): The ee.Image to download.
        filename (str): Output filename for the exported image.
        scale (float, optional): A default scale to use for any bands that do not specify one; ignored if crs and crs_transform is specified. Defaults to None.
        crs (str, optional): A default CRS string to use for any bands that do not explicitly specify one. Defaults to None.
        crs_transform (list, optional): a default affine transform to use for any bands that do not specify one, of the same format as the crs_transform of bands. Defaults to None.
        region (object, optional): A polygon specifying a region to download; ignored if crs and crs_transform is specified. Defaults to None.
        dimensions (list, optional): An optional array of two integers defining the width and height to which the band is cropped. Defaults to None.
        file_per_band (bool, optional): Whether to produce a different GeoTIFF per band. Defaults to False.
        format (str, optional):  One of: "ZIPPED_GEO_TIFF" (GeoTIFF file(s) wrapped in a zip file, default), "GEO_TIFF" (GeoTIFF file), "NPY" (NumPy binary format). If "GEO_TIFF" or "NPY",
            filePerBand and all band-level transformations will be ignored. Loading a NumPy output results in a structured array.
        unzip (bool, optional): Whether to unzip the downloaded file. Defaults to True.
        unmask_value (float, optional): The value to use for pixels that are masked in the input image.
            If the exported image contains zero values, you should set the unmask value to a  non-zero value so that the zero values are not treated as missing data. Defaults to None.
        timeout (int, optional): The timeout in seconds for the request. Defaults to 300.
        proxies (dict, optional): A dictionary of proxy servers to use. Defaults to None.
        verbose (bool, optional): Whether to print out descriptive text. Defaults to True.
    """

    if not isinstance(ee_object, ee.Image):
        print("The ee_object must be an ee.Image.")
        return

    if unmask_value is not None:
        ee_object = ee_object.selfMask().unmask(unmask_value)
        if isinstance(region, ee.Geometry):
            ee_object = ee_object.clip(region)
        elif isinstance(region, ee.FeatureCollection):
            ee_object = ee_object.clipToCollection(region)

    filename = os.path.abspath(filename)
    basename = os.path.basename(filename)
    name = os.path.splitext(basename)[0]
    filetype = os.path.splitext(basename)[1][1:].lower()
    filename_zip = filename.replace(".tif", ".zip")

    if filetype != "tif":
        print("The filename must end with .tif")
        return

    try:
        if verbose:
            print("Generating URL ...")
        params = {"name": name, "filePerBand": file_per_band}

        params["scale"] = scale
        if region is None:
            region = ee_object.geometry()
        if dimensions is not None:
            params["dimensions"] = dimensions
        if region is not None:
            params["region"] = region
        if crs is not None:
            params["crs"] = crs
        if crs_transform is not None:
            params["crs_transform"] = crs_transform
        if format != "ZIPPED_GEO_TIFF":
            params["format"] = format

        try:
            url = ee_object.getDownloadURL(params)
        except Exception as e:
            print("An error occurred while downloading.")
            print(e)
            return

        if verbose:
            print(f"Downloading data from {url}\nPlease wait ...")
        # Need to initialize r to something because of how we currently handle errors
        # We should aim to refactor the code such that only one try block is needed
        r = None
        r = requests.get(url, stream=True, timeout=timeout, proxies=proxies)

        if r.status_code != 200:
            print("An error occurred while downloading.")
            return

        with open(filename_zip, "wb") as fd:
            for chunk in r.iter_content(chunk_size=1024):
                fd.write(chunk)

    except Exception as e:
        print("An error occurred while downloading.")
        if r is not None:
            print(r.json()["error"]["message"])
        return

    try:
        if unzip:
            with zipfile.ZipFile(filename_zip) as z:
                z.extractall(os.path.dirname(filename))
            os.remove(filename_zip)

        if verbose:
            if file_per_band:
                print(f"Data downloaded to {os.path.dirname(filename)}")
            else:
                print(f"Data downloaded to {filename}")
    except Exception as e:
        print(e)

ee_export_image_collection(ee_object, out_dir, scale=None, crs=None, crs_transform=None, region=None, dimensions=None, file_per_band=False, format='ZIPPED_GEO_TIFF', unmask_value=None, filenames=None, timeout=300, proxies=None, verbose=True)

Exports an ImageCollection as GeoTIFFs.

Parameters:

Name Type Description Default
ee_object object

The ee.Image to download.

required
out_dir str

The output directory for the exported images.

required
scale float

A default scale to use for any bands that do not specify one; ignored if crs and crs_transform is specified. Defaults to None.

None
crs str

A default CRS string to use for any bands that do not explicitly specify one. Defaults to None.

None
crs_transform list

a default affine transform to use for any bands that do not specify one, of the same format as the crs_transform of bands. Defaults to None.

None
region object

A polygon specifying a region to download; ignored if crs and crs_transform is specified. Defaults to None.

None
dimensions list

An optional array of two integers defining the width and height to which the band is cropped. Defaults to None.

None
file_per_band bool

Whether to produce a different GeoTIFF per band. Defaults to False.

False
format str

One of: "ZIPPED_GEO_TIFF" (GeoTIFF file(s) wrapped in a zip file, default), "GEO_TIFF" (GeoTIFF file), "NPY" (NumPy binary format). If "GEO_TIFF" or "NPY", filePerBand and all band-level transformations will be ignored. Loading a NumPy output results in a structured array.

'ZIPPED_GEO_TIFF'
unmask_value float

The value to use for pixels that are masked in the input image. If the exported image contains zero values, you should set the unmask value to a non-zero value so that the zero values are not treated as missing data. Defaults to None.

None
filenames list | int

A list of filenames to use for the exported images. Defaults to None.

None
timeout int

The timeout in seconds for the request. Defaults to 300.

300
proxies dict

A dictionary of proxy servers to use. Defaults to None.

None
verbose bool

Whether to print out descriptive text. Defaults to True.

True
Source code in geemap/common.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def ee_export_image_collection(
    ee_object,
    out_dir,
    scale=None,
    crs=None,
    crs_transform=None,
    region=None,
    dimensions=None,
    file_per_band=False,
    format="ZIPPED_GEO_TIFF",
    unmask_value=None,
    filenames=None,
    timeout=300,
    proxies=None,
    verbose=True,
):
    """Exports an ImageCollection as GeoTIFFs.

    Args:
        ee_object (object): The ee.Image to download.
        out_dir (str): The output directory for the exported images.
        scale (float, optional): A default scale to use for any bands that do not specify one; ignored if crs and crs_transform is specified. Defaults to None.
        crs (str, optional): A default CRS string to use for any bands that do not explicitly specify one. Defaults to None.
        crs_transform (list, optional): a default affine transform to use for any bands that do not specify one, of the same format as the crs_transform of bands. Defaults to None.
        region (object, optional): A polygon specifying a region to download; ignored if crs and crs_transform is specified. Defaults to None.
        dimensions (list, optional): An optional array of two integers defining the width and height to which the band is cropped. Defaults to None.
        file_per_band (bool, optional): Whether to produce a different GeoTIFF per band. Defaults to False.
        format (str, optional):  One of: "ZIPPED_GEO_TIFF" (GeoTIFF file(s) wrapped in a zip file, default), "GEO_TIFF" (GeoTIFF file), "NPY" (NumPy binary format). If "GEO_TIFF" or "NPY",
            filePerBand and all band-level transformations will be ignored. Loading a NumPy output results in a structured array.
        unmask_value (float, optional): The value to use for pixels that are masked in the input image.
            If the exported image contains zero values, you should set the unmask value to a  non-zero value so that the zero values are not treated as missing data. Defaults to None.
        filenames (list | int, optional): A list of filenames to use for the exported images. Defaults to None.
        timeout (int, optional): The timeout in seconds for the request. Defaults to 300.
        proxies (dict, optional): A dictionary of proxy servers to use. Defaults to None.
        verbose (bool, optional): Whether to print out descriptive text. Defaults to True.
    """

    if not isinstance(ee_object, ee.ImageCollection):
        print("The ee_object must be an ee.ImageCollection.")
        return

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    try:
        count = int(ee_object.size().getInfo())
        if verbose:
            print(f"Total number of images: {count}\n")

        if filenames is None:
            filenames = ee_object.aggregate_array("system:index").getInfo()
        elif isinstance(filenames, int):
            filenames = [str(f + filenames) for f in range(0, count)]

        if len(filenames) != count:
            raise Exception(
                "The number of filenames must be equal to the number of images."
            )

        filenames = [str(f) + ".tif" for f in filenames if not str(f).endswith(".tif")]

        for i in range(0, count):
            image = ee.Image(ee_object.toList(count).get(i))
            filename = os.path.join(out_dir, filenames[i])
            if verbose:
                print(f"Exporting {i + 1}/{count}: {filename}")
            ee_export_image(
                image,
                filename=filename,
                scale=scale,
                crs=crs,
                crs_transform=crs_transform,
                region=region,
                dimensions=dimensions,
                file_per_band=file_per_band,
                format=format,
                unmask_value=unmask_value,
                timeout=timeout,
                proxies=proxies,
            )
            print("\n")

    except Exception as e:
        print(e)

ee_export_image_collection_to_asset(ee_object, descriptions=None, assetIds=None, pyramidingPolicy=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, **kwargs)

Creates a batch task to export an ImageCollection as raster images to Google Drive.

Parameters:

Name Type Description Default
ee_object

The image collection to export.

required
descriptions

A list of human-readable names of the tasks.

None
assetIds

The destination asset ID.

None
pyramidingPolicy

The pyramiding policy to apply to each band in the image, a dictionary keyed by band name. Values must be one of: "mean", "sample", "min", "max", or "mode". Defaults to "mean". A special key, ".default", may be used to change the default for all bands.

None
dimensions

The dimensions of the exported image. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the image's region.

None
scale

The resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified.

None
crs

The coordinate reference system of the exported image's projection. Defaults to the image's default projection.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image's native CRS transform.

None
maxPixels

The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform'.

{}
Source code in geemap/common.py
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
def ee_export_image_collection_to_asset(
    ee_object,
    descriptions=None,
    assetIds=None,
    pyramidingPolicy=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    **kwargs,
):
    """Creates a batch task to export an ImageCollection as raster images to Google Drive.

    Args:
        ee_object: The image collection to export.
        descriptions: A list of human-readable names of the tasks.
        assetIds: The destination asset ID.
        pyramidingPolicy: The pyramiding policy to apply to each band in the
            image, a dictionary keyed by band name. Values must be
            one of: "mean", "sample", "min", "max", or "mode".
            Defaults to "mean". A special key, ".default", may be used to
            change the default for all bands.
        dimensions: The dimensions of the exported image. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the image's
            region.
        scale: The resolution in meters per pixel. Defaults to the
            native resolution of the image asset unless a crsTransform
            is specified.
        crs: The coordinate reference system of the exported image's
            projection. Defaults to the image's default projection.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported image's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image's native CRS transform.
        maxPixels: The maximum allowed number of pixels in the exported
            image. The task will fail if the exported region covers more
            pixels in the specified projection. Defaults to 100,000,000.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform'.
    """

    if not isinstance(ee_object, ee.ImageCollection):
        raise ValueError("The ee_object must be an ee.ImageCollection.")

    try:
        count = int(ee_object.size().getInfo())
        print(f"Total number of images: {count}\n")

        if (descriptions is not None) and (len(descriptions) != count):
            print("The number of descriptions is not equal to the number of images.")
            return

        if descriptions is None:
            descriptions = ee_object.aggregate_array("system:index").getInfo()

        if assetIds is None:
            assetIds = descriptions

        images = ee_object.toList(count)

        if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
            return

        for i in range(0, count):
            image = ee.Image(images.get(i))
            description = descriptions[i]
            assetId = assetIds[i]
            ee_export_image_to_asset(
                image,
                description,
                assetId,
                pyramidingPolicy,
                dimensions,
                region,
                scale,
                crs,
                crsTransform,
                maxPixels,
                **kwargs,
            )

    except Exception as e:
        print(e)

ee_export_image_collection_to_cloud_storage(ee_object, descriptions=None, bucket=None, fileNamePrefix=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, shardSize=None, fileDimensions=None, skipEmptyTiles=None, fileFormat=None, formatOptions=None, **kwargs)

Creates a batch task to export an ImageCollection as raster images to a Google Cloud bucket.

Parameters:

Name Type Description Default
ee_object

The image collection to export.

required
descriptions

A list of human-readable names of the tasks.

None
bucket

The name of a Cloud Storage bucket for the export.

None
fileNamePrefix

Cloud Storage object name prefix for the export. Defaults to the name of the task.

None
dimensions

The dimensions of the exported image. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the image's region.

None
scale

The resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified.

None
crs

The coordinate reference system of the exported image's projection. Defaults to the image's default projection.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image's native CRS transform.

None
maxPixels

The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000.

None
shardSize

Size in pixels of the tiles in which this image will be computed. Defaults to 256.

None
fileDimensions

The dimensions in pixels of each image file, if the image is too large to fit in a single file. May specify a single number to indicate a square shape, or a tuple of two dimensions to indicate (width,height). Note that the image will still be clipped to the overall image dimensions. Must be a multiple of shardSize.

None
skipEmptyTiles

If true, skip writing empty (i.e. fully-masked) image tiles. Defaults to false.

None
fileFormat

The string file format to which the image is exported. Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to 'GeoTIFF'.

None
formatOptions

A dictionary of string keys to format specific options.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform'.

{}
Source code in geemap/common.py
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
def ee_export_image_collection_to_cloud_storage(
    ee_object,
    descriptions=None,
    bucket=None,
    fileNamePrefix=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    shardSize=None,
    fileDimensions=None,
    skipEmptyTiles=None,
    fileFormat=None,
    formatOptions=None,
    **kwargs,
):
    """Creates a batch task to export an ImageCollection as raster images to a Google Cloud bucket.

    Args:
        ee_object: The image collection to export.
        descriptions: A list of human-readable names of the tasks.
        bucket: The name of a Cloud Storage bucket for the export.
        fileNamePrefix: Cloud Storage object name prefix for the export.
            Defaults to the name of the task.
        dimensions: The dimensions of the exported image. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the image's
            region.
        scale: The resolution in meters per pixel. Defaults to the
            native resolution of the image asset unless a crsTransform
            is specified.
        crs: The coordinate reference system of the exported image's
            projection. Defaults to the image's default projection.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported image's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image's native CRS transform.
        maxPixels: The maximum allowed number of pixels in the exported
            image. The task will fail if the exported region covers more
            pixels in the specified projection. Defaults to 100,000,000.
        shardSize: Size in pixels of the tiles in which this image will be
            computed. Defaults to 256.
        fileDimensions: The dimensions in pixels of each image file, if the
            image is too large to fit in a single file. May specify a
            single number to indicate a square shape, or a tuple of two
            dimensions to indicate (width,height). Note that the image will
            still be clipped to the overall image dimensions. Must be a
            multiple of shardSize.
        skipEmptyTiles: If true, skip writing empty (i.e. fully-masked)
            image tiles. Defaults to false.
        fileFormat: The string file format to which the image is exported.
            Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to
            'GeoTIFF'.
        formatOptions: A dictionary of string keys to format specific options.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform'.
    """

    if not isinstance(ee_object, ee.ImageCollection):
        raise ValueError("The ee_object must be an ee.ImageCollection.")

    try:
        count = int(ee_object.size().getInfo())
        print(f"Total number of images: {count}\n")

        if (descriptions is not None) and (len(descriptions) != count):
            print("The number of descriptions is not equal to the number of images.")
            return

        if descriptions is None:
            descriptions = ee_object.aggregate_array("system:index").getInfo()

        images = ee_object.toList(count)

        if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
            return

        for i in range(0, count):
            image = ee.Image(images.get(i))
            description = descriptions[i]
            ee_export_image_to_cloud_storage(
                image,
                description,
                bucket,
                fileNamePrefix,
                dimensions,
                region,
                scale,
                crs,
                crsTransform,
                maxPixels,
                shardSize,
                fileDimensions,
                skipEmptyTiles,
                fileFormat,
                formatOptions,
                **kwargs,
            )

    except Exception as e:
        print(e)

ee_export_image_collection_to_drive(ee_object, descriptions=None, folder=None, fileNamePrefix=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, shardSize=None, fileDimensions=None, skipEmptyTiles=None, fileFormat=None, formatOptions=None, **kwargs)

Creates a batch task to export an ImageCollection as raster images to Google Drive.

Parameters:

Name Type Description Default
ee_object

The image collection to export.

required
descriptions

A list of human-readable names of the tasks.

None
folder

The name of a unique folder in your Drive account to export into. Defaults to the root of the drive.

None
fileNamePrefix

The Google Drive filename for the export. Defaults to the name of the task.

None
dimensions

The dimensions of the exported image. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the image's region.

None
scale

The resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified.

None
crs

The coordinate reference system of the exported image's projection. Defaults to the image's default projection.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image's native CRS transform.

None
maxPixels

The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000.

None
shardSize

Size in pixels of the tiles in which this image will be computed. Defaults to 256.

None
fileDimensions

The dimensions in pixels of each image file, if the image is too large to fit in a single file. May specify a single number to indicate a square shape, or a tuple of two dimensions to indicate (width,height). Note that the image will still be clipped to the overall image dimensions. Must be a multiple of shardSize.

None
skipEmptyTiles

If true, skip writing empty (i.e. fully-masked) image tiles. Defaults to false.

None
fileFormat

The string file format to which the image is exported. Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to 'GeoTIFF'.

None
formatOptions

A dictionary of string keys to format specific options.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform', 'driveFolder', and 'driveFileNamePrefix'.

{}
Source code in geemap/common.py
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
def ee_export_image_collection_to_drive(
    ee_object,
    descriptions=None,
    folder=None,
    fileNamePrefix=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    shardSize=None,
    fileDimensions=None,
    skipEmptyTiles=None,
    fileFormat=None,
    formatOptions=None,
    **kwargs,
):
    """Creates a batch task to export an ImageCollection as raster images to Google Drive.

    Args:
        ee_object: The image collection to export.
        descriptions: A list of human-readable names of the tasks.
        folder: The name of a unique folder in your Drive account to
            export into. Defaults to the root of the drive.
        fileNamePrefix: The Google Drive filename for the export.
            Defaults to the name of the task.
        dimensions: The dimensions of the exported image. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the image's
            region.
        scale: The resolution in meters per pixel. Defaults to the
            native resolution of the image asset unless a crsTransform
            is specified.
        crs: The coordinate reference system of the exported image's
            projection. Defaults to the image's default projection.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported image's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image's native CRS transform.
        maxPixels: The maximum allowed number of pixels in the exported
            image. The task will fail if the exported region covers more
            pixels in the specified projection. Defaults to 100,000,000.
        shardSize: Size in pixels of the tiles in which this image will be
            computed. Defaults to 256.
        fileDimensions: The dimensions in pixels of each image file, if the
            image is too large to fit in a single file. May specify a
            single number to indicate a square shape, or a tuple of two
            dimensions to indicate (width,height). Note that the image will
            still be clipped to the overall image dimensions. Must be a
            multiple of shardSize.
        skipEmptyTiles: If true, skip writing empty (i.e. fully-masked)
            image tiles. Defaults to false.
        fileFormat: The string file format to which the image is exported.
            Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to
            'GeoTIFF'.
        formatOptions: A dictionary of string keys to format specific options.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform', 'driveFolder', and 'driveFileNamePrefix'.
    """

    if not isinstance(ee_object, ee.ImageCollection):
        raise ValueError("The ee_object must be an ee.ImageCollection.")

    try:
        count = int(ee_object.size().getInfo())
        print(f"Total number of images: {count}\n")

        if (descriptions is not None) and (len(descriptions) != count):
            raise ValueError(
                "The number of descriptions is not equal to the number of images."
            )

        if descriptions is None:
            descriptions = ee_object.aggregate_array("system:index").getInfo()

        images = ee_object.toList(count)

        if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
            return

        for i in range(0, count):
            image = ee.Image(images.get(i))
            description = descriptions[i]
            ee_export_image_to_drive(
                image,
                description,
                folder,
                fileNamePrefix,
                dimensions,
                region,
                scale,
                crs,
                crsTransform,
                maxPixels,
                shardSize,
                fileDimensions,
                skipEmptyTiles,
                fileFormat,
                formatOptions,
                **kwargs,
            )

    except Exception as e:
        print(e)

ee_export_image_to_asset(image, description='myExportImageTask', assetId=None, pyramidingPolicy=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, **kwargs)

Creates a task to export an EE Image to an EE Asset.

Parameters:

Name Type Description Default
image

The image to be exported.

required
description

Human-readable name of the task.

'myExportImageTask'
assetId

The destination asset ID.

None
pyramidingPolicy

The pyramiding policy to apply to each band in the image, a dictionary keyed by band name. Values must be one of: "mean", "sample", "min", "max", or "mode". Defaults to "mean". A special key, ".default", may be used to change the default for all bands.

None
dimensions

The dimensions of the exported image. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the image's region.

None
scale

The resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified.

None
crs

The coordinate reference system of the exported image's projection. Defaults to the image's default projection.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image's native CRS transform.

None
maxPixels

The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform'.

{}
Source code in geemap/common.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
def ee_export_image_to_asset(
    image,
    description="myExportImageTask",
    assetId=None,
    pyramidingPolicy=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    **kwargs,
):
    """Creates a task to export an EE Image to an EE Asset.

    Args:
        image: The image to be exported.
        description: Human-readable name of the task.
        assetId: The destination asset ID.
        pyramidingPolicy: The pyramiding policy to apply to each band in the
            image, a dictionary keyed by band name. Values must be
            one of: "mean", "sample", "min", "max", or "mode".
            Defaults to "mean". A special key, ".default", may be used to
            change the default for all bands.
        dimensions: The dimensions of the exported image. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the image's
            region.
        scale: The resolution in meters per pixel. Defaults to the
            native resolution of the image asset unless a crsTransform
            is specified.
        crs: The coordinate reference system of the exported image's
            projection. Defaults to the image's default projection.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported image's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image's native CRS transform.
        maxPixels: The maximum allowed number of pixels in the exported
            image. The task will fail if the exported region covers more
            pixels in the specified projection. Defaults to 100,000,000.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform'.
    """

    if isinstance(image, ee.Image) or isinstance(image, ee.image.Image):
        pass
    else:
        raise ValueError("Input image must be an instance of ee.Image")

    if isinstance(assetId, str):
        if assetId.startswith("users/") or assetId.startswith("projects/"):
            pass
        else:
            assetId = f"{ee_user_id()}/{assetId}"

    task = ee.batch.Export.image.toAsset(
        image,
        description,
        assetId,
        pyramidingPolicy,
        dimensions,
        region,
        scale,
        crs,
        crsTransform,
        maxPixels,
        **kwargs,
    )
    task.start()

ee_export_image_to_cloud_storage(image, description='myExportImageTask', bucket=None, fileNamePrefix=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, shardSize=None, fileDimensions=None, skipEmptyTiles=None, fileFormat=None, formatOptions=None, **kwargs)

Creates a task to export an EE Image to Google Cloud Storage.

Parameters:

Name Type Description Default
image

The image to be exported.

required
description

Human-readable name of the task.

'myExportImageTask'
bucket

The name of a Cloud Storage bucket for the export.

None
fileNamePrefix

Cloud Storage object name prefix for the export. Defaults to the name of the task.

None
dimensions

The dimensions of the exported image. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the image's region.

None
scale

The resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified.

None
crs

The coordinate reference system of the exported image's projection. Defaults to the image's default projection.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image's native CRS transform.

None
maxPixels

The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000.

None
shardSize

Size in pixels of the tiles in which this image will be computed. Defaults to 256.

None
fileDimensions

The dimensions in pixels of each image file, if the image is too large to fit in a single file. May specify a single number to indicate a square shape, or a tuple of two dimensions to indicate (width,height). Note that the image will still be clipped to the overall image dimensions. Must be a multiple of shardSize.

None
skipEmptyTiles

If true, skip writing empty (i.e. fully-masked) image tiles. Defaults to false.

None
fileFormat

The string file format to which the image is exported. Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to 'GeoTIFF'.

None
formatOptions

A dictionary of string keys to format specific options.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform'.

{}
Source code in geemap/common.py
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def ee_export_image_to_cloud_storage(
    image,
    description="myExportImageTask",
    bucket=None,
    fileNamePrefix=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    shardSize=None,
    fileDimensions=None,
    skipEmptyTiles=None,
    fileFormat=None,
    formatOptions=None,
    **kwargs,
):
    """Creates a task to export an EE Image to Google Cloud Storage.

    Args:
        image: The image to be exported.
        description: Human-readable name of the task.
        bucket: The name of a Cloud Storage bucket for the export.
        fileNamePrefix: Cloud Storage object name prefix for the export.
            Defaults to the name of the task.
        dimensions: The dimensions of the exported image. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the image's
            region.
        scale: The resolution in meters per pixel. Defaults to the
            native resolution of the image asset unless a crsTransform
            is specified.
        crs: The coordinate reference system of the exported image's
            projection. Defaults to the image's default projection.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported image's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image's native CRS transform.
        maxPixels: The maximum allowed number of pixels in the exported
            image. The task will fail if the exported region covers more
            pixels in the specified projection. Defaults to 100,000,000.
        shardSize: Size in pixels of the tiles in which this image will be
            computed. Defaults to 256.
        fileDimensions: The dimensions in pixels of each image file, if the
            image is too large to fit in a single file. May specify a
            single number to indicate a square shape, or a tuple of two
            dimensions to indicate (width,height). Note that the image will
            still be clipped to the overall image dimensions. Must be a
            multiple of shardSize.
        skipEmptyTiles: If true, skip writing empty (i.e. fully-masked)
            image tiles. Defaults to false.
        fileFormat: The string file format to which the image is exported.
            Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to
            'GeoTIFF'.
        formatOptions: A dictionary of string keys to format specific options.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform'.
    """

    if not isinstance(image, ee.Image):
        raise ValueError("Input image must be an instance of ee.Image")

    try:
        task = ee.batch.Export.image.toCloudStorage(
            image,
            description,
            bucket,
            fileNamePrefix,
            dimensions,
            region,
            scale,
            crs,
            crsTransform,
            maxPixels,
            shardSize,
            fileDimensions,
            skipEmptyTiles,
            fileFormat,
            formatOptions,
            **kwargs,
        )
        task.start()
    except Exception as e:
        print(e)

ee_export_image_to_drive(image, description='myExportImageTask', folder=None, fileNamePrefix=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, shardSize=None, fileDimensions=None, skipEmptyTiles=None, fileFormat=None, formatOptions=None, **kwargs)

Creates a batch task to export an Image as a raster to Google Drive.

Parameters:

Name Type Description Default
image

The image to be exported.

required
description

Human-readable name of the task.

'myExportImageTask'
folder

The name of a unique folder in your Drive account to export into. Defaults to the root of the drive.

None
fileNamePrefix

The Google Drive filename for the export. Defaults to the name of the task.

None
dimensions

The dimensions of the exported image. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the image's region.

None
scale

The resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified.

None
crs

The coordinate reference system of the exported image's projection. Defaults to the image's default projection.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image's native CRS transform.

None
maxPixels

The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000.

None
shardSize

Size in pixels of the tiles in which this image will be computed. Defaults to 256.

None
fileDimensions

The dimensions in pixels of each image file, if the image is too large to fit in a single file. May specify a single number to indicate a square shape, or a tuple of two dimensions to indicate (width,height). Note that the image will still be clipped to the overall image dimensions. Must be a multiple of shardSize.

None
skipEmptyTiles

If true, skip writing empty (i.e. fully-masked) image tiles. Defaults to false.

None
fileFormat

The string file format to which the image is exported. Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to 'GeoTIFF'.

None
formatOptions

A dictionary of string keys to format specific options.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform', 'driveFolder', and 'driveFileNamePrefix'.

{}
Source code in geemap/common.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def ee_export_image_to_drive(
    image,
    description="myExportImageTask",
    folder=None,
    fileNamePrefix=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    shardSize=None,
    fileDimensions=None,
    skipEmptyTiles=None,
    fileFormat=None,
    formatOptions=None,
    **kwargs,
):
    """Creates a batch task to export an Image as a raster to Google Drive.

    Args:
        image: The image to be exported.
        description: Human-readable name of the task.
        folder: The name of a unique folder in your Drive account to
            export into. Defaults to the root of the drive.
        fileNamePrefix: The Google Drive filename for the export.
            Defaults to the name of the task.
        dimensions: The dimensions of the exported image. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the image's
            region.
        scale: The resolution in meters per pixel. Defaults to the
            native resolution of the image asset unless a crsTransform
            is specified.
        crs: The coordinate reference system of the exported image's
            projection. Defaults to the image's default projection.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported image's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image's native CRS transform.
        maxPixels: The maximum allowed number of pixels in the exported
            image. The task will fail if the exported region covers more
            pixels in the specified projection. Defaults to 100,000,000.
        shardSize: Size in pixels of the tiles in which this image will be
            computed. Defaults to 256.
        fileDimensions: The dimensions in pixels of each image file, if the
            image is too large to fit in a single file. May specify a
            single number to indicate a square shape, or a tuple of two
            dimensions to indicate (width,height). Note that the image will
            still be clipped to the overall image dimensions. Must be a
            multiple of shardSize.
        skipEmptyTiles: If true, skip writing empty (i.e. fully-masked)
            image tiles. Defaults to false.
        fileFormat: The string file format to which the image is exported.
            Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to
            'GeoTIFF'.
        formatOptions: A dictionary of string keys to format specific options.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform', 'driveFolder', and 'driveFileNamePrefix'.
    """

    if not isinstance(image, ee.Image):
        raise ValueError("Input image must be an instance of ee.Image")

    task = ee.batch.Export.image.toDrive(
        image,
        description,
        folder,
        fileNamePrefix,
        dimensions,
        region,
        scale,
        crs,
        crsTransform,
        maxPixels,
        shardSize,
        fileDimensions,
        skipEmptyTiles,
        fileFormat,
        formatOptions,
        **kwargs,
    )
    task.start()

ee_export_map_to_cloud_storage(image, description='myExportMapTask', bucket=None, fileFormat=None, path=None, writePublicTiles=None, maxZoom=None, scale=None, minZoom=None, region=None, skipEmptyTiles=None, mapsApiKey=None, **kwargs)

Creates a task to export an Image as a pyramid of map tiles.

Exports a rectangular pyramid of map tiles for use with web map viewers. The map tiles will be accompanied by a reference index.html file that displays them using the Google Maps API, and an earth.html file for opening the map on Google Earth.

Parameters:

Name Type Description Default
image

The image to export as tiles.

required
description

Human-readable name of the task.

'myExportMapTask'
bucket

The destination bucket to write to.

None
fileFormat

The map tiles' file format, one of 'auto', 'png', or 'jpeg'. Defaults to 'auto', which means that opaque tiles will be encoded as 'jpg' and tiles with transparency will be encoded as 'png'.

None
path

The string used as the output's path. A trailing '/' is optional. Defaults to the task's description.

None
writePublicTiles

Whether to write public tiles instead of using the bucket's default object ACL. Defaults to True and requires the invoker to be an OWNER of bucket.

None
maxZoom

The maximum zoom level of the map tiles to export.

None
scale

The max image resolution in meters per pixel, as an alternative to 'maxZoom'. The scale will be converted to the most appropriate maximum zoom level at the equator.

None
minZoom

The optional minimum zoom level of the map tiles to export.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Map tiles will be produced in the rectangular region containing this geometry. Defaults to the image's region.

None
skipEmptyTiles

If true, skip writing empty (i.e. fully-transparent) map tiles. Defaults to false.

None
mapsApiKey

Used in index.html to initialize the Google Maps API. This removes the "development purposes only" message from the map.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform'.

{}
Source code in geemap/common.py
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
def ee_export_map_to_cloud_storage(
    image,
    description="myExportMapTask",
    bucket=None,
    fileFormat=None,
    path=None,
    writePublicTiles=None,
    maxZoom=None,
    scale=None,
    minZoom=None,
    region=None,
    skipEmptyTiles=None,
    mapsApiKey=None,
    **kwargs,
):
    """Creates a task to export an Image as a pyramid of map tiles.

    Exports a rectangular pyramid of map tiles for use with web map
    viewers. The map tiles will be accompanied by a reference
    index.html file that displays them using the Google Maps API,
    and an earth.html file for opening the map on Google Earth.

    Args:
        image: The image to export as tiles.
        description: Human-readable name of the task.
        bucket: The destination bucket to write to.
        fileFormat: The map tiles' file format, one of 'auto', 'png',
            or 'jpeg'. Defaults to 'auto', which means that opaque tiles
            will be encoded as 'jpg' and tiles with transparency will be
            encoded as 'png'.
        path: The string used as the output's path. A trailing '/'
            is optional. Defaults to the task's description.
        writePublicTiles: Whether to write public tiles instead of using the
            bucket's default object ACL. Defaults to True and requires the
            invoker to be an OWNER of bucket.
        maxZoom: The maximum zoom level of the map tiles to export.
        scale: The max image resolution in meters per pixel, as an alternative
            to 'maxZoom'. The scale will be converted to the most appropriate
            maximum zoom level at the equator.
        minZoom: The optional minimum zoom level of the map tiles to export.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Map tiles will be
            produced in the rectangular region containing this geometry.
            Defaults to the image's region.
        skipEmptyTiles: If true, skip writing empty (i.e. fully-transparent)
            map tiles. Defaults to false.
        mapsApiKey: Used in index.html to initialize the Google Maps API. This
            removes the "development purposes only" message from the map.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform'.

    """
    if not isinstance(image, ee.Image):
        raise TypeError("image must be an ee.Image")

    if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
        return

    print(
        f"Exporting {description}... Please check the Task Manager from the JavaScript Code Editor."
    )

    task = ee.batch.Export.map.toCloudStorage(
        image,
        description,
        bucket,
        fileFormat,
        path,
        writePublicTiles,
        maxZoom,
        scale,
        minZoom,
        region,
        skipEmptyTiles,
        mapsApiKey,
        **kwargs,
    )
    task.start()

ee_export_vector(ee_object, filename, selectors=None, verbose=True, keep_zip=False, timeout=300, proxies=None)

Exports Earth Engine FeatureCollection to other formats, including shp, csv, json, kml, and kmz.

Parameters:

Name Type Description Default
ee_object object

ee.FeatureCollection to export.

required
filename str

Output file name.

required
selectors list

A list of attributes to export. Defaults to None.

None
verbose bool

Whether to print out descriptive text.

True
keep_zip bool

Whether to keep the downloaded shapefile as a zip file.

False
timeout int

Timeout in seconds. Defaults to 300 seconds.

300
proxies dict

A dictionary of proxies to use. Defaults to None.

None
Source code in geemap/common.py
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
def ee_export_vector(
    ee_object,
    filename,
    selectors=None,
    verbose=True,
    keep_zip=False,
    timeout=300,
    proxies=None,
):
    """Exports Earth Engine FeatureCollection to other formats, including shp, csv, json, kml, and kmz.

    Args:
        ee_object (object): ee.FeatureCollection to export.
        filename (str): Output file name.
        selectors (list, optional): A list of attributes to export. Defaults to None.
        verbose (bool, optional): Whether to print out descriptive text.
        keep_zip (bool, optional): Whether to keep the downloaded shapefile as a zip file.
        timeout (int, optional): Timeout in seconds. Defaults to 300 seconds.
        proxies (dict, optional): A dictionary of proxies to use. Defaults to None.
    """

    if not isinstance(ee_object, ee.FeatureCollection):
        raise ValueError("ee_object must be an ee.FeatureCollection")

    allowed_formats = ["csv", "geojson", "json", "kml", "kmz", "shp"]
    # allowed_formats = ['csv', 'kml', 'kmz']
    filename = os.path.abspath(filename)
    basename = os.path.basename(filename)
    name = os.path.splitext(basename)[0]
    filetype = os.path.splitext(basename)[1][1:].lower()

    if filetype == "shp":
        filename = filename.replace(".shp", ".zip")

    if not (filetype.lower() in allowed_formats):
        raise ValueError(
            "The file type must be one of the following: {}".format(
                ", ".join(allowed_formats)
            )
        )

    if selectors is None:
        selectors = ee_object.first().propertyNames().getInfo()
        if filetype == "csv":
            # remove .geo coordinate field
            ee_object = ee_object.select([".*"], None, False)

    if filetype == "geojson":
        selectors = [".geo"] + selectors

    elif not isinstance(selectors, list):
        raise ValueError(
            "selectors must be a list, such as ['attribute1', 'attribute2']"
        )
    else:
        allowed_attributes = ee_object.first().propertyNames().getInfo()
        for attribute in selectors:
            if not (attribute in allowed_attributes):
                raise ValueError(
                    "Attributes must be one chosen from: {} ".format(
                        ", ".join(allowed_attributes)
                    )
                )

    try:
        if verbose:
            print("Generating URL ...")
        url = ee_object.getDownloadURL(
            filetype=filetype, selectors=selectors, filename=name
        )
        if verbose:
            print(f"Downloading data from {url}\nPlease wait ...")
        r = None
        r = requests.get(url, stream=True, timeout=timeout, proxies=proxies)

        if r.status_code != 200:
            print("An error occurred while downloading. \n Retrying ...")
            try:
                new_ee_object = ee_object.map(filter_polygons)
                print("Generating URL ...")
                url = new_ee_object.getDownloadURL(
                    filetype=filetype, selectors=selectors, filename=name
                )
                print(f"Downloading data from {url}\nPlease wait ...")
                r = requests.get(url, stream=True, timeout=timeout, proxies=proxies)
            except Exception as e:
                print(e)
                raise ValueError

        with open(filename, "wb") as fd:
            for chunk in r.iter_content(chunk_size=1024):
                fd.write(chunk)
    except Exception as e:
        print("An error occurred while downloading.")
        if r is not None:
            print(r.json()["error"]["message"])
        raise ValueError(e)

    try:
        if filetype == "shp":
            with zipfile.ZipFile(filename) as z:
                z.extractall(os.path.dirname(filename))
            if not keep_zip:
                os.remove(filename)
            filename = filename.replace(".zip", ".shp")
        if verbose:
            print(f"Data downloaded to {filename}")
    except Exception as e:
        raise ValueError(e)

ee_export_vector_to_asset(collection, description='myExportTableTask', assetId=None, maxVertices=None, **kwargs)

Creates a task to export a FeatureCollection to Asset.

Parameters:

Name Type Description Default
collection

The feature collection to be exported.

required
description

Human-readable name of the task.

'myExportTableTask'
assetId

The destination asset ID.

None
maxVertices

Max number of uncut vertices per geometry; geometries with more vertices will be cut into pieces smaller than this size.

None
**kwargs

Holds other keyword arguments that may have been deprecated.

{}
Source code in geemap/common.py
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
def ee_export_vector_to_asset(
    collection,
    description="myExportTableTask",
    assetId=None,
    maxVertices=None,
    **kwargs,
):
    """Creates a task to export a FeatureCollection to Asset.

    Args:
        collection: The feature collection to be exported.
        description: Human-readable name of the task.
        assetId: The destination asset ID.
        maxVertices:
            Max number of uncut vertices per geometry; geometries with more
            vertices will be cut into pieces smaller than this size.
        **kwargs: Holds other keyword arguments that may have been deprecated.
    """
    if not isinstance(collection, ee.FeatureCollection):
        raise ValueError("The collection must be an ee.FeatureCollection.")

    if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
        return

    if isinstance(assetId, str):
        if assetId.startswith("users/") or assetId.startswith("projects/"):
            pass
        else:
            assetId = f"{ee_user_id()}/{assetId}"

    print(assetId)
    print(
        f"Exporting {description}... Please check the Task Manager from the JavaScript Code Editor."
    )

    task = ee.batch.Export.table.toAsset(
        collection,
        description,
        assetId,
        maxVertices,
        **kwargs,
    )
    task.start()

ee_export_vector_to_cloud_storage(collection, description='myExportTableTask', bucket=None, fileNamePrefix=None, fileFormat=None, selectors=None, maxVertices=None, **kwargs)

Creates a task to export a FeatureCollection to Google Cloud Storage.

Parameters:

Name Type Description Default
collection

The feature collection to be exported.

required
description

Human-readable name of the task.

'myExportTableTask'
bucket

The name of a Cloud Storage bucket for the export.

None
fileNamePrefix

Cloud Storage object name prefix for the export. Defaults to the name of the task.

None
fileFormat

The output format: "CSV" (default), "GeoJSON", "KML", "KMZ", "SHP", or "TFRecord".

None
selectors

The list of properties to include in the output, as a list of strings or a comma-separated string. By default, all properties are included.

None
maxVertices

Max number of uncut vertices per geometry; geometries with more vertices will be cut into pieces smaller than this size.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'outputBucket'.

{}
Source code in geemap/common.py
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
def ee_export_vector_to_cloud_storage(
    collection,
    description="myExportTableTask",
    bucket=None,
    fileNamePrefix=None,
    fileFormat=None,
    selectors=None,
    maxVertices=None,
    **kwargs,
):
    """Creates a task to export a FeatureCollection to Google Cloud Storage.

    Args:
        collection: The feature collection to be exported.
        description: Human-readable name of the task.
        bucket: The name of a Cloud Storage bucket for the export.
        fileNamePrefix: Cloud Storage object name prefix for the export.
            Defaults to the name of the task.
        fileFormat: The output format: "CSV" (default), "GeoJSON", "KML", "KMZ",
            "SHP", or "TFRecord".
        selectors: The list of properties to include in the output, as a list
            of strings or a comma-separated string. By default, all properties
            are included.
        maxVertices:
            Max number of uncut vertices per geometry; geometries with more
            vertices will be cut into pieces smaller than this size.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'outputBucket'.
    """
    if not isinstance(collection, ee.FeatureCollection):
        raise ValueError("The collection must be an ee.FeatureCollection.")

    allowed_formats = ["csv", "geojson", "kml", "kmz", "shp", "tfrecord"]
    if not (fileFormat.lower() in allowed_formats):
        raise ValueError(
            "The file type must be one of the following: {}".format(
                ", ".join(allowed_formats)
            )
        )

    if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
        return

    print(
        f"Exporting {description}... Please check the Task Manager from the JavaScript Code Editor."
    )

    task = ee.batch.Export.table.toCloudStorage(
        collection,
        description,
        bucket,
        fileNamePrefix,
        fileFormat,
        selectors,
        maxVertices,
        **kwargs,
    )
    task.start()

ee_export_vector_to_drive(collection, description='myExportTableTask', folder=None, fileNamePrefix=None, fileFormat=None, selectors=None, maxVertices=None, **kwargs)

Creates a task to export a FeatureCollection to Drive.

Parameters:

Name Type Description Default
collection

The feature collection to be exported.

required
description

Human-readable name of the task.

'myExportTableTask'
folder

The name of a unique folder in your Drive account to export into. Defaults to the root of the drive.

None
fileNamePrefix

The Google Drive filename for the export. Defaults to the name of the task.

None
fileFormat

The output format: "CSV" (default), "GeoJSON", "KML", "KMZ", "SHP", or "TFRecord".

None
selectors

The list of properties to include in the output, as a list of strings or a comma-separated string. By default, all properties are included.

None
maxVertices

Max number of uncut vertices per geometry; geometries with more vertices will be cut into pieces smaller than this size.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'driveFolder' and 'driveFileNamePrefix'.

{}
Source code in geemap/common.py
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
def ee_export_vector_to_drive(
    collection,
    description="myExportTableTask",
    folder=None,
    fileNamePrefix=None,
    fileFormat=None,
    selectors=None,
    maxVertices=None,
    **kwargs,
):
    """Creates a task to export a FeatureCollection to Drive.

    Args:
        collection: The feature collection to be exported.
        description: Human-readable name of the task.
        folder: The name of a unique folder in your Drive account to
            export into. Defaults to the root of the drive.
        fileNamePrefix: The Google Drive filename for the export.
            Defaults to the name of the task.
        fileFormat: The output format: "CSV" (default), "GeoJSON", "KML",
            "KMZ", "SHP", or "TFRecord".
        selectors: The list of properties to include in the output, as a list
            of strings or a comma-separated string. By default, all properties
            are included.
        maxVertices:
            Max number of uncut vertices per geometry; geometries with more
            vertices will be cut into pieces smaller than this size.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'driveFolder' and 'driveFileNamePrefix'.
    """
    if not isinstance(collection, ee.FeatureCollection):
        raise ValueError("The collection must be an ee.FeatureCollection.")

    allowed_formats = ["csv", "geojson", "kml", "kmz", "shp", "tfrecord"]
    if not (fileFormat.lower() in allowed_formats):
        raise ValueError(
            "The file type must be one of the following: {}".format(
                ", ".join(allowed_formats)
            )
        )

    if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
        return

    print(
        f"Exporting {description}... Please check the Task Manager from the JavaScript Code Editor."
    )

    task = ee.batch.Export.table.toDrive(
        collection,
        description,
        folder,
        fileNamePrefix,
        fileFormat,
        selectors,
        maxVertices,
        **kwargs,
    )
    task.start()

ee_export_vector_to_feature_view(collection, description='myExportTableTask', assetId=None, ingestionTimeParameters=None, **kwargs)

Creates a task to export a FeatureCollection to a FeatureView.

Parameters:

Name Type Description Default
collection

The feature collection to be exported.

required
description

Human-readable name of the task.

'myExportTableTask'
assetId

The destination asset ID.

None
ingestionTimeParameters

The FeatureView ingestion time parameters.

None
**kwargs

Holds other keyword arguments that may have been deprecated.

{}
Source code in geemap/common.py
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
def ee_export_vector_to_feature_view(
    collection,
    description="myExportTableTask",
    assetId=None,
    ingestionTimeParameters=None,
    **kwargs,
):
    """Creates a task to export a FeatureCollection to a FeatureView.

    Args:
        collection: The feature collection to be exported.
        description: Human-readable name of the task.
        assetId: The destination asset ID.
        ingestionTimeParameters: The FeatureView ingestion time parameters.
        **kwargs: Holds other keyword arguments that may have been deprecated.
    """
    if not isinstance(collection, ee.FeatureCollection):
        raise ValueError("The collection must be an ee.FeatureCollection.")

    if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
        return

    print(
        f"Exporting {description}... Please check the Task Manager from the JavaScript Code Editor."
    )

    task = ee.batch.Export.table.toFeatureView(
        collection,
        description,
        assetId,
        ingestionTimeParameters,
        **kwargs,
    )
    task.start()

ee_export_video_to_cloud_storage(collection, description='myExportVideoTask', bucket=None, fileNamePrefix=None, framesPerSecond=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, maxFrames=None, **kwargs)

Creates a task to export an ImageCollection as a video to Cloud Storage.

Parameters:

Name Type Description Default
collection

The image collection to be exported. The collection must only contain RGB images.

required
description

Human-readable name of the task.

'myExportVideoTask'
bucket

The name of a Cloud Storage bucket for the export.

None
fileNamePrefix

Cloud Storage object name prefix for the export. Defaults to the task's description.

None
framesPerSecond

A number between .1 and 120 describing the framerate of the exported video.

None
dimensions

The dimensions of the exported video. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the first image's region.

None
scale

The resolution in meters per pixel.

None
crs

The coordinate reference system of the exported video's projection. Defaults to SR-ORG:6627.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported video's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image collection's native CRS transform.

None
maxPixels

The maximum number of pixels per frame. Defaults to 1e8 pixels per frame. By setting this explicitly, you may raise or lower the limit.

None
maxFrames

The maximum number of frames to export. Defaults to 1000 frames. By setting this explicitly, you may raise or lower the limit.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform'.

{}
Source code in geemap/common.py
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
def ee_export_video_to_cloud_storage(
    collection,
    description="myExportVideoTask",
    bucket=None,
    fileNamePrefix=None,
    framesPerSecond=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    maxFrames=None,
    **kwargs,
):
    """Creates a task to export an ImageCollection as a video to Cloud Storage.

    Args:
        collection: The image collection to be exported. The collection must
            only contain RGB images.
        description: Human-readable name of the task.
        bucket: The name of a Cloud Storage bucket for the export.
        fileNamePrefix: Cloud Storage object name prefix for the export.
            Defaults to the task's description.
        framesPerSecond: A number between .1 and 120 describing the
            framerate of the exported video.
        dimensions: The dimensions of the exported video. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the first
            image's region.
        scale: The resolution in meters per pixel.
        crs: The coordinate reference system of the exported video's
            projection. Defaults to SR-ORG:6627.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported video's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image collection's native CRS transform.
        maxPixels: The maximum number of pixels per frame.
            Defaults to 1e8 pixels per frame. By setting this explicitly,
            you may raise or lower the limit.
        maxFrames: The maximum number of frames to export.
            Defaults to 1000 frames. By setting this explicitly, you may
            raise or lower the limit.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform'.

    """
    if not isinstance(collection, ee.ImageCollection):
        raise TypeError("collection must be an ee.ImageCollection")

    if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
        return

    print(
        f"Exporting {description}... Please check the Task Manager from the JavaScript Code Editor."
    )

    task = ee.batch.Export.video.toCloudStorage(
        collection,
        description,
        bucket,
        fileNamePrefix,
        framesPerSecond,
        dimensions,
        region,
        scale,
        crs,
        crsTransform,
        maxPixels,
        maxFrames,
        **kwargs,
    )
    task.start()

ee_export_video_to_drive(collection, description='myExportVideoTask', folder=None, fileNamePrefix=None, framesPerSecond=None, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, maxFrames=None, **kwargs)

Creates a task to export an ImageCollection as a video to Drive.

Parameters:

Name Type Description Default
collection

The image collection to be exported. The collection must only contain RGB images.

required
description

Human-readable name of the task.

'myExportVideoTask'
folder

The name of a unique folder in your Drive account to export into. Defaults to the root of the drive.

None
fileNamePrefix

The Google Drive filename for the export. Defaults to the name of the task.

None
framesPerSecond

A number between .1 and 120 describing the framerate of the exported video.

None
dimensions

The dimensions of the exported video. Takes either a single positive integer as the maximum dimension or "WIDTHxHEIGHT" where WIDTH and HEIGHT are each positive integers.

None
region

The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. Can be specified as a nested lists of numbers or a serialized string. Defaults to the first image's region.

None
scale

The resolution in meters per pixel.

None
crs

The coordinate reference system of the exported video's projection. Defaults to SR-ORG:6627.

None
crsTransform

A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported video's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale and yTranslation. Defaults to the image collection's native CRS transform.

None
maxPixels

The maximum number of pixels per frame. Defaults to 1e8 pixels per frame. By setting this explicitly, you may raise or lower the limit.

None
maxFrames

The maximum number of frames to export. Defaults to 1000 frames. By setting this explicitly, you may raise or lower the limit.

None
**kwargs

Holds other keyword arguments that may have been deprecated such as 'crs_transform'.

{}
Source code in geemap/common.py
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
def ee_export_video_to_drive(
    collection,
    description="myExportVideoTask",
    folder=None,
    fileNamePrefix=None,
    framesPerSecond=None,
    dimensions=None,
    region=None,
    scale=None,
    crs=None,
    crsTransform=None,
    maxPixels=None,
    maxFrames=None,
    **kwargs,
):
    """Creates a task to export an ImageCollection as a video to Drive.

    Args:
        collection: The image collection to be exported. The collection must
            only contain RGB images.
        description: Human-readable name of the task.
        folder: The name of a unique folder in your Drive account to
            export into. Defaults to the root of the drive.
        fileNamePrefix: The Google Drive filename for the export.
            Defaults to the name of the task.
        framesPerSecond: A number between .1 and 120 describing the
            framerate of the exported video.
        dimensions: The dimensions of the exported video. Takes either a
            single positive integer as the maximum dimension or "WIDTHxHEIGHT"
            where WIDTH and HEIGHT are each positive integers.
        region: The lon,lat coordinates for a LinearRing or Polygon
            specifying the region to export. Can be specified as a nested
            lists of numbers or a serialized string. Defaults to the first
            image's region.
        scale: The resolution in meters per pixel.
        crs: The coordinate reference system of the exported video's
            projection. Defaults to SR-ORG:6627.
        crsTransform: A comma-separated string of 6 numbers describing
            the affine transform of the coordinate reference system of the
            exported video's projection, in the order: xScale, xShearing,
            xTranslation, yShearing, yScale and yTranslation. Defaults to
            the image collection's native CRS transform.
        maxPixels: The maximum number of pixels per frame.
            Defaults to 1e8 pixels per frame. By setting this explicitly,
            you may raise or lower the limit.
        maxFrames: The maximum number of frames to export.
            Defaults to 1000 frames. By setting this explicitly, you may
            raise or lower the limit.
        **kwargs: Holds other keyword arguments that may have been deprecated
            such as 'crs_transform'.

    """
    if not isinstance(collection, ee.ImageCollection):
        raise TypeError("collection must be an ee.ImageCollection")

    if os.environ.get("USE_MKDOCS") is not None:  # skip if running GitHub CI.
        return

    print(
        f"Exporting {description}... Please check the Task Manager from the JavaScript Code Editor."
    )

    task = ee.batch.Export.video.toDrive(
        collection,
        description,
        folder,
        fileNamePrefix,
        framesPerSecond,
        dimensions,
        region,
        scale,
        crs,
        crsTransform,
        maxPixels,
        maxFrames,
        **kwargs,
    )
    task.start()

ee_function_tree(name)

Construct the tree structure based on an Earth Engine function. For example, the function "ee.Algorithms.FMask.matchClouds" will return a list ["ee.Algorithms", "ee.Algorithms.FMask", "ee.Algorithms.FMask.matchClouds"]

Parameters:

Name Type Description Default
name str

The name of the Earth Engine function

required

Returns:

Name Type Description
list

The list for parent functions.

Source code in geemap/common.py
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
def ee_function_tree(name):
    """Construct the tree structure based on an Earth Engine function. For example, the function "ee.Algorithms.FMask.matchClouds" will return a list ["ee.Algorithms", "ee.Algorithms.FMask", "ee.Algorithms.FMask.matchClouds"]

    Args:
        name (str): The name of the Earth Engine function

    Returns:
        list: The list for parent functions.
    """
    func_list = []
    try:
        items = name.split(".")
        if items[0] == "ee":
            for i in range(2, len(items) + 1):
                func_list.append(".".join(items[0:i]))
        else:
            for i in range(1, len(items) + 1):
                func_list.append(".".join(items[0:i]))

        return func_list
    except Exception as e:
        print(e)
        print("The provided function name is invalid.")

ee_initialize(token_name='EARTHENGINE_TOKEN', auth_mode=None, auth_args=None, user_agent_prefix='geemap', project=None, **kwargs)

Authenticates Earth Engine and initialize an Earth Engine session

Parameters:

Name Type Description Default
token_name str

The name of the Earth Engine token. Defaults to "EARTHENGINE_TOKEN". In Colab, you can also set a secret named "EE_PROJECT_ID" to initialize Earth Engine.

'EARTHENGINE_TOKEN'
auth_mode str

The authentication mode, can be one of colab, notebook, localhost, or gcloud. See https://developers.google.com/earth-engine/guides/auth for more details. Defaults to None.

None
auth_args dict

Additional authentication parameters for aa.Authenticate(). Defaults to {}.

None
user_agent_prefix str

If set, the prefix (version-less) value used for setting the user-agent string. Defaults to "geemap".

'geemap'
project str

The Google cloud project ID for Earth Engine. Defaults to None.

None
kwargs dict

Additional parameters for ee.Initialize(). For example, opt_url='https://earthengine-highvolume.googleapis.com' to use the Earth Engine High-Volume platform. Defaults to {}.

{}
Source code in geemap/coreutils.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def ee_initialize(
    token_name: str = "EARTHENGINE_TOKEN",
    auth_mode: Optional[str] = None,
    auth_args: Optional[Dict[str, Any]] = None,
    user_agent_prefix: str = "geemap",
    project: Optional[str] = None,
    **kwargs: Any,
) -> None:
    """Authenticates Earth Engine and initialize an Earth Engine session

    Args:
        token_name (str, optional): The name of the Earth Engine token.
            Defaults to "EARTHENGINE_TOKEN". In Colab, you can also set a secret
            named "EE_PROJECT_ID" to initialize Earth Engine.
        auth_mode (str, optional): The authentication mode, can be one of colab,
            notebook, localhost, or gcloud.
            See https://developers.google.com/earth-engine/guides/auth for more
            details. Defaults to None.
        auth_args (dict, optional): Additional authentication parameters for
            aa.Authenticate(). Defaults to {}.
        user_agent_prefix (str, optional): If set, the prefix (version-less)
            value used for setting the user-agent string. Defaults to "geemap".
        project (str, optional): The Google cloud project ID for Earth Engine.
            Defaults to None.
        kwargs (dict, optional): Additional parameters for ee.Initialize().
            For example, opt_url='https://earthengine-highvolume.googleapis.com'
            to use the Earth Engine High-Volume platform. Defaults to {}.
    """
    import google.oauth2.credentials
    from .__init__ import __version__

    user_agent = f"{user_agent_prefix}/{__version__}"
    ee.data.setUserAgent(user_agent)

    if ee.data._credentials is not None:
        return

    ee_token = get_env_var(token_name)
    if ee_token is not None:

        stored = json.loads(ee_token)
        credentials = google.oauth2.credentials.Credentials(
            None,
            token_uri="https://oauth2.googleapis.com/token",
            client_id=stored["client_id"],
            client_secret=stored["client_secret"],
            refresh_token=stored["refresh_token"],
            quota_project_id=stored["project"],
        )

        ee.Initialize(credentials=credentials, **kwargs)
        return

    if auth_args is None:
        auth_args = {}

    if project is None:
        kwargs["project"] = get_env_var("EE_PROJECT_ID")
    else:
        kwargs["project"] = project

    if auth_mode is None:
        if in_colab_shell() and (ee.data._credentials is None):
            ee.Authenticate()
            ee.Initialize(**kwargs)
            return
        else:
            auth_mode = "notebook"

    auth_args["auth_mode"] = auth_mode

    ee.Authenticate(**auth_args)
    ee.Initialize(**kwargs)

ee_join_table(ee_object, data, src_key, dst_key=None)

Join a table to an ee.FeatureCollection attribute table.

Parameters:

Name Type Description Default
ee_object FeatureCollection

The ee.FeatureCollection to be joined by a table.

required
data str | DataFraem | GeoDataFrame

The table to join to the ee.FeatureCollection.

required
src_key str

The key of ee.FeatureCollection attribute table to join.

required
dst_key str

The key of the table to be joined to the ee.FeatureCollection. Defaults to None.

None

Returns:

Type Description

ee.FeatureCollection: The joined ee.FeatureCollection.

Source code in geemap/common.py
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
def ee_join_table(ee_object, data, src_key, dst_key=None):
    """Join a table to an ee.FeatureCollection attribute table.

    Args:
        ee_object (ee.FeatureCollection): The ee.FeatureCollection to be joined by a table.
        data (str | pd.DataFraem | gpd.GeoDataFrame): The table to join to the ee.FeatureCollection.
        src_key (str): The key of ee.FeatureCollection attribute table to join.
        dst_key (str, optional): The key of the table to be joined to the ee.FeatureCollection. Defaults to None.

    Returns:
        ee.FeatureCollection: The joined ee.FeatureCollection.
    """
    import pandas as pd

    if not isinstance(ee_object, ee.FeatureCollection):
        raise TypeError("The input ee_object must be of type ee.FeatureCollection.")

    if not isinstance(src_key, str):
        raise TypeError("The input src_key must be of type str.")

    if dst_key is None:
        dst_key = src_key

    if isinstance(data, str):
        data = github_raw_url(data)
        if data.endswith(".csv"):
            df = pd.read_csv(data)
        elif data.endswith(".geojson"):
            df = geojson_to_df(data)
        else:
            import geopandas as gpd

            gdf = gpd.read_file(data)
            df = gdf_to_df(gdf)
    elif isinstance(data, pd.DataFrame):
        if "geometry" in data.columns:
            df = data.drop(columns=["geometry"])
        elif "geom" in data.columns:
            df = data.drop(columns=["geom"])
        else:
            df = data
    else:
        raise TypeError("The input data must be of type str or pandas.DataFrame.")

    df[dst_key] = df[dst_key].astype(str)
    df.set_index(dst_key, inplace=True)
    df = df[~df.index.duplicated(keep="first")]
    table = ee.Dictionary(df.to_dict("index"))

    fc = ee_object.map(lambda f: f.set(table.get(f.get(src_key), ee.Dictionary())))
    return fc

ee_num_round(num, decimal=2)

Rounds a number to a specified number of decimal places.

Parameters:

Name Type Description Default
num Number

The number to round.

required
decimal int

The number of decimal places to round. Defaults to 2.

2

Returns:

Type Description

ee.Number: The number with the specified decimal places rounded.

Source code in geemap/common.py
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
def ee_num_round(num, decimal=2):
    """Rounds a number to a specified number of decimal places.

    Args:
        num (ee.Number): The number to round.
        decimal (int, optional): The number of decimal places to round. Defaults to 2.

    Returns:
        ee.Number: The number with the specified decimal places rounded.
    """
    format_str = "%.{}f".format(decimal)
    return ee.Number.parse(ee.Number(num).format(format_str))

Search Earth Engine API and user assets. If you received a warning (IOPub message rate exceeded) in Jupyter notebook, you can relaunch Jupyter notebook using the following command: jupyter notebook --NotebookApp.iopub_msg_rate_limit=10000

Parameters:

Name Type Description Default
asset_limit int

The number of assets to display for each asset type, i.e., Image, ImageCollection, and FeatureCollection. Defaults to 100.

100
Source code in geemap/common.py
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
def ee_search(asset_limit=100):
    """Search Earth Engine API and user assets. If you received a warning (IOPub message rate exceeded) in Jupyter notebook, you can relaunch Jupyter notebook using the following command:
        jupyter notebook --NotebookApp.iopub_msg_rate_limit=10000

    Args:
        asset_limit (int, optional): The number of assets to display for each asset type, i.e., Image, ImageCollection, and FeatureCollection. Defaults to 100.
    """

    warnings.filterwarnings("ignore")

    class Flags:
        def __init__(
            self,
            repos=None,
            docs=None,
            assets=None,
            docs_dict=None,
            asset_dict=None,
            asset_import=None,
        ):
            self.repos = repos
            self.docs = docs
            self.assets = assets
            self.docs_dict = docs_dict
            self.asset_dict = asset_dict
            self.asset_import = asset_import

    flags = Flags()

    search_type = widgets.ToggleButtons(
        options=["Scripts", "Docs", "Assets"],
        tooltips=[
            "Search Earth Engine Scripts",
            "Search Earth Engine API",
            "Search Earth Engine Assets",
        ],
        button_style="primary",
    )
    search_type.style.button_width = "100px"

    search_box = widgets.Text(placeholder="Filter scripts...", value="Loading...")
    search_box.layout.width = "310px"

    tree_widget = widgets.Output()

    left_widget = widgets.VBox()
    right_widget = widgets.VBox()
    output_widget = widgets.Output()
    output_widget.layout.max_width = "650px"

    search_widget = widgets.HBox()
    search_widget.children = [left_widget, right_widget]
    display(search_widget)

    repo_tree, repo_output, _ = build_repo_tree()
    left_widget.children = [search_type, repo_tree]
    right_widget.children = [repo_output]

    flags.repos = repo_tree
    search_box.value = ""

    def search_type_changed(change):
        search_box.value = ""

        output_widget.outputs = ()
        tree_widget.outputs = ()
        if change["new"] == "Scripts":
            search_box.placeholder = "Filter scripts..."
            left_widget.children = [search_type, repo_tree]
            right_widget.children = [repo_output]
        elif change["new"] == "Docs":
            search_box.placeholder = "Filter methods..."
            search_box.value = "Loading..."
            left_widget.children = [search_type, search_box, tree_widget]
            right_widget.children = [output_widget]
            if flags.docs is None:
                api_dict = read_api_csv()
                ee_api_tree, tree_dict = build_api_tree(api_dict, output_widget)
                flags.docs = ee_api_tree
                flags.docs_dict = tree_dict
            else:
                ee_api_tree = flags.docs
            with tree_widget:
                tree_widget.outputs = ()
                display(ee_api_tree)
                right_widget.children = [output_widget]
            search_box.value = ""
        elif change["new"] == "Assets":
            search_box.placeholder = "Filter assets..."
            left_widget.children = [search_type, search_box, tree_widget]
            right_widget.children = [output_widget]
            search_box.value = "Loading..."
            if flags.assets is None:
                asset_tree, asset_widget, asset_dict = build_asset_tree(
                    limit=asset_limit
                )
                flags.assets = asset_tree
                flags.asset_dict = asset_dict
                flags.asset_import = asset_widget

            with tree_widget:
                tree_widget.outputs = ()
                display(flags.assets)
            right_widget.children = [flags.asset_import]
            search_box.value = ""

    search_type.observe(search_type_changed, names="value")

    def search_box_callback(text):
        if search_type.value == "Docs":
            with tree_widget:
                if text.value == "":
                    print("Loading...")
                    tree_widget.outputs = ()
                    display(flags.docs)
                else:
                    tree_widget.outputs = ()
                    print("Searching...")
                    tree_widget.outputs = ()
                    sub_tree = search_api_tree(text.value, flags.docs_dict)
                    display(sub_tree)
        elif search_type.value == "Assets":
            with tree_widget:
                if text.value == "":
                    print("Loading...")
                    tree_widget.outputs = ()
                    display(flags.assets)
                else:
                    tree_widget.outputs = ()
                    print("Searching...")
                    tree_widget.outputs = ()
                    sub_tree = search_api_tree(text.value, flags.asset_dict)
                    display(sub_tree)

    search_box.on_submit(search_box_callback)

ee_tile_layer(ee_object, vis_params={}, name='Layer untitled', shown=True, opacity=1.0, **kwargs)

Converts and Earth Engine layer to ipyleaflet TileLayer.

Parameters:

Name Type Description Default
ee_object Collection | Feature | Image | MapId

The object to add to the map.

required
vis_params dict

The visualization parameters. Defaults to {}.

{}
name str

The name of the layer. Defaults to 'Layer untitled'.

'Layer untitled'
shown bool

A flag indicating whether the layer should be on by default. Defaults to True.

True
opacity float

The layer's opacity represented as a number between 0 and 1. Defaults to 1.

1.0
Source code in geemap/foliumap.py
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
def ee_tile_layer(
    ee_object, vis_params={}, name="Layer untitled", shown=True, opacity=1.0, **kwargs
):
    """Converts and Earth Engine layer to ipyleaflet TileLayer.

    Args:
        ee_object (Collection|Feature|Image|MapId): The object to add to the map.
        vis_params (dict, optional): The visualization parameters. Defaults to {}.
        name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
        shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
        opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1.
    """

    image = None

    if (
        not isinstance(ee_object, ee.Image)
        and not isinstance(ee_object, ee.ImageCollection)
        and not isinstance(ee_object, ee.FeatureCollection)
        and not isinstance(ee_object, ee.Feature)
        and not isinstance(ee_object, ee.Geometry)
    ):
        err_str = "\n\nThe image argument in 'addLayer' function must be an instance of one of ee.Image, ee.Geometry, ee.Feature or ee.FeatureCollection."
        raise AttributeError(err_str)

    if (
        isinstance(ee_object, ee.geometry.Geometry)
        or isinstance(ee_object, ee.feature.Feature)
        or isinstance(ee_object, ee.featurecollection.FeatureCollection)
    ):
        features = ee.FeatureCollection(ee_object)

        width = 2

        if "width" in vis_params:
            width = vis_params["width"]

        color = "000000"

        if "color" in vis_params:
            color = vis_params["color"]

        image_fill = features.style(**{"fillColor": color}).updateMask(
            ee.Image.constant(0.5)
        )
        image_outline = features.style(
            **{"color": color, "fillColor": "00000000", "width": width}
        )

        image = image_fill.blend(image_outline)
    elif isinstance(ee_object, ee.image.Image):
        image = ee_object
    elif isinstance(ee_object, ee.imagecollection.ImageCollection):
        image = ee_object.mosaic()

    if "palette" in vis_params:
        if isinstance(vis_params["palette"], Box):
            try:
                vis_params["palette"] = vis_params["palette"]["default"]
            except Exception as e:
                print("The provided palette is invalid.")
                raise Exception(e)
        elif isinstance(vis_params["palette"], str):
            vis_params["palette"] = check_cmap(vis_params["palette"])
        elif not isinstance(vis_params["palette"], list):
            raise ValueError(
                "The palette must be a list of colors or a string or a Box object."
            )

    map_id_dict = ee.Image(image).getMapId(vis_params)
    tile_layer = folium.raster_layers.TileLayer(
        tiles=map_id_dict["tile_fetcher"].url_format,
        attr="Google Earth Engine",
        name=name,
        overlay=True,
        control=True,
        opacity=opacity,
        show=shown,
        max_zoom=24,
        **kwargs,
    )
    return tile_layer

ee_to_bbox(ee_object)

Get the bounding box of an Earth Engine object as a list in the format [xmin, ymin, xmax, ymax].

Parameters:

Name Type Description Default
ee_object Image | Geometry | Feature | FeatureCollection

The input Earth Engine object.

required

Returns:

Name Type Description
list

The bounding box of the Earth Engine object in the format [xmin, ymin, xmax, ymax].

Source code in geemap/common.py
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
def ee_to_bbox(ee_object):
    """Get the bounding box of an Earth Engine object as a list in the format [xmin, ymin, xmax, ymax].

    Args:
        ee_object (ee.Image | ee.Geometry | ee.Feature | ee.FeatureCollection): The input Earth Engine object.

    Returns:
        list: The bounding box of the Earth Engine object in the format [xmin, ymin, xmax, ymax].
    """
    if (
        isinstance(ee_object, ee.Image)
        or isinstance(ee_object, ee.Feature)
        or isinstance(ee_object, ee.FeatureCollection)
    ):
        geometry = ee_object.geometry()
    elif isinstance(ee_object, ee.Geometry):
        geometry = ee_object
    else:
        raise Exception(
            "The ee_object must be an ee.Image, ee.Feature, ee.FeatureCollection or ee.Geometry object."
        )

    bounds = geometry.bounds().getInfo()["coordinates"][0]
    xmin = bounds[0][0]
    ymin = bounds[0][1]
    xmax = bounds[1][0]
    ymax = bounds[2][1]
    bbox = [xmin, ymin, xmax, ymax]
    return bbox

ee_to_csv(ee_object, filename, columns=None, remove_geom=True, sort_columns=False, **kwargs)

Downloads an ee.FeatureCollection as a CSV file.

Parameters:

Name Type Description Default
ee_object object

ee.FeatureCollection

required
filename str

The output filepath of the CSV file.

required
columns list

A list of attributes to export. Defaults to None.

None
remove_geom bool

Whether to remove the geometry column. Defaults to True.

True
sort_columns bool

Whether to sort the columns alphabetically. Defaults to False.

False
kwargs

Additional arguments passed to ee_to_df().

{}
Source code in geemap/common.py
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
def ee_to_csv(
    ee_object,
    filename,
    columns=None,
    remove_geom=True,
    sort_columns=False,
    **kwargs,
):
    """Downloads an ee.FeatureCollection as a CSV file.

    Args:
        ee_object (object): ee.FeatureCollection
        filename (str): The output filepath of the CSV file.
        columns (list, optional): A list of attributes to export. Defaults to None.
        remove_geom (bool, optional): Whether to remove the geometry column. Defaults to True.
        sort_columns (bool, optional): Whether to sort the columns alphabetically. Defaults to False.
        kwargs: Additional arguments passed to ee_to_df().

    """
    try:
        if filename.lower().endswith(".csv"):
            df = ee_to_df(ee_object, columns, remove_geom, sort_columns, **kwargs)
            df.to_csv(filename, index=False)
        else:
            print("The filename must end with .csv")

    except Exception as e:
        print(e)

ee_to_df(ee_object, columns=None, remove_geom=True, sort_columns=False, **kwargs)

Converts an ee.FeatureCollection to pandas dataframe.

Parameters:

Name Type Description Default
ee_object FeatureCollection

ee.FeatureCollection.

required
columns list

List of column names. Defaults to None.

None
remove_geom bool

Whether to remove the geometry column. Defaults to True.

True
sort_columns bool

Whether to sort the column names. Defaults to False.

False
kwargs

Additional arguments passed to ee.data.computeFeature.

{}

Raises:

Type Description
TypeError

ee_object must be an ee.FeatureCollection

Returns:

Type Description

pd.DataFrame: pandas DataFrame

Source code in geemap/common.py
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
def ee_to_df(
    ee_object,
    columns=None,
    remove_geom=True,
    sort_columns=False,
    **kwargs,
):
    """Converts an ee.FeatureCollection to pandas dataframe.

    Args:
        ee_object (ee.FeatureCollection): ee.FeatureCollection.
        columns (list): List of column names. Defaults to None.
        remove_geom (bool): Whether to remove the geometry column. Defaults to True.
        sort_columns (bool): Whether to sort the column names. Defaults to False.
        kwargs: Additional arguments passed to ee.data.computeFeature.

    Raises:
        TypeError: ee_object must be an ee.FeatureCollection

    Returns:
        pd.DataFrame: pandas DataFrame
    """
    if isinstance(ee_object, ee.Feature):
        ee_object = ee.FeatureCollection([ee_object])

    if not isinstance(ee_object, ee.FeatureCollection):
        raise TypeError("ee_object must be an ee.FeatureCollection")

    try:
        if remove_geom:
            data = ee_object.map(
                lambda f: ee.Feature(None, f.toDictionary(f.propertyNames().sort()))
            )
        else:
            data = ee_object

        kwargs["expression"] = data
        kwargs["fileFormat"] = "PANDAS_DATAFRAME"

        df = ee.data.computeFeatures(kwargs)

        if isinstance(columns, list):
            df = df[columns]

        if remove_geom and ("geo" in df.columns):
            df = df.drop(columns=["geo"], axis=1)

        if sort_columns:
            df = df.reindex(sorted(df.columns), axis=1)

        return df
    except Exception as e:
        raise Exception(e)

ee_to_gdf(ee_object, columns=None, sort_columns=False, **kwargs)

Converts an ee.FeatureCollection to GeoPandas GeoDataFrame.

Parameters:

Name Type Description Default
ee_object FeatureCollection

ee.FeatureCollection.

required
columns list

List of column names. Defaults to None.

None
sort_columns bool

Whether to sort the column names. Defaults to False.

False
kwargs

Additional arguments passed to ee.data.computeFeature.

{}

Raises:

Type Description
TypeError

ee_object must be an ee.FeatureCollection

Returns:

Type Description

gpd.GeoDataFrame: GeoPandas GeoDataFrame

Source code in geemap/common.py
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
def ee_to_gdf(
    ee_object,
    columns=None,
    sort_columns=False,
    **kwargs,
):
    """Converts an ee.FeatureCollection to GeoPandas GeoDataFrame.

    Args:
        ee_object (ee.FeatureCollection): ee.FeatureCollection.
        columns (list): List of column names. Defaults to None.
        sort_columns (bool): Whether to sort the column names. Defaults to False.
        kwargs: Additional arguments passed to ee.data.computeFeature.

    Raises:
        TypeError: ee_object must be an ee.FeatureCollection

    Returns:
        gpd.GeoDataFrame: GeoPandas GeoDataFrame
    """
    if isinstance(ee_object, ee.Feature):
        ee_object = ee.FeatureCollection([ee_object])

    if not isinstance(ee_object, ee.FeatureCollection):
        raise TypeError("ee_object must be an ee.FeatureCollection")

    try:
        kwargs["expression"] = ee_object
        kwargs["fileFormat"] = "GEOPANDAS_GEODATAFRAME"

        crs = ee_object.first().geometry().projection().crs().getInfo()
        gdf = ee.data.computeFeatures(kwargs)

        if isinstance(columns, list):
            gdf = gdf[columns]

        if sort_columns:
            gdf = gdf.reindex(sorted(gdf.columns), axis=1)

        gdf.crs = crs
        return gdf
    except Exception as e:
        raise Exception(e)

ee_to_geojson(ee_object, filename=None, indent=2, **kwargs)

Converts Earth Engine object to geojson.

Parameters:

Name Type Description Default
ee_object object

An Earth Engine object.

required
filename str

The file path to save the geojson. Defaults to None.

None

Returns:

Name Type Description
object

GeoJSON object.

Source code in geemap/common.py
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
def ee_to_geojson(ee_object, filename=None, indent=2, **kwargs):
    """Converts Earth Engine object to geojson.

    Args:
        ee_object (object): An Earth Engine object.
        filename (str, optional): The file path to save the geojson. Defaults to None.

    Returns:
        object: GeoJSON object.
    """

    try:
        if (
            isinstance(ee_object, ee.Geometry)
            or isinstance(ee_object, ee.Feature)
            or isinstance(ee_object, ee.FeatureCollection)
        ):
            json_object = ee_object.getInfo()
            if filename is not None:
                filename = os.path.abspath(filename)
                if not os.path.exists(os.path.dirname(filename)):
                    os.makedirs(os.path.dirname(filename))
                with open(filename, "w") as f:
                    f.write(json.dumps(json_object, indent=indent, **kwargs) + "\n")
            else:
                return json_object
        else:
            print("Could not convert the Earth Engine object to geojson")
    except Exception as e:
        raise Exception(e)

ee_to_geotiff(ee_object, output, bbox=None, vis_params={}, zoom=None, resolution=None, crs='EPSG:3857', to_cog=False, quiet=False, **kwargs)

Downloads an Earth Engine object as GeoTIFF.

Parameters:

Name Type Description Default
ee_object Image | FeatureCollection

The Earth Engine object to download.

required
output str

The output path for the GeoTIFF.

required
bbox str

The bounding box in the format [xmin, ymin, xmax, ymax]. Defaults to None, which is the bounding box of the Earth Engine object.

None
vis_params dict

Visualization parameters. Defaults to {}.

{}
zoom int

The zoom level to download the image at. Defaults to None.

None
resolution float

The resolution in meters to download the image at. Defaults to None.

None
crs str

The CRS of the output image. Defaults to "EPSG:3857".

'EPSG:3857'
to_cog bool

Whether to convert the image to Cloud Optimized GeoTIFF. Defaults to False.

False
quiet bool

Whether to hide the download progress bar. Defaults to False.

False
Source code in geemap/common.py
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
def ee_to_geotiff(
    ee_object,
    output,
    bbox=None,
    vis_params={},
    zoom=None,
    resolution=None,
    crs="EPSG:3857",
    to_cog=False,
    quiet=False,
    **kwargs,
):
    """Downloads an Earth Engine object as GeoTIFF.

    Args:
        ee_object (ee.Image | ee.FeatureCollection): The Earth Engine object to download.
        output (str): The output path for the GeoTIFF.
        bbox (str, optional): The bounding box in the format [xmin, ymin, xmax, ymax]. Defaults to None,
            which is the bounding box of the Earth Engine object.
        vis_params (dict, optional): Visualization parameters. Defaults to {}.
        zoom (int, optional): The zoom level to download the image at. Defaults to None.
        resolution (float, optional): The resolution in meters to download the image at. Defaults to None.
        crs (str, optional): The CRS of the output image. Defaults to "EPSG:3857".
        to_cog (bool, optional): Whether to convert the image to Cloud Optimized GeoTIFF. Defaults to False.
        quiet (bool, optional): Whether to hide the download progress bar. Defaults to False.

    """

    from box import Box

    image = None

    if (
        not isinstance(ee_object, ee.Image)
        and not isinstance(ee_object, ee.ImageCollection)
        and not isinstance(ee_object, ee.FeatureCollection)
        and not isinstance(ee_object, ee.Feature)
        and not isinstance(ee_object, ee.Geometry)
    ):
        err_str = "\n\nThe image argument in 'addLayer' function must be an instance of one of ee.Image, ee.Geometry, ee.Feature or ee.FeatureCollection."
        raise AttributeError(err_str)

    if (
        isinstance(ee_object, ee.geometry.Geometry)
        or isinstance(ee_object, ee.feature.Feature)
        or isinstance(ee_object, ee.featurecollection.FeatureCollection)
    ):
        features = ee.FeatureCollection(ee_object)

        width = 2

        if "width" in vis_params:
            width = vis_params["width"]

        color = "000000"

        if "color" in vis_params:
            color = vis_params["color"]

        image_fill = features.style(**{"fillColor": color}).updateMask(
            ee.Image.constant(0.5)
        )
        image_outline = features.style(
            **{"color": color, "fillColor": "00000000", "width": width}
        )

        image = image_fill.blend(image_outline)
    elif isinstance(ee_object, ee.image.Image):
        image = ee_object
    elif isinstance(ee_object, ee.imagecollection.ImageCollection):
        image = ee_object.mosaic()

    if "palette" in vis_params:
        if isinstance(vis_params["palette"], Box):
            try:
                vis_params["palette"] = vis_params["palette"]["default"]
            except Exception as e:
                print("The provided palette is invalid.")
                raise Exception(e)
        elif isinstance(vis_params["palette"], str):
            vis_params["palette"] = check_cmap(vis_params["palette"])
        elif not isinstance(vis_params["palette"], list):
            raise ValueError(
                "The palette must be a list of colors or a string or a Box object."
            )

    map_id_dict = ee.Image(image).getMapId(vis_params)
    url = map_id_dict["tile_fetcher"].url_format

    if bbox is None:
        bbox = ee_to_bbox(image)

    if zoom is None and resolution is None:
        raise ValueError("Either zoom level or resolution must be specified.")

    tms_to_geotiff(output, bbox, zoom, resolution, url, crs, to_cog, quiet, **kwargs)

ee_to_numpy(ee_object, region=None, scale=None, bands=None, **kwargs)

Extracts a rectangular region of pixels from an image into a numpy array.

Parameters:

Name Type Description Default
ee_object Image

The image to sample.

required
region Geometry

The region to sample. Defaults to None.

None
bands list

The list of band names to extract. Defaults to None.

None
scale int

A nominal scale in meters of the projection to sample in. Defaults to None.

None

Returns:

Type Description

np.ndarray: A 3D numpy array in the format of [row, column, band].

Source code in geemap/common.py
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
def ee_to_numpy(ee_object, region=None, scale=None, bands=None, **kwargs):
    """Extracts a rectangular region of pixels from an image into a numpy array.

    Args:
        ee_object (ee.Image): The image to sample.
        region (ee.Geometry, optional): The region to sample. Defaults to None.
        bands (list, optional): The list of band names to extract. Defaults to None.
        scale (int, optional): A nominal scale in meters of the projection to sample in. Defaults to None.

    Returns:
        np.ndarray: A 3D numpy array in the format of [row, column, band].
    """
    import numpy as np

    if (region is not None) or (scale is not None):
        ee_object = ee_object.clipToBoundsAndScale(geometry=region, scale=scale)

    kwargs["expression"] = ee_object
    kwargs["fileFormat"] = "NUMPY_NDARRAY"
    if bands is not None:
        kwargs["bandIds"] = bands

    try:
        struct_array = ee.data.computePixels(kwargs)
        array = np.dstack(([struct_array[band] for band in struct_array.dtype.names]))
        return array
    except Exception as e:
        raise Exception(e)

ee_to_shp(ee_object, filename, columns=None, sort_columns=False, **kwargs)

Downloads an ee.FeatureCollection as a shapefile.

Parameters:

Name Type Description Default
ee_object object

ee.FeatureCollection

required
filename str

The output filepath of the shapefile.

required
columns list

A list of attributes to export. Defaults to None.

None
sort_columns bool

Whether to sort the columns alphabetically. Defaults to False.

False
kwargs

Additional arguments passed to ee_to_gdf().

{}
Source code in geemap/common.py
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
def ee_to_shp(
    ee_object,
    filename,
    columns=None,
    sort_columns=False,
    **kwargs,
):
    """Downloads an ee.FeatureCollection as a shapefile.

    Args:
        ee_object (object): ee.FeatureCollection
        filename (str): The output filepath of the shapefile.
        columns (list, optional): A list of attributes to export. Defaults to None.
        sort_columns (bool, optional): Whether to sort the columns alphabetically. Defaults to False.
        kwargs: Additional arguments passed to ee_to_gdf().

    """
    try:
        if filename.lower().endswith(".shp"):
            gdf = ee_to_gdf(ee_object, columns, sort_columns, **kwargs)
            gdf.to_file(filename)
        else:
            print("The filename must end with .shp")

    except Exception as e:
        print(e)

ee_to_xarray(dataset, drop_variables=None, io_chunks=None, n_images=-1, mask_and_scale=True, decode_times=True, decode_timedelta=None, use_cftime=None, concat_characters=True, decode_coords=True, crs=None, scale=None, projection=None, geometry=None, primary_dim_name=None, primary_dim_property=None, ee_mask_value=None, ee_initialize=True, **kwargs)

Open an Earth Engine ImageCollection as an Xarray Dataset. This function is a wrapper for xee. EarthEngineBackendEntrypoint.open_dataset(). See https://github.com/google/Xee/blob/main/xee/ext.py#L886

Parameters:

Name Type Description Default
dataset

An asset ID for an ImageCollection, or an ee.ImageCollection object.

required
drop_variables optional

Variables or bands to drop before opening.

None
io_chunks optional

Specifies the chunking strategy for loading data from EE. By default, this automatically calculates optional chunks based on the request_byte_limit.

None
n_images optional

The max number of EE images in the collection to open. Useful when there are a large number of images in the collection since calculating collection size can be slow. -1 indicates that all images should be included.

-1
mask_and_scale optional

Lazily scale (using scale_factor and add_offset) and mask (using _FillValue).

True
decode_times optional

Decode cf times (e.g., integers since "hours since 2000-01-01") to np.datetime64.

True
decode_timedelta optional

If True, decode variables and coordinates with time units in {"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"} into timedelta objects. If False, leave them encoded as numbers. If None (default), assume the same value of decode_time.

None
use_cftime optional

Only relevant if encoded dates come from a standard calendar (e.g. "gregorian", "proleptic_gregorian", "standard", or not specified). If None (default), attempt to decode times to np.datetime64[ns] objects; if this is not possible, decode times to cftime.datetime objects. If True, always decode times to cftime.datetime objects, regardless of whether or not they can be represented using np.datetime64[ns] objects. If False, always decode times to np.datetime64[ns] objects; if this is not possible raise an error.

None
concat_characters optional

Should character arrays be concatenated to strings, for example: ["h", "e", "l", "l", "o"] -> "hello"

True
decode_coords optional

bool or {"coordinates", "all"}, Controls which variables are set as coordinate variables: - "coordinates" or True: Set variables referred to in the 'coordinates' attribute of the datasets or individual variables as coordinate variables. - "all": Set variables referred to in 'grid_mapping', 'bounds' and other attributes as coordinate variables.

True
crs optional

The coordinate reference system (a CRS code or WKT string). This defines the frame of reference to coalesce all variables upon opening. By default, data is opened with `EPSG:4326'.

None
scale optional

The scale in the crs or projection's units of measure -- either meters or degrees. This defines the scale that all data is represented in upon opening. By default, the scale is 1° when the CRS is in degrees or 10,000 when in meters.

None
projection optional

Specify an ee.Projection object to define the scale and crs (or other coordinate reference system) with which to coalesce all variables upon opening. By default, the scale and reference system is set by the the crs and scale arguments.

None
geometry optional

Specify an ee.Geometry to define the regional bounds when opening the data. When not set, the bounds are defined by the CRS's 'area_of_use` boundaries. If those aren't present, the bounds are derived from the geometry of the first image of the collection.

None
primary_dim_name optional

Override the name of the primary dimension of the output Dataset. By default, the name is 'time'.

None
primary_dim_property optional

Override the ee.Image property for which to derive the values of the primary dimension. By default, this is 'system:time_start'.

None
ee_mask_value optional

Value to mask to EE nodata values. By default, this is 'np.iinfo(np.int32).max' i.e. 2147483647.

None
request_byte_limit

the max allowed bytes to request at a time from Earth Engine. By default, it is 48MBs.

required
ee_initialize optional

Whether to initialize ee with the high-volume endpoint. Defaults to True.

True

Returns:

Type Description

An xarray.Dataset that streams in remote data from Earth Engine.

Source code in geemap/common.py
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
def ee_to_xarray(
    dataset,
    drop_variables=None,
    io_chunks=None,
    n_images=-1,
    mask_and_scale=True,
    decode_times=True,
    decode_timedelta=None,
    use_cftime=None,
    concat_characters=True,
    decode_coords=True,
    crs=None,
    scale=None,
    projection=None,
    geometry=None,
    primary_dim_name=None,
    primary_dim_property=None,
    ee_mask_value=None,
    ee_initialize=True,
    **kwargs,
):
    """Open an Earth Engine ImageCollection as an Xarray Dataset. This function is a wrapper for
        xee. EarthEngineBackendEntrypoint.open_dataset().
        See https://github.com/google/Xee/blob/main/xee/ext.py#L886

    Args:
        dataset: An asset ID for an ImageCollection, or an
            ee.ImageCollection object.
        drop_variables (optional): Variables or bands to drop before opening.
        io_chunks (optional): Specifies the chunking strategy for loading data
            from EE. By default, this automatically calculates optional chunks based
            on the `request_byte_limit`.
        n_images (optional): The max number of EE images in the collection to
            open. Useful when there are a large number of images in the collection
            since calculating collection size can be slow. -1 indicates that all
            images should be included.
        mask_and_scale (optional): Lazily scale (using scale_factor and
            add_offset) and mask (using _FillValue).
        decode_times (optional): Decode cf times (e.g., integers since "hours
            since 2000-01-01") to np.datetime64.
        decode_timedelta (optional): If True, decode variables and coordinates
            with time units in {"days", "hours", "minutes", "seconds",
            "milliseconds", "microseconds"} into timedelta objects. If False, leave
            them encoded as numbers. If None (default), assume the same value of
            decode_time.
        use_cftime (optional): Only relevant if encoded dates come from a standard
            calendar (e.g. "gregorian", "proleptic_gregorian", "standard", or not
            specified).  If None (default), attempt to decode times to
            ``np.datetime64[ns]`` objects; if this is not possible, decode times to
            ``cftime.datetime`` objects. If True, always decode times to
            ``cftime.datetime`` objects, regardless of whether or not they can be
            represented using ``np.datetime64[ns]`` objects.  If False, always
            decode times to ``np.datetime64[ns]`` objects; if this is not possible
            raise an error.
        concat_characters (optional): Should character arrays be concatenated to
            strings, for example: ["h", "e", "l", "l", "o"] -> "hello"
        decode_coords (optional): bool or {"coordinates", "all"}, Controls which
            variables are set as coordinate variables: - "coordinates" or True: Set
            variables referred to in the ``'coordinates'`` attribute of the datasets
            or individual variables as coordinate variables. - "all": Set variables
            referred to in  ``'grid_mapping'``, ``'bounds'`` and other attributes as
            coordinate variables.
        crs (optional): The coordinate reference system (a CRS code or WKT
            string). This defines the frame of reference to coalesce all variables
            upon opening. By default, data is opened with `EPSG:4326'.
        scale (optional): The scale in the `crs` or `projection`'s units of
            measure -- either meters or degrees. This defines the scale that all
            data is represented in upon opening. By default, the scale is 1° when
            the CRS is in degrees or 10,000 when in meters.
        projection (optional): Specify an `ee.Projection` object to define the
            `scale` and `crs` (or other coordinate reference system) with which to
            coalesce all variables upon opening. By default, the scale and reference
            system is set by the the `crs` and `scale` arguments.
        geometry (optional): Specify an `ee.Geometry` to define the regional
            bounds when opening the data. When not set, the bounds are defined by
            the CRS's 'area_of_use` boundaries. If those aren't present, the bounds
            are derived from the geometry of the first image of the collection.
        primary_dim_name (optional): Override the name of the primary dimension of
            the output Dataset. By default, the name is 'time'.
        primary_dim_property (optional): Override the `ee.Image` property for
            which to derive the values of the primary dimension. By default, this is
            'system:time_start'.
        ee_mask_value (optional): Value to mask to EE nodata values. By default,
            this is 'np.iinfo(np.int32).max' i.e. 2147483647.
        request_byte_limit: the max allowed bytes to request at a time from Earth
            Engine. By default, it is 48MBs.
        ee_initialize (optional): Whether to initialize ee with the high-volume endpoint. Defaults to True.

    Returns:
      An xarray.Dataset that streams in remote data from Earth Engine.
    """
    try:
        import xee
    except ImportError:
        install_package("xee")
        import xee

    import xarray as xr

    kwargs["drop_variables"] = drop_variables
    kwargs["io_chunks"] = io_chunks
    kwargs["n_images"] = n_images
    kwargs["mask_and_scale"] = mask_and_scale
    kwargs["decode_times"] = decode_times
    kwargs["decode_timedelta"] = decode_timedelta
    kwargs["use_cftime"] = use_cftime
    kwargs["concat_characters"] = concat_characters
    kwargs["decode_coords"] = decode_coords
    kwargs["crs"] = crs
    kwargs["scale"] = scale
    kwargs["projection"] = projection
    kwargs["geometry"] = geometry
    kwargs["primary_dim_name"] = primary_dim_name
    kwargs["primary_dim_property"] = primary_dim_property
    kwargs["ee_mask_value"] = ee_mask_value
    kwargs["engine"] = "ee"

    if ee_initialize:
        opt_url = "https://earthengine-highvolume.googleapis.com"
        ee.Initialize(opt_url=opt_url)

    if isinstance(dataset, str):
        if not dataset.startswith("ee://"):
            dataset = "ee://" + dataset
    elif isinstance(dataset, ee.Image):
        dataset = ee.ImageCollection(dataset)
    elif isinstance(dataset, ee.ImageCollection):
        pass
    elif isinstance(dataset, list):
        items = []
        for item in dataset:
            if isinstance(item, str) and not item.startswith("ee://"):
                item = "ee://" + item
            items.append(item)
        dataset = items
    else:
        raise ValueError(
            "The dataset must be an ee.Image, ee.ImageCollection, or a list of ee.Image."
        )

    if isinstance(dataset, list):
        ds = xr.open_mfdataset(dataset, **kwargs)
    else:
        ds = xr.open_dataset(dataset, **kwargs)

    return ds

ee_user_id()

Gets Earth Engine account user id.

Returns:

Name Type Description
str

A string containing the user id.

Source code in geemap/common.py
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
def ee_user_id():
    """Gets Earth Engine account user id.

    Returns:
        str: A string containing the user id.
    """
    # ee_initialize()
    roots = ee.data.getAssetRoots()
    if len(roots) == 0:
        return None
    else:
        root = ee.data.getAssetRoots()[0]
        user_id = root["id"].replace("projects/earthengine-legacy/assets/", "")
        return user_id

ee_vector_style(collection, column, labels=None, color='black', pointSize=3, pointShape='circle', width=2, fillColor=None, lineType='solid', neighborhood=5, return_fc=False)

Create a vector style for a feature collection.

Parameters:

Name Type Description Default
collection FeatureCollection

The input feature collection.

required
column str

The name of the column to use for styling.

required
labels list

A list of labels to use for styling. Defaults to None.

None
color str | list

A default color (CSS 3.0 color value e.g. 'FF0000' or 'red') to use for drawing the features. Supports opacity (e.g.: 'FF000088' for 50% transparent red). Defaults to "black".

'black'
pointSize int | list

The default size in pixels of the point markers. Defaults to 3.

3
pointShape str | list

The default shape of the marker to draw at each point location. One of: circle, square, diamond, cross, plus, pentagram, hexagram, triangle, triangle_up, triangle_down, triangle_left, triangle_right, pentagon, hexagon, star5, star6. This argument also supports the following Matlab marker abbreviations: o, s, d, x, +, p, h, ^, v, <, >. Defaults to "circle".

'circle'
width int | list

The default line width for lines and outlines for polygons and point shapes. Defaults to 2.

2
fillColor str | list

The color for filling polygons and point shapes. Defaults to 'color' at 0.66 opacity. Defaults to None.

None
lineType str | list

The default line style for lines and outlines of polygons and point shapes. Defaults to 'solid'. One of: solid, dotted, dashed. Defaults to "solid".

'solid'
neighborhood int

If styleProperty is used and any feature has a pointSize or width larger than the defaults, tiling artifacts can occur. Specifies the maximum neighborhood (pointSize + width) needed for any feature. Defaults to 5.

5
return_fc bool

If True, return an ee.FeatureCollection with a style property. Otherwise, return a styled ee.Image. Defaults to False.

False

Returns:

Type Description

ee.FeatureCollection | ee.Image: The styled Earth Engine FeatureCollection or Image.

Source code in geemap/common.py
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
def ee_vector_style(
    collection,
    column,
    labels=None,
    color="black",
    pointSize=3,
    pointShape="circle",
    width=2,
    fillColor=None,
    lineType="solid",
    neighborhood=5,
    return_fc=False,
):
    """Create a vector style for a feature collection.

    Args:
        collection (ee.FeatureCollection): The input feature collection.
        column (str): The name of the column to use for styling.
        labels (list, optional): A list of labels to use for styling. Defaults to None.
        color (str | list, optional): A default color (CSS 3.0 color value e.g. 'FF0000' or 'red') to use for drawing the features. Supports opacity (e.g.: 'FF000088' for 50% transparent red). Defaults to "black".
        pointSize (int | list, optional): The default size in pixels of the point markers. Defaults to 3.
        pointShape (str | list, optional): The default shape of the marker to draw at each point location. One of: circle, square, diamond, cross, plus, pentagram, hexagram, triangle, triangle_up, triangle_down, triangle_left, triangle_right, pentagon, hexagon, star5, star6. This argument also supports the following Matlab marker abbreviations: o, s, d, x, +, p, h, ^, v, <, >. Defaults to "circle".
        width (int | list, optional): The default line width for lines and outlines for polygons and point shapes. Defaults to 2.
        fillColor (str | list, optional): The color for filling polygons and point shapes. Defaults to 'color' at 0.66 opacity. Defaults to None.
        lineType (str | list, optional): The default line style for lines and outlines of polygons and point shapes. Defaults to 'solid'. One of: solid, dotted, dashed. Defaults to "solid".
        neighborhood (int, optional): If styleProperty is used and any feature has a pointSize or width larger than the defaults, tiling artifacts can occur. Specifies the maximum neighborhood (pointSize + width) needed for any feature. Defaults to 5.
        return_fc (bool, optional): If True, return an ee.FeatureCollection with a style property. Otherwise, return a styled ee.Image. Defaults to False.

    Returns:
        ee.FeatureCollection | ee.Image: The styled Earth Engine FeatureCollection or Image.
    """
    if not isinstance(collection, ee.FeatureCollection):
        raise ValueError("collection must be an ee.FeatureCollection.")

    if not isinstance(column, str):
        raise ValueError("column must be a string.")

    prop_names = ee.Feature(collection.first()).propertyNames().getInfo()
    if column not in prop_names:
        raise ValueError(
            f"{column} is not a property name of the collection. It must be one of {','.join(prop_names)}."
        )

    if labels is None:
        labels = collection.aggregate_array(column).distinct().sort().getInfo()
    elif isinstance(labels, list):
        collection = collection.filter(ee.Filter.inList(column, labels))
    elif not isinstance(labels, list):
        raise ValueError("labels must be a list.")

    size = len(labels)
    if isinstance(color, str):
        color = [color] * size
    elif size != len(color):
        raise ValueError("labels and color must be the same length.")
    elif not isinstance(color, list):
        raise ValueError("color must be a string or a list.")

    if isinstance(pointSize, int):
        pointSize = [pointSize] * size
    elif not isinstance(pointSize, list):
        raise ValueError("pointSize must be an integer or a list.")

    if isinstance(pointShape, str):
        pointShape = [pointShape] * size
    elif not isinstance(pointShape, list):
        raise ValueError("pointShape must be a string or a list.")

    if isinstance(width, int):
        width = [width] * size
    elif not isinstance(width, list):
        raise ValueError("width must be an integer or a list.")

    if fillColor is None:
        fillColor = color
    elif isinstance(fillColor, str):
        fillColor = [fillColor] * size
    elif not isinstance(fillColor, list):
        raise ValueError("fillColor must be a list.")

    if not isinstance(neighborhood, int):
        raise ValueError("neighborhood must be an integer.")

    if isinstance(lineType, str):
        lineType = [lineType] * size
    elif not isinstance(lineType, list):
        raise ValueError("lineType must be a string or list.")

    style_dict = {}

    for i, label in enumerate(labels):
        style_dict[label] = {
            "color": color[i],
            "pointSize": pointSize[i],
            "pointShape": pointShape[i],
            "width": width[i],
            "fillColor": fillColor[i],
            "lineType": lineType[i],
        }

    style = ee.Dictionary(style_dict)

    result = collection.map(lambda f: f.set("style", style.get(f.get(column))))

    if return_fc:
        return result
    else:
        return result.style(**{"styleProperty": "style", "neighborhood": neighborhood})

execute_notebook(in_file)

Executes a Jupyter notebook and save output cells

Parameters:

Name Type Description Default
in_file str

Input Jupyter notebook.

required
Source code in geemap/conversion.py
1148
1149
1150
1151
1152
1153
1154
1155
1156
def execute_notebook(in_file):
    """Executes a Jupyter notebook and save output cells

    Args:
        in_file (str): Input Jupyter notebook.
    """
    # command = 'jupyter nbconvert --to notebook --execute ' + in_file + ' --inplace'
    command = 'jupyter nbconvert --to notebook --execute "{}" --inplace'.format(in_file)
    print(os.popen(command).read().rstrip())

execute_notebook_dir(in_dir)

Executes all Jupyter notebooks in the given directory recursively and save output cells.

Parameters:

Name Type Description Default
in_dir str

Input folder containing notebooks.

required
Source code in geemap/conversion.py
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
def execute_notebook_dir(in_dir):
    """Executes all Jupyter notebooks in the given directory recursively and save output cells.

    Args:
        in_dir (str): Input folder containing notebooks.
    """
    print("Executing Earth Engine Jupyter notebooks ...\n")

    in_dir = os.path.abspath(in_dir)
    files = list(Path(in_dir).rglob("*.ipynb"))
    count = len(files)
    if files is not None:
        for index, file in enumerate(files):
            in_file = str(file)
            print(f"Processing {index + 1}/{count}: {file} ...")
            execute_notebook(in_file)

explode(coords)

Explode a GeoJSON geometry's coordinates object and yield coordinate tuples. As long as the input is conforming, the type of the geometry doesn't matter. From Fiona 1.4.8

Parameters:

Name Type Description Default
coords list

A list of coordinates.

required

Yields:

Type Description
Source code in geemap/common.py
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
def explode(coords):
    """Explode a GeoJSON geometry's coordinates object and yield
    coordinate tuples. As long as the input is conforming, the type of
    the geometry doesn't matter.  From Fiona 1.4.8

    Args:
        coords (list): A list of coordinates.

    Yields:
        [type]: [description]
    """

    for e in coords:
        if isinstance(e, (float, int)):
            yield coords
            break
        else:
            for f in explode(e):
                yield f

extract_pixel_values(ee_object, region, scale=None, projection=None, tileScale=1, getInfo=False)

Samples the pixels of an image, returning them as a ee.Dictionary.

Parameters:

Name Type Description Default
ee_object Image | ImageCollection

The ee.Image or ee.ImageCollection to sample.

required
region Geometry

The region to sample from. If unspecified, uses the image's whole footprint.

required
scale float

A nominal scale in meters of the projection to sample in. Defaults to None.

None
projection str

The projection in which to sample. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.

None
tileScale int

A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1
getInfo bool

Whether to use getInfo with the results, i.e., returning the values a list. Default to False.

False

Raises:

Type Description
TypeError

The image must be an instance of ee.Image.

TypeError

Region must be an instance of ee.Geometry.

Returns:

Type Description

ee.Dictionary: The dictionary containing band names and pixel values.

Source code in geemap/common.py
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
def extract_pixel_values(
    ee_object, region, scale=None, projection=None, tileScale=1, getInfo=False
):
    """Samples the pixels of an image, returning them as a ee.Dictionary.

    Args:
        ee_object (ee.Image | ee.ImageCollection): The ee.Image or ee.ImageCollection to sample.
        region (ee.Geometry): The region to sample from. If unspecified, uses the image's whole footprint.
        scale (float, optional): A nominal scale in meters of the projection to sample in. Defaults to None.
        projection (str, optional): The projection in which to sample. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.
        tileScale (int, optional): A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        getInfo (bool, optional): Whether to use getInfo with the results, i.e., returning the values a list. Default to False.

    Raises:
        TypeError: The image must be an instance of ee.Image.
        TypeError: Region must be an instance of ee.Geometry.

    Returns:
        ee.Dictionary: The dictionary containing band names and pixel values.
    """
    if isinstance(ee_object, ee.ImageCollection):
        ee_object = ee_object.toBands()

    if not isinstance(ee_object, ee.Image):
        raise TypeError("The image must be an instance of ee.Image.")

    if not isinstance(region, ee.Geometry):
        raise TypeError("Region must be an instance of ee.Geometry.")

    dict_values = (
        ee_object.sample(region, scale, projection, tileScale=tileScale)
        .first()
        .toDictionary()
    )

    if getInfo:
        band_names = ee_object.bandNames().getInfo()
        values_tmp = dict_values.getInfo()
        values = [values_tmp[i] for i in band_names]
        return dict(zip(band_names, values))
    else:
        return dict_values

extract_transect(image, line, reducer='mean', n_segments=100, dist_interval=None, scale=None, crs=None, crsTransform=None, tileScale=1.0, to_pandas=False, **kwargs)

Extracts transect from an image. Credits to Gena for providing the JavaScript example https://code.earthengine.google.com/b09759b8ac60366ee2ae4eccdd19e615.

Parameters:

Name Type Description Default
image Image

The image to extract transect from.

required
line LineString

The LineString used to extract transect from an image.

required
reducer str

The ee.Reducer to use, e.g., 'mean', 'median', 'min', 'max', 'stdDev'. Defaults to "mean".

'mean'
n_segments int

The number of segments that the LineString will be split into. Defaults to 100.

100
dist_interval float

The distance interval used for splitting the LineString. If specified, the n_segments parameter will be ignored. Defaults to None.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
crs Projection

The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.

None
crsTransform list

The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and will replace any transform already set on the projection. Defaults to None.

None
tileScale float

A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1.0
to_pandas bool

Whether to convert the result to a pandas dataframe. Default to False.

False

Raises:

Type Description
TypeError

If the geometry type is not LineString.

Exception

If the program fails to compute.

Returns:

Type Description

ee.FeatureCollection: The FeatureCollection containing the transect with distance and reducer values.

Source code in geemap/common.py
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
def extract_transect(
    image,
    line,
    reducer="mean",
    n_segments=100,
    dist_interval=None,
    scale=None,
    crs=None,
    crsTransform=None,
    tileScale=1.0,
    to_pandas=False,
    **kwargs,
):
    """Extracts transect from an image. Credits to Gena for providing the JavaScript example https://code.earthengine.google.com/b09759b8ac60366ee2ae4eccdd19e615.

    Args:
        image (ee.Image): The image to extract transect from.
        line (ee.Geometry.LineString): The LineString used to extract transect from an image.
        reducer (str, optional): The ee.Reducer to use, e.g., 'mean', 'median', 'min', 'max', 'stdDev'. Defaults to "mean".
        n_segments (int, optional): The number of segments that the LineString will be split into. Defaults to 100.
        dist_interval (float, optional): The distance interval used for splitting the LineString. If specified, the n_segments parameter will be ignored. Defaults to None.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        crs (ee.Projection, optional): The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.
        crsTransform (list, optional): The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and will replace any transform already set on the projection. Defaults to None.
        tileScale (float, optional): A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        to_pandas (bool, optional): Whether to convert the result to a pandas dataframe. Default to False.

    Raises:
        TypeError: If the geometry type is not LineString.
        Exception: If the program fails to compute.

    Returns:
        ee.FeatureCollection: The FeatureCollection containing the transect with distance and reducer values.
    """
    try:
        geom_type = line.type().getInfo()
        if geom_type != "LineString":
            raise TypeError("The geometry type must be LineString.")

        reducer = eval("ee.Reducer." + reducer + "()")
        maxError = image.projection().nominalScale().divide(5)

        length = line.length(maxError)
        if dist_interval is None:
            dist_interval = length.divide(n_segments)

        distances = ee.List.sequence(0, length, dist_interval)
        lines = line.cutLines(distances, maxError).geometries()

        def set_dist_attr(l):
            l = ee.List(l)
            geom = ee.Geometry(l.get(0))
            distance = ee.Number(l.get(1))
            geom = ee.Geometry.LineString(geom.coordinates())
            return ee.Feature(geom, {"distance": distance})

        lines = lines.zip(distances).map(set_dist_attr)
        lines = ee.FeatureCollection(lines)

        transect = image.reduceRegions(
            **{
                "collection": ee.FeatureCollection(lines),
                "reducer": reducer,
                "scale": scale,
                "crs": crs,
                "crsTransform": crsTransform,
                "tileScale": tileScale,
            }
        )

        if to_pandas:
            return ee_to_df(transect)
        return transect

    except Exception as e:
        raise Exception(e)

extract_values_to_points(in_fc, image, out_fc=None, scale=None, crs=None, crsTransform=None, tileScale=1, stats_type='FIRST', timeout=300, proxies=None, **kwargs)

Extracts image values to points.

Parameters:

Name Type Description Default
in_fc object

ee.FeatureCollection.

required
image object

The ee.Image to extract pixel values.

required
out_fc object

The output feature collection. Defaults to None.

None
scale Projectoin

A nominal scale in meters of the projection to sample in. If unspecified,the scale of the image's first band is used.

None
crs str

The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.

None
crsTransform list

The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and will replace any transform already set on the projection.

None
tile_scale float

A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default.

required
stats_type str

Statistic type to be calculated. Defaults to 'FIRST'.

'FIRST'
timeout int

The number of seconds after which the request will be terminated. Defaults to 300.

300
proxies dict

A dictionary of proxy servers to use for each request. Defaults to None.

None

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
def extract_values_to_points(
    in_fc,
    image,
    out_fc=None,
    scale=None,
    crs=None,
    crsTransform=None,
    tileScale=1,
    stats_type="FIRST",
    timeout=300,
    proxies=None,
    **kwargs,
):
    """Extracts image values to points.

    Args:
        in_fc (object): ee.FeatureCollection.
        image (object): The ee.Image to extract pixel values.
        out_fc (object, optional): The output feature collection. Defaults to None.
        scale (ee.Projectoin, optional): A nominal scale in meters of the projection to sample in. If unspecified,the scale of the image's first band is used.
        crs (str, optional): The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.
        crsTransform (list, optional): The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and will replace any transform already set on the projection.
        tile_scale (float, optional): A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default.
        stats_type (str, optional): Statistic type to be calculated. Defaults to 'FIRST'.
        timeout (int, optional): The number of seconds after which the request will be terminated. Defaults to 300.
        proxies (dict, optional): A dictionary of proxy servers to use for each request. Defaults to None.

    Returns:
        object: ee.FeatureCollection
    """

    if "tile_scale" in kwargs:
        tileScale = kwargs["tile_scale"]
    if "crs_transform" in kwargs:
        crsTransform = kwargs["crs_transform"]

    allowed_stats = {
        "FIRST": ee.Reducer.first(),
        "MEAN": ee.Reducer.mean(),
        "MAXIMUM": ee.Reducer.max(),
        "MEDIAN": ee.Reducer.median(),
        "MINIMUM": ee.Reducer.min(),
        "MODE": ee.Reducer.mode(),
        "STD": ee.Reducer.stdDev(),
        "MIN_MAX": ee.Reducer.minMax(),
        "SUM": ee.Reducer.sum(),
        "VARIANCE": ee.Reducer.variance(),
    }

    if stats_type.upper() not in allowed_stats:
        raise ValueError(
            f"The statistics_type must be one of the following {', '.join(allowed_stats.keys())}"
        )

    if not isinstance(in_fc, ee.FeatureCollection):
        try:
            in_fc = shp_to_ee(in_fc)
        except Exception as e:
            print(e)
            return

    if not isinstance(image, ee.Image):
        print("The image must be an instance of ee.Image.")
        return

    result = image.reduceRegions(
        collection=in_fc,
        reducer=allowed_stats[stats_type.upper()],
        scale=scale,
        crs=crs,
        crsTransform=crsTransform,
        tileScale=tileScale,
    )

    if out_fc is not None:
        ee_export_vector(result, out_fc, timeout=timeout, proxies=proxies)
    else:
        return result

file_browser(in_dir=None, show_hidden=False, add_root_node=True, search_description=None, use_import=False, return_sep_widgets=False, node_icon='file')

Creates a simple file browser and text editor.

Parameters:

Name Type Description Default
in_dir str

The input directory. Defaults to None, which will use the current working directory.

None
show_hidden bool

Whether to show hidden files/folders. Defaults to False.

False
add_root_node bool

Whether to add the input directory as a root node. Defaults to True.

True
search_description str

The description of the search box. Defaults to None.

None
use_import bool

Whether to show the import button. Defaults to False.

False
return_sep_widgets bool

Whether to return the results as separate widgets. Defaults to False.

False

Returns:

Name Type Description
object

An ipywidget.

Source code in geemap/common.py
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
def file_browser(
    in_dir=None,
    show_hidden=False,
    add_root_node=True,
    search_description=None,
    use_import=False,
    return_sep_widgets=False,
    node_icon="file",
):
    """Creates a simple file browser and text editor.

    Args:
        in_dir (str, optional): The input directory. Defaults to None, which will use the current working directory.
        show_hidden (bool, optional): Whether to show hidden files/folders. Defaults to False.
        add_root_node (bool, optional): Whether to add the input directory as a root node. Defaults to True.
        search_description (str, optional): The description of the search box. Defaults to None.
        use_import (bool, optional): Whether to show the import button. Defaults to False.
        return_sep_widgets (bool, optional): Whether to return the results as separate widgets. Defaults to False.

    Returns:
        object: An ipywidget.
    """
    import platform

    if in_dir is None:
        in_dir = os.getcwd()

    if not os.path.exists(in_dir):
        print("The provided directory does not exist.")
        return
    elif not os.path.isdir(in_dir):
        print("The provided path is not a valid directory.")
        return

    sep = "/"
    if platform.system() == "Windows":
        sep = "\\"

    if in_dir.endswith(sep):
        in_dir = in_dir[:-1]

    full_widget = widgets.HBox()
    left_widget = widgets.VBox()

    right_widget = widgets.VBox()

    import_btn = widgets.Button(
        description="import",
        button_style="primary",
        tooltip="import the content to a new cell",
        disabled=True,
    )
    import_btn.layout.width = "70px"
    path_widget = widgets.Text()
    path_widget.layout.min_width = "400px"
    # path_widget.layout.max_width = '400px'
    save_widget = widgets.Button(
        description="Save",
        button_style="primary",
        tooltip="Save edits to file.",
        disabled=True,
    )
    info_widget = widgets.HBox()
    info_widget.children = [path_widget, save_widget]
    if use_import:
        info_widget.children = [import_btn, path_widget, save_widget]

    text_widget = widgets.Textarea()
    text_widget.layout.width = "630px"
    text_widget.layout.height = "600px"

    right_widget.children = [info_widget, text_widget]
    full_widget.children = [left_widget]

    if search_description is None:
        search_description = "Search files/folders..."
    search_box = widgets.Text(placeholder=search_description)
    search_box.layout.width = "310px"
    tree_widget = widgets.Output()
    tree_widget.layout.max_width = "310px"
    tree_widget.overflow = "auto"

    left_widget.children = [search_box, tree_widget]

    tree = Tree(multiple_selection=False)
    tree_dict = {}

    def on_button_clicked(b):
        content = text_widget.value
        out_file = path_widget.value

        out_dir = os.path.dirname(out_file)
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

        with open(out_file, "w") as f:
            f.write(content)

        text_widget.disabled = True
        text_widget.value = "The content has been saved successfully."
        save_widget.disabled = True
        path_widget.disabled = True

        if (out_file not in tree_dict.keys()) and (out_dir in tree_dict.keys()):
            node = Node(os.path.basename(out_file))
            tree_dict[out_file] = node
            parent_node = tree_dict[out_dir]
            parent_node.add_node(node)

    save_widget.on_click(on_button_clicked)

    def import_btn_clicked(b):
        if (text_widget.value != "") and (path_widget.value.endswith(".py")):
            create_code_cell(text_widget.value)

    import_btn.on_click(import_btn_clicked)

    def search_box_callback(text):
        with tree_widget:
            if text.value == "":
                print("Loading...")
                tree_widget.outputs = ()
                display(tree)
            else:
                tree_widget.outputs = ()
                print("Searching...")
                tree_widget.outputs = ()
                sub_tree = search_api_tree(text.value, tree_dict)
                display(sub_tree)

    search_box.on_submit(search_box_callback)

    def handle_file_click(event):
        if event["new"]:
            cur_node = event["owner"]
            for key in tree_dict.keys():
                if (cur_node is tree_dict[key]) and (os.path.isfile(key)):
                    if key.endswith(".py"):
                        import_btn.disabled = False
                    else:
                        import_btn.disabled = True
                    try:
                        with open(key) as f:
                            content = f.read()
                            text_widget.value = content
                            text_widget.disabled = False
                            path_widget.value = key
                            path_widget.disabled = False
                            save_widget.disabled = False
                            full_widget.children = [left_widget, right_widget]
                    except Exception as e:
                        path_widget.value = key
                        path_widget.disabled = True
                        save_widget.disabled = True
                        text_widget.disabled = True
                        text_widget.value = (
                            "Failed to open {}.".format(cur_node.name) + "\n\n" + str(e)
                        )
                        full_widget.children = [left_widget, right_widget]
                        return
                    break

    def handle_folder_click(event):
        if event["new"]:
            full_widget.children = [left_widget]
            text_widget.value = ""

    if add_root_node:
        root_name = in_dir.split(sep)[-1]
        root_node = Node(root_name)
        tree_dict[in_dir] = root_node
        tree.add_node(root_node)
        root_node.observe(handle_folder_click, "selected")

    for root, d_names, f_names in os.walk(in_dir):
        if not show_hidden:
            folders = root.split(sep)
            for folder in folders:
                if folder.startswith("."):
                    continue
            for d_name in d_names:
                if d_name.startswith("."):
                    d_names.remove(d_name)
            for f_name in f_names:
                if f_name.startswith("."):
                    f_names.remove(f_name)

        d_names.sort()
        f_names.sort()

        if (not add_root_node) and (root == in_dir):
            for d_name in d_names:
                node = Node(d_name)
                tree_dict[os.path.join(in_dir, d_name)] = node
                tree.add_node(node)
                node.opened = False
                node.observe(handle_folder_click, "selected")

        if (root != in_dir) and (root not in tree_dict.keys()):
            name = root.split(sep)[-1]
            dir_name = os.path.dirname(root)
            parent_node = tree_dict[dir_name]
            node = Node(name)
            tree_dict[root] = node
            parent_node.add_node(node)
            node.observe(handle_folder_click, "selected")

        if len(f_names) > 0:
            parent_node = tree_dict[root]
            parent_node.opened = False
            for f_name in f_names:
                node = Node(f_name)
                node.icon = node_icon
                full_path = os.path.join(root, f_name)
                tree_dict[full_path] = node
                parent_node.add_node(node)
                node.observe(handle_file_click, "selected")

    with tree_widget:
        tree_widget.outputs = ()
        display(tree)

    if return_sep_widgets:
        return left_widget, right_widget, tree_dict
    else:
        return full_widget

filter_HUC08(region)

Filters HUC08 watersheds intersecting a given region.

Parameters:

Name Type Description Default
region object

ee.Geometry

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
def filter_HUC08(region):
    """Filters HUC08 watersheds intersecting a given region.

    Args:
        region (object): ee.Geometry

    Returns:
        object: ee.FeatureCollection
    """

    USGS_HUC08 = ee.FeatureCollection("USGS/WBD/2017/HUC08")  # Subbasins
    HUC08 = USGS_HUC08.filterBounds(region)
    return HUC08

filter_HUC10(region)

Filters HUC10 watersheds intersecting a given region.

Parameters:

Name Type Description Default
region object

ee.Geometry

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
def filter_HUC10(region):
    """Filters HUC10 watersheds intersecting a given region.

    Args:
        region (object): ee.Geometry

    Returns:
        object: ee.FeatureCollection
    """

    USGS_HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10")  # Watersheds
    HUC10 = USGS_HUC10.filterBounds(region)
    return HUC10

filter_NWI(HUC08_Id, region, exclude_riverine=True)

Retrieves NWI dataset for a given HUC8 watershed.

Parameters:

Name Type Description Default
HUC08_Id str

The HUC8 watershed id.

required
region object

ee.Geometry

required
exclude_riverine bool

Whether to exclude riverine wetlands. Defaults to True.

True

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
def filter_NWI(HUC08_Id, region, exclude_riverine=True):
    """Retrieves NWI dataset for a given HUC8 watershed.

    Args:
        HUC08_Id (str): The HUC8 watershed id.
        region (object): ee.Geometry
        exclude_riverine (bool, optional): Whether to exclude riverine wetlands. Defaults to True.

    Returns:
        object: ee.FeatureCollection
    """
    nwi_asset_prefix = "users/wqs/NWI-HU8/HU8_"
    nwi_asset_suffix = "_Wetlands"
    nwi_asset_path = nwi_asset_prefix + HUC08_Id + nwi_asset_suffix
    nwi_huc = ee.FeatureCollection(nwi_asset_path).filterBounds(region)

    if exclude_riverine:
        nwi_huc = nwi_huc.filter(
            ee.Filter.notEquals(**{"leftField": "WETLAND_TY", "rightValue": "Riverine"})
        )
    return nwi_huc

filter_polygons(ftr)

Converts GeometryCollection to Polygon/MultiPolygon

Parameters:

Name Type Description Default
ftr object

ee.Feature

required

Returns:

Name Type Description
object

ee.Feature

Source code in geemap/common.py
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
def filter_polygons(ftr):
    """Converts GeometryCollection to Polygon/MultiPolygon

    Args:
        ftr (object): ee.Feature

    Returns:
        object: ee.Feature
    """
    # ee_initialize()
    geometries = ftr.geometry().geometries()
    geometries = geometries.map(
        lambda geo: ee.Feature(ee.Geometry(geo)).set("geoType", ee.Geometry(geo).type())
    )

    polygons = (
        ee.FeatureCollection(geometries)
        .filter(ee.Filter.eq("geoType", "Polygon"))
        .geometry()
    )
    return ee.Feature(polygons).copyProperties(ftr)

find_HUC08(HUC08_Id)

Finds a HUC08 watershed based on a given HUC08 ID

Parameters:

Name Type Description Default
HUC08_Id str

The HUC08 ID.

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
def find_HUC08(HUC08_Id):
    """Finds a HUC08 watershed based on a given HUC08 ID

    Args:
        HUC08_Id (str): The HUC08 ID.

    Returns:
        object: ee.FeatureCollection
    """

    USGS_HUC08 = ee.FeatureCollection("USGS/WBD/2017/HUC08")  # Subbasins
    HUC08 = USGS_HUC08.filter(ee.Filter.eq("huc8", HUC08_Id))
    return HUC08

find_HUC10(HUC10_Id)

Finds a HUC10 watershed based on a given HUC08 ID

Parameters:

Name Type Description Default
HUC10_Id str

The HUC10 ID.

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
def find_HUC10(HUC10_Id):
    """Finds a HUC10 watershed based on a given HUC08 ID

    Args:
        HUC10_Id (str): The HUC10 ID.

    Returns:
        object: ee.FeatureCollection
    """

    USGS_HUC10 = ee.FeatureCollection("USGS/WBD/2017/HUC10")  # Watersheds
    HUC10 = USGS_HUC10.filter(ee.Filter.eq("huc10", HUC10_Id))
    return HUC10

find_NAIP(region, add_NDVI=True, add_NDWI=True)

Create annual NAIP mosaic for a given region.

Parameters:

Name Type Description Default
region object

ee.Geometry

required
add_NDVI bool

Whether to add the NDVI band. Defaults to True.

True
add_NDWI bool

Whether to add the NDWI band. Defaults to True.

True

Returns:

Name Type Description
object

ee.ImageCollection

Source code in geemap/common.py
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
def find_NAIP(region, add_NDVI=True, add_NDWI=True):
    """Create annual NAIP mosaic for a given region.

    Args:
        region (object): ee.Geometry
        add_NDVI (bool, optional): Whether to add the NDVI band. Defaults to True.
        add_NDWI (bool, optional): Whether to add the NDWI band. Defaults to True.

    Returns:
        object: ee.ImageCollection
    """

    init_collection = (
        ee.ImageCollection("USDA/NAIP/DOQQ")
        .filterBounds(region)
        .filterDate("2009-01-01", "2019-12-31")
        .filter(ee.Filter.listContains("system:band_names", "N"))
    )

    yearList = ee.List(
        init_collection.distinct(["system:time_start"]).aggregate_array(
            "system:time_start"
        )
    )
    init_years = yearList.map(lambda y: ee.Date(y).get("year"))

    # remove duplicates
    init_years = ee.Dictionary(
        init_years.reduce(ee.Reducer.frequencyHistogram())
    ).keys()
    years = init_years.map(lambda x: ee.Number.parse(x))
    # years = init_years.map(lambda x: x)

    # Available NAIP years with NIR band
    def NAIPAnnual(year):
        start_date = ee.Date.fromYMD(year, 1, 1)
        end_date = ee.Date.fromYMD(year, 12, 31)
        collection = init_collection.filterDate(start_date, end_date)
        # .filterBounds(geometry)
        # .filter(ee.Filter.listContains("system:band_names", "N"))
        time_start = ee.Date(
            ee.List(collection.aggregate_array("system:time_start")).sort().get(0)
        ).format("YYYY-MM-dd")
        time_end = ee.Date(
            ee.List(collection.aggregate_array("system:time_end")).sort().get(-1)
        ).format("YYYY-MM-dd")
        col_size = collection.size()
        image = ee.Image(collection.mosaic().clip(region))

        if add_NDVI:
            NDVI = (
                ee.Image(image)
                .normalizedDifference(["N", "R"])
                .select(["nd"], ["ndvi"])
            )
            image = image.addBands(NDVI)

        if add_NDWI:
            NDWI = (
                ee.Image(image)
                .normalizedDifference(["G", "N"])
                .select(["nd"], ["ndwi"])
            )
            image = image.addBands(NDWI)

        return image.set(
            {
                "system:time_start": time_start,
                "system:time_end": time_end,
                "tiles": col_size,
            }
        )

    # remove years with incomplete coverage
    naip = ee.ImageCollection(years.map(NAIPAnnual))
    mean_size = ee.Number(naip.aggregate_mean("tiles"))
    total_sd = ee.Number(naip.aggregate_total_sd("tiles"))
    threshold = mean_size.subtract(total_sd.multiply(1))
    naip = naip.filter(
        ee.Filter.Or(ee.Filter.gte("tiles", threshold), ee.Filter.gte("tiles", 15))
    )
    naip = naip.filter(ee.Filter.gte("tiles", 7))

    naip_count = naip.size()
    naip_seq = ee.List.sequence(0, naip_count.subtract(1))

    def set_index(index):
        img = ee.Image(naip.toList(naip_count).get(index))
        return img.set({"system:uid": ee.Number(index).toUint8()})

    naip = naip_seq.map(set_index)

    return ee.ImageCollection(naip)

find_NWI(HUC08_Id, exclude_riverine=True)

Finds NWI dataset for a given HUC08 watershed.

Parameters:

Name Type Description Default
HUC08_Id str

The HUC08 watershed ID.

required
exclude_riverine bool

Whether to exclude riverine wetlands. Defaults to True.

True

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
def find_NWI(HUC08_Id, exclude_riverine=True):
    """Finds NWI dataset for a given HUC08 watershed.

    Args:
        HUC08_Id (str): The HUC08 watershed ID.
        exclude_riverine (bool, optional): Whether to exclude riverine wetlands. Defaults to True.

    Returns:
        object: ee.FeatureCollection
    """

    nwi_asset_prefix = "users/wqs/NWI-HU8/HU8_"
    nwi_asset_suffix = "_Wetlands"
    nwi_asset_path = nwi_asset_prefix + HUC08_Id + nwi_asset_suffix
    nwi_huc = ee.FeatureCollection(nwi_asset_path)
    if exclude_riverine:
        nwi_huc = nwi_huc.filter(
            ee.Filter.notEquals(**{"leftField": "WETLAND_TY", "rightValue": "Riverine"})
        )
    return nwi_huc

find_files(input_dir, ext=None, fullpath=True, recursive=True)

Find files in a directory.

Parameters:

Name Type Description Default
input_dir str

The input directory.

required
ext str

The file extension to match. Defaults to None.

None
fullpath bool

Whether to return the full path. Defaults to True.

True
recursive bool

Whether to search recursively. Defaults to True.

True

Returns:

Name Type Description
list

A list of matching files.

Source code in geemap/common.py
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
def find_files(input_dir, ext=None, fullpath=True, recursive=True):
    """Find files in a directory.

    Args:
        input_dir (str): The input directory.
        ext (str, optional): The file extension to match. Defaults to None.
        fullpath (bool, optional): Whether to return the full path. Defaults to True.
        recursive (bool, optional): Whether to search recursively. Defaults to True.

    Returns:
        list: A list of matching files.
    """

    from pathlib import Path

    files = []

    if ext is None:
        ext = "*"
    else:
        ext = ext.replace(".", "")

    ext = f"*.{ext}"

    if recursive:
        if fullpath:
            files = [str(path.joinpath()) for path in Path(input_dir).rglob(ext)]
        else:
            files = [str(path.name) for path in Path(input_dir).rglob(ext)]
    else:
        if fullpath:
            files = [str(path.joinpath()) for path in Path(input_dir).glob(ext)]
        else:
            files = [path.name for path in Path(input_dir).glob(ext)]

    return files

find_landsat_by_path_row(landsat_col, path_num, row_num)

Finds Landsat images by WRS path number and row number.

Parameters:

Name Type Description Default
landsat_col str

The image collection id of Landsat.

required
path_num int

The WRS path number.

required
row_num int

the WRS row number.

required

Returns:

Name Type Description
object

ee.ImageCollection

Source code in geemap/common.py
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
def find_landsat_by_path_row(landsat_col, path_num, row_num):
    """Finds Landsat images by WRS path number and row number.

    Args:
        landsat_col (str): The image collection id of Landsat.
        path_num (int): The WRS path number.
        row_num (int): the WRS row number.

    Returns:
        object: ee.ImageCollection
    """
    try:
        if isinstance(landsat_col, str):
            landsat_col = ee.ImageCollection(landsat_col)
            collection = landsat_col.filter(ee.Filter.eq("WRS_PATH", path_num)).filter(
                ee.Filter.eq("WRS_ROW", row_num)
            )
            return collection
    except Exception as e:
        print(e)

find_matching_bracket(lines, start_line_index, start_char_index, matching_char='{')

Finds the position of the matching closing bracket from a list of lines.

Parameters:

Name Type Description Default
lines list

The input list of lines.

required
start_line_index int

The line index where the starting bracket is located.

required
start_char_index int

The position index of the starting bracket.

required
matching_char str

The starting bracket to search for. Defaults to '{'.

'{'

Returns:

Name Type Description
matching_line_index int

The line index where the matching closing bracket is located.

matching_char_index int

The position index of the matching closing bracket.

Source code in geemap/conversion.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def find_matching_bracket(lines, start_line_index, start_char_index, matching_char="{"):
    """Finds the position of the matching closing bracket from a list of lines.

    Args:
        lines (list): The input list of lines.
        start_line_index (int): The line index where the starting bracket is located.
        start_char_index (int): The position index of the starting bracket.
        matching_char (str, optional): The starting bracket to search for. Defaults to '{'.

    Returns:
        matching_line_index (int): The line index where the matching closing bracket is located.
        matching_char_index (int): The position index of the matching closing bracket.
    """
    matching_line_index = -1
    matching_char_index = -1

    matching_chars = {"{": "}", "(": ")", "[": "]"}
    if matching_char not in matching_chars.keys():
        print(
            "The matching character must be one of the following: {}".format(
                ", ".join(matching_chars.keys())
            )
        )
        return matching_line_index, matching_char_index

    # Create a deque to use it as a stack.
    d = deque()

    for line_index in range(start_line_index, len(lines)):
        line = lines[line_index]
        # deal with the line where the starting bracket is located.
        if line_index == start_line_index:
            line = lines[line_index][start_char_index:]

        for index, item in enumerate(line):
            # Pops a starting bracket for each closing bracket
            if item == matching_chars[matching_char]:
                d.popleft()
            # Push all starting brackets
            elif item == matching_char:
                d.append(matching_char)

            # If deque becomes empty
            if not d:
                matching_line_index = line_index
                if line_index == start_line_index:
                    matching_char_index = start_char_index + index
                else:
                    matching_char_index = index

                return matching_line_index, matching_char_index

    return matching_line_index, matching_char_index

fishnet(data, h_interval=1.0, v_interval=1.0, rows=None, cols=None, delta=1.0, intersect=True, output=None, **kwargs)

Create a fishnet (i.e., rectangular grid) based on an input vector dataset.

Parameters:

Name Type Description Default
data str | Geometry | Feature | FeatureCollection

The input vector dataset. It can be a file path, HTTP URL, ee.Geometry, ee.Feature, or ee.FeatureCollection.

required
h_interval float

The horizontal interval in degrees. It will be ignored if rows and cols are specified. Defaults to 1.0.

1.0
v_interval float

The vertical interval in degrees. It will be ignored if rows and cols are specified. Defaults to 1.0.

1.0
rows int

The number of rows. Defaults to None.

None
cols int

The number of columns. Defaults to None.

None
delta float

The buffer distance in degrees. Defaults to 1.0.

1.0
intersect bool

If True, the output will be a feature collection of intersecting polygons. Defaults to True.

True
output str

The output file path. Defaults to None.

None

Returns:

Type Description

ee.FeatureCollection: The fishnet as an ee.FeatureCollection.

Source code in geemap/common.py
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
def fishnet(
    data,
    h_interval=1.0,
    v_interval=1.0,
    rows=None,
    cols=None,
    delta=1.0,
    intersect=True,
    output=None,
    **kwargs,
):
    """Create a fishnet (i.e., rectangular grid) based on an input vector dataset.

    Args:
        data (str | ee.Geometry | ee.Feature | ee.FeatureCollection): The input vector dataset. It can be a file path, HTTP URL, ee.Geometry, ee.Feature, or ee.FeatureCollection.
        h_interval (float, optional): The horizontal interval in degrees. It will be ignored if rows and cols are specified. Defaults to 1.0.
        v_interval (float, optional): The vertical interval in degrees. It will be ignored if rows and cols are specified. Defaults to 1.0.
        rows (int, optional): The number of rows. Defaults to None.
        cols (int, optional): The number of columns. Defaults to None.
        delta (float, optional): The buffer distance in degrees. Defaults to 1.0.
        intersect (bool, optional): If True, the output will be a feature collection of intersecting polygons. Defaults to True.
        output (str, optional): The output file path. Defaults to None.


    Returns:
        ee.FeatureCollection: The fishnet as an ee.FeatureCollection.
    """
    if isinstance(data, str):
        data = vector_to_ee(data, **kwargs)

    if isinstance(data, ee.FeatureCollection) or isinstance(data, ee.Feature):
        data = data.geometry()
    elif isinstance(data, ee.Geometry):
        pass
    else:
        raise ValueError(
            "data must be a string, ee.FeatureCollection, ee.Feature, or ee.Geometry."
        )

    coords = data.bounds().coordinates().getInfo()

    west = coords[0][0][0]
    east = coords[0][1][0]
    south = coords[0][0][1]
    north = coords[0][2][1]

    if rows is not None and cols is not None:
        v_interval = (north - south) / rows
        h_interval = (east - west) / cols

    # west = west - delta * h_interval
    east = east + delta * h_interval
    # south = south - delta * v_interval
    north = north + delta * v_interval

    grids = latlon_grid(v_interval, h_interval, west, east, south, north)

    if intersect:
        grids = grids.filterBounds(data)

    if output is not None:
        ee_export_vector(grids, output)

    else:
        return grids

format_params(line, sep=':')

Formats keys in a dictionary and adds quotes to the keys. For example, {min: 0, max: 10} will result in ('min': 0, 'max': 10)

Parameters:

Name Type Description Default
line str

A string.

required
sep str

Separator. Defaults to ':'.

':'

Returns:

Type Description

[str]: A string with keys quoted

Source code in geemap/conversion.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def format_params(line, sep=":"):
    """Formats keys in a dictionary and adds quotes to the keys.
    For example, {min: 0, max: 10} will result in ('min': 0, 'max': 10)

    Args:
        line (str): A string.
        sep (str, optional): Separator. Defaults to ':'.

    Returns:
        [str]: A string with keys quoted
    """
    # print(line)
    new_line = line
    prefix = ""
    # suffix = ""

    if line.strip().startswith("for"):  # skip for loop
        return line

    # find all occurrences of a substring
    def find_all(a_str, sub):
        start = 0
        while True:
            start = a_str.find(sub, start)
            if start == -1:
                return
            yield start
            start += len(sub)  # use start += 1 to find overlapping matches

    indices = list(find_all(line, sep))
    count = len(indices)

    if "{" in line:
        bracket_index = line.index("{")
        if bracket_index < indices[0]:
            prefix = line[: bracket_index + 1]
            line = line[bracket_index + 1 :]

    if count > 0:
        items = line.split(sep)

        if count == 1:
            for i in range(0, count):
                item = items[i].strip()
                if ('"' not in item) and ("'" not in item):
                    new_item = "'" + item + "'"
                    items[i] = items[i].replace(item, new_item)
            new_line = ":".join(items)
        elif count > 1:
            for i in range(0, count):
                item = items[i]
                if "," in item:
                    subitems = item.split(",")
                    subitem = subitems[-1]
                    if ('"' not in subitem) and ("'" not in subitem):
                        new_subitem = "'" + subitem.strip() + "'"
                        subitems[-1] = subitems[-1].replace(subitem, new_subitem)
                        items[i] = ", ".join(subitems)
                else:
                    if ('"' not in item) and ("'" not in item):
                        new_item = "'" + item.strip() + "'"
                        padding = len(item) - len(item.strip())
                        items[i] = " " * padding + item.replace(item, new_item)

            new_line = ":".join(items)

    return prefix + new_line

gdf_bounds(gdf, return_geom=False)

Returns the bounding box of a GeoDataFrame.

Parameters:

Name Type Description Default
gdf GeoDataFrame

A GeoDataFrame.

required
return_geom bool

Whether to return the bounding box as a GeoDataFrame. Defaults to False.

False

Returns:

Type Description

list | gpd.GeoDataFrame: A bounding box in the form of a list (minx, miny, maxx, maxy) or GeoDataFrame.

Source code in geemap/common.py
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
def gdf_bounds(gdf, return_geom=False):
    """Returns the bounding box of a GeoDataFrame.

    Args:
        gdf (gpd.GeoDataFrame): A GeoDataFrame.
        return_geom (bool, optional): Whether to return the bounding box as a GeoDataFrame. Defaults to False.

    Returns:
        list | gpd.GeoDataFrame: A bounding box in the form of a list (minx, miny, maxx, maxy) or GeoDataFrame.
    """
    bounds = gdf.total_bounds
    if return_geom:
        return bbox_to_gdf(bbox=bounds)
    else:
        return bounds

gdf_centroid(gdf, return_geom=False)

Returns the centroid of a GeoDataFrame.

Parameters:

Name Type Description Default
gdf GeoDataFrame

A GeoDataFrame.

required
return_geom bool

Whether to return the bounding box as a GeoDataFrame. Defaults to False.

False

Returns:

Type Description

list | gpd.GeoDataFrame: A bounding box in the form of a list (lon, lat) or GeoDataFrame.

Source code in geemap/common.py
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
def gdf_centroid(gdf, return_geom=False):
    """Returns the centroid of a GeoDataFrame.

    Args:
        gdf (gpd.GeoDataFrame): A GeoDataFrame.
        return_geom (bool, optional): Whether to return the bounding box as a GeoDataFrame. Defaults to False.

    Returns:
        list | gpd.GeoDataFrame: A bounding box in the form of a list (lon, lat) or GeoDataFrame.
    """

    warnings.filterwarnings("ignore")

    centroid = gdf_bounds(gdf, return_geom=True).centroid
    if return_geom:
        return centroid
    else:
        return centroid.x[0], centroid.y[0]

gdf_geom_type(gdf, first_only=True)

Returns the geometry type of a GeoDataFrame.

Parameters:

Name Type Description Default
gdf GeoDataFrame

A GeoDataFrame.

required
first_only bool

Whether to return the geometry type of the first feature in the GeoDataFrame. Defaults to True.

True

Returns:

Name Type Description
str

The geometry type of the GeoDataFrame.

Source code in geemap/common.py
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
def gdf_geom_type(gdf, first_only=True):
    """Returns the geometry type of a GeoDataFrame.

    Args:
        gdf (gpd.GeoDataFrame): A GeoDataFrame.
        first_only (bool, optional): Whether to return the geometry type of the first feature in the GeoDataFrame. Defaults to True.

    Returns:
        str: The geometry type of the GeoDataFrame.
    """

    if first_only:
        return gdf.geometry.type[0]
    else:
        return gdf.geometry.type

gdf_to_df(gdf, drop_geom=True)

Converts a GeoDataFrame to a pandas DataFrame.

Parameters:

Name Type Description Default
gdf GeoDataFrame

A GeoDataFrame.

required
drop_geom bool

Whether to drop the geometry column. Defaults to True.

True

Returns:

Type Description

pd.DataFrame: A pandas DataFrame containing the GeoDataFrame.

Source code in geemap/common.py
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
def gdf_to_df(gdf, drop_geom=True):
    """Converts a GeoDataFrame to a pandas DataFrame.

    Args:
        gdf (gpd.GeoDataFrame): A GeoDataFrame.
        drop_geom (bool, optional): Whether to drop the geometry column. Defaults to True.

    Returns:
        pd.DataFrame: A pandas DataFrame containing the GeoDataFrame.
    """
    import pandas as pd

    if drop_geom:
        df = pd.DataFrame(gdf.drop(columns=["geometry"]))
    else:
        df = pd.DataFrame(gdf)

    return df

gdf_to_ee(gdf, geodesic=True, date=None, date_format='YYYY-MM-dd')

Converts a GeoPandas GeoDataFrame to ee.FeatureCollection.

Parameters:

Name Type Description Default
gdf GeoDataFrame

The input geopandas.GeoDataFrame to be converted ee.FeatureCollection.

required
geodesic bool

Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected. Defaults to True.

True
date str

Column name for the date column. Defaults to None.

None
date_format str

Date format. A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

'YYYY-MM-dd'

Raises:

Type Description
TypeError

The input data type must be geopandas.GeoDataFrame.

Returns:

Type Description

ee.FeatureCollection: The output ee.FeatureCollection converted from the input geopandas.GeoDataFrame.

Source code in geemap/common.py
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
def gdf_to_ee(gdf, geodesic=True, date=None, date_format="YYYY-MM-dd"):
    """Converts a GeoPandas GeoDataFrame to ee.FeatureCollection.

    Args:
        gdf (geopandas.GeoDataFrame): The input geopandas.GeoDataFrame to be converted ee.FeatureCollection.
        geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected. Defaults to True.
        date (str, optional): Column name for the date column. Defaults to None.
        date_format (str, optional): Date format. A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

    Raises:
        TypeError: The input data type must be geopandas.GeoDataFrame.

    Returns:
        ee.FeatureCollection: The output ee.FeatureCollection converted from the input geopandas.GeoDataFrame.
    """
    check_package(name="geopandas", URL="https://geopandas.org")

    import geopandas as gpd

    if not isinstance(gdf, gpd.GeoDataFrame):
        raise TypeError("The input data type must be geopandas.GeoDataFrame.")

    out_json = os.path.join(os.getcwd(), random_string(6) + ".geojson")
    gdf = gdf.to_crs(4326)
    gdf.to_file(out_json, driver="GeoJSON")

    fc = geojson_to_ee(out_json, geodesic=geodesic)

    if date is not None:
        try:
            fc = fc.map(
                lambda x: x.set(
                    "system:time_start",
                    ee.Date.parse(date_format, x.get(date)).millis(),
                )
            )
        except Exception as e:
            raise Exception(e)

    os.remove(out_json)

    return fc

gdf_to_geojson(gdf, out_geojson=None, epsg=None)

Converts a GeoDataFame to GeoJSON.

Parameters:

Name Type Description Default
gdf GeoDataFrame

A GeoPandas GeoDataFrame.

required
out_geojson str

File path to he output GeoJSON. Defaults to None.

None
epsg str

An EPSG string, e.g., "4326". Defaults to None.

None

Raises:

Type Description
TypeError

When the output file extension is incorrect.

Exception

When the conversion fails.

Returns:

Name Type Description
dict

When the out_json is None returns a dict.

Source code in geemap/common.py
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
def gdf_to_geojson(gdf, out_geojson=None, epsg=None):
    """Converts a GeoDataFame to GeoJSON.

    Args:
        gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
        out_geojson (str, optional): File path to he output GeoJSON. Defaults to None.
        epsg (str, optional): An EPSG string, e.g., "4326". Defaults to None.

    Raises:
        TypeError: When the output file extension is incorrect.
        Exception: When the conversion fails.

    Returns:
        dict: When the out_json is None returns a dict.
    """
    check_package(name="geopandas", URL="https://geopandas.org")

    try:
        if epsg is not None:
            gdf = gdf.to_crs(epsg=epsg)
        geojson = gdf.__geo_interface__

        if out_geojson is None:
            return geojson
        else:
            ext = os.path.splitext(out_geojson)[1]
            if ext.lower() not in [".json", ".geojson"]:
                raise TypeError(
                    "The output file extension must be either .json or .geojson"
                )
            out_dir = os.path.dirname(out_geojson)
            if not os.path.exists(out_dir):
                os.makedirs(out_dir)

            gdf.to_file(out_geojson, driver="GeoJSON")
    except Exception as e:
        raise Exception(e)

geocode(location, max_rows=10, reverse=False)

Search location by address and lat/lon coordinates.

Parameters:

Name Type Description Default
location str

Place name or address

required
max_rows int

Maximum number of records to return. Defaults to 10.

10
reverse bool

Search place based on coordinates. Defaults to False.

False
Source code in geemap/common.py
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
def geocode(location, max_rows=10, reverse=False):
    """Search location by address and lat/lon coordinates.

    Args:
        location (str): Place name or address
        max_rows (int, optional): Maximum number of records to return. Defaults to 10.
        reverse (bool, optional): Search place based on coordinates. Defaults to False.
    Returns:
        list: Returns a list of locations.
    """
    import geocoder

    if not isinstance(location, str):
        print("The location must be a string.")
        return None

    if not reverse:
        locations = []
        addresses = set()
        g = geocoder.arcgis(location, maxRows=max_rows)

        for result in g:
            address = result.address
            if address not in addresses:
                addresses.add(address)
                locations.append(result)

        if len(locations) > 0:
            return locations
        else:
            return None

    else:
        try:
            if "," in location:
                latlon = [float(x) for x in location.split(",")]
            elif " " in location:
                latlon = [float(x) for x in location.split(" ")]
            else:
                return
            g = geocoder.arcgis(latlon, method="reverse")
            locations = []
            addresses = set()

            for result in g:
                address = result.address
                if address not in addresses:
                    addresses.add(address)
                    locations.append(result)

            if len(locations) > 0:
                return locations
            else:
                return None

        except Exception as e:
            print(e)
            return None

geojson_to_df(in_geojson, encoding='utf-8', drop_geometry=True)

Converts a GeoJSON object to a pandas DataFrame.

Parameters:

Name Type Description Default
in_geojson str | dict

The input GeoJSON file or dict.

required
encoding str

The encoding of the GeoJSON object. Defaults to "utf-8".

'utf-8'
drop_geometry bool

Whether to drop the geometry column. Defaults to True.

True

Raises:

Type Description
FileNotFoundError

If the input GeoJSON file could not be found.

Returns:

Type Description

pd.DataFrame: A pandas DataFrame containing the GeoJSON object.

Source code in geemap/common.py
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
def geojson_to_df(in_geojson, encoding="utf-8", drop_geometry=True):
    """Converts a GeoJSON object to a pandas DataFrame.

    Args:
        in_geojson (str | dict): The input GeoJSON file or dict.
        encoding (str, optional): The encoding of the GeoJSON object. Defaults to "utf-8".
        drop_geometry (bool, optional): Whether to drop the geometry column. Defaults to True.

    Raises:
        FileNotFoundError: If the input GeoJSON file could not be found.

    Returns:
        pd.DataFrame: A pandas DataFrame containing the GeoJSON object.
    """

    import pandas as pd
    from urllib.request import urlopen

    if isinstance(in_geojson, str):
        if in_geojson.startswith("http"):
            in_geojson = github_raw_url(in_geojson)
            with urlopen(in_geojson) as f:
                data = json.load(f)
        else:
            in_geojson = os.path.abspath(in_geojson)
            if not os.path.exists(in_geojson):
                raise FileNotFoundError("The provided GeoJSON file could not be found.")

            with open(in_geojson, encoding=encoding) as f:
                data = json.load(f)

    elif isinstance(in_geojson, dict):
        data = in_geojson

    df = pd.json_normalize(data["features"])
    df.columns = [col.replace("properties.", "") for col in df.columns]
    if drop_geometry:
        df = df[df.columns.drop(list(df.filter(regex="geometry")))]
    return df

geojson_to_ee(geo_json, geodesic=False, encoding='utf-8')

Converts a GeoJSON to an Earth Engine Geometry or FeatureCollection.

Parameters:

Name Type Description Default
geo_json Union[Dict[str, Any], str]

A GeoJSON geometry dictionary or file path.

required
geodesic bool

Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected. Defaults to False.

False
encoding str

The encoding of characters. Defaults to "utf-8".

'utf-8'

Returns:

Type Description
Union[Geometry, FeatureCollection]

Union[ee.Geometry, ee.FeatureCollection]: An Earth Engine Geometry or FeatureCollection.

Raises:

Type Description
Exception

If the GeoJSON cannot be converted to an Earth Engine object.

Source code in geemap/coreutils.py
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
def geojson_to_ee(
    geo_json: Union[Dict[str, Any], str],
    geodesic: bool = False,
    encoding: str = "utf-8",
) -> Union[ee.Geometry, ee.FeatureCollection]:
    """Converts a GeoJSON to an Earth Engine Geometry or FeatureCollection.

    Args:
        geo_json (Union[Dict[str, Any], str]): A GeoJSON geometry dictionary or
            file path.
        geodesic (bool, optional): Whether line segments should be interpreted
            as spherical geodesics. If false, indicates that line segments
            should be interpreted as planar lines in the specified CRS. If
            absent, defaults to true if the CRS is geographic (including the
            default EPSG:4326), or to false if the CRS is projected. Defaults to False.
        encoding (str, optional): The encoding of characters. Defaults to "utf-8".

    Returns:
        Union[ee.Geometry, ee.FeatureCollection]: An Earth Engine Geometry or FeatureCollection.

    Raises:
        Exception: If the GeoJSON cannot be converted to an Earth Engine object.
    """

    try:
        if isinstance(geo_json, str):
            if geo_json.startswith("http") and geo_json.endswith(".geojson"):
                geo_json = github_raw_url(geo_json)
                out_geojson = temp_file_path(extension=".geojson")
                download_file(geo_json, out_geojson)
                with open(out_geojson, "r", encoding=encoding) as f:
                    geo_json = json.loads(f.read())
                os.remove(out_geojson)

            elif os.path.isfile(geo_json):
                with open(os.path.abspath(geo_json), encoding=encoding) as f:
                    geo_json = json.load(f)

        # geo_json["geodesic"] = geodesic
        if geo_json["type"] == "FeatureCollection":
            for feature in geo_json["features"]:
                if feature["geometry"]["type"] != "Point":
                    feature["geometry"]["geodesic"] = geodesic
            features = ee.FeatureCollection(geo_json)
            return features
        elif geo_json["type"] == "Feature":
            geom = None
            if "style" in geo_json["properties"]:
                keys = geo_json["properties"]["style"].keys()
                if "radius" in keys:  # Checks whether it is a circle
                    geom = ee.Geometry(geo_json["geometry"])
                    radius = geo_json["properties"]["style"]["radius"]
                    geom = geom.buffer(radius)
                elif geo_json["geometry"]["type"] == "Point":
                    geom = ee.Geometry(geo_json["geometry"])
                else:
                    geom = ee.Geometry(geo_json["geometry"], "", geodesic)
            elif (
                geo_json["geometry"]["type"] == "Point"
            ):  # Checks whether it is a point
                coordinates = geo_json["geometry"]["coordinates"]
                longitude = coordinates[0]
                latitude = coordinates[1]
                geom = ee.Geometry.Point(longitude, latitude)
            else:
                geom = ee.Geometry(geo_json["geometry"], "", geodesic)
            return geom
        else:
            raise Exception("Could not convert the geojson to ee.Geometry()")

    except Exception as e:
        print("Could not convert the geojson to ee.Geometry()")
        raise Exception(e)

geometry_type(ee_object)

Get geometry type of an Earth Engine object.

Parameters:

Name Type Description Default
ee_object Any

An Earth Engine object.

required

Returns:

Name Type Description
str str

Returns geometry type. One of Point, MultiPoint, LineString, LinearRing, MultiLineString, BBox, Rectangle, Polygon, MultiPolygon.

Raises:

Type Description
TypeError

If the ee_object is not one of ee.Geometry, ee.Feature, ee.FeatureCollection.

Source code in geemap/coreutils.py
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def geometry_type(ee_object: Any) -> str:
    """Get geometry type of an Earth Engine object.

    Args:
        ee_object (Any): An Earth Engine object.

    Returns:
        str: Returns geometry type. One of Point, MultiPoint, LineString,
            LinearRing, MultiLineString, BBox, Rectangle, Polygon, MultiPolygon.

    Raises:
        TypeError: If the ee_object is not one of ee.Geometry, ee.Feature,
            ee.FeatureCollection.
    """
    if isinstance(ee_object, ee.Geometry):
        return ee_object.type().getInfo()
    elif isinstance(ee_object, ee.Feature):
        return ee_object.geometry().type().getInfo()
    elif isinstance(ee_object, ee.FeatureCollection):
        return ee.Feature(ee_object.first()).geometry().type().getInfo()
    else:
        raise TypeError(
            "The ee_object must be one of ee.Geometry, ee.Feature, ee.FeatureCollection."
        )

geotiff_to_image(image, output)

Converts a GeoTIFF file to a JPEG/PNG image.

Parameters:

Name Type Description Default
image str

The path to the input GeoTIFF file.

required
output str

The path to save the output JPEG/PNG file.

required

Returns:

Type Description
None

None

Source code in geemap/common.py
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
def geotiff_to_image(image: str, output: str) -> None:
    """
    Converts a GeoTIFF file to a JPEG/PNG image.

    Args:
        image (str): The path to the input GeoTIFF file.
        output (str): The path to save the output JPEG/PNG file.

    Returns:
        None
    """

    import rasterio
    from PIL import Image

    # Open the GeoTIFF file
    with rasterio.open(image) as dataset:
        # Read the image data
        data = dataset.read()

        # Convert the image data to 8-bit format (assuming it's not already)
        if dataset.dtypes[0] != "uint8":
            data = (data / data.max() * 255).astype("uint8")

        # Convert the image data to RGB format if it's a single band image
        if dataset.count == 1:
            data = data.squeeze()
            data = data.reshape((1, data.shape[0], data.shape[1]))
            data = data.repeat(3, axis=0)

        # Create a PIL Image object from the image data
        image = Image.fromarray(data.transpose(1, 2, 0))

        # Save the image as a JPEG file
        image.save(output)

get_all_NAIP(start_year=2009, end_year=2019)

Creates annual NAIP imagery mosaic.

Parameters:

Name Type Description Default
start_year int

The starting year. Defaults to 2009.

2009
end_year int

The ending year. Defaults to 2019.

2019

Returns:

Name Type Description
object

ee.ImageCollection

Source code in geemap/common.py
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
def get_all_NAIP(start_year=2009, end_year=2019):
    """Creates annual NAIP imagery mosaic.

    Args:
        start_year (int, optional): The starting year. Defaults to 2009.
        end_year (int, optional): The ending year. Defaults to 2019.

    Returns:
        object: ee.ImageCollection
    """
    try:

        def get_annual_NAIP(year):
            try:
                collection = ee.ImageCollection("USDA/NAIP/DOQQ")
                start_date = ee.Date.fromYMD(year, 1, 1)
                end_date = ee.Date.fromYMD(year, 12, 31)
                naip = collection.filterDate(start_date, end_date).filter(
                    ee.Filter.listContains("system:band_names", "N")
                )
                return ee.ImageCollection(naip)
            except Exception as e:
                print(e)

        years = ee.List.sequence(start_year, end_year)
        collection = years.map(get_annual_NAIP)
        return collection

    except Exception as e:
        print(e)

get_annual_NAIP(year, RGBN=True)

Filters NAIP ImageCollection by year.

Parameters:

Name Type Description Default
year int

The year to filter the NAIP ImageCollection.

required
RGBN bool

Whether to retrieve 4-band NAIP imagery only. Defaults to True.

True

Returns:

Name Type Description
object

ee.ImageCollection

Source code in geemap/common.py
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
def get_annual_NAIP(year, RGBN=True):
    """Filters NAIP ImageCollection by year.

    Args:
        year (int): The year to filter the NAIP ImageCollection.
        RGBN (bool, optional): Whether to retrieve 4-band NAIP imagery only. Defaults to True.

    Returns:
        object: ee.ImageCollection
    """
    try:
        collection = ee.ImageCollection("USDA/NAIP/DOQQ")
        start_date = str(year) + "-01-01"
        end_date = str(year) + "-12-31"
        naip = collection.filterDate(start_date, end_date)
        if RGBN:
            naip = naip.filter(ee.Filter.listContains("system:band_names", "N"))
        return naip
    except Exception as e:
        print(e)

get_bounds(geometry, north_up=True, transform=None)

Bounding box of a GeoJSON geometry, GeometryCollection, or FeatureCollection. left, bottom, right, top not xmin, ymin, xmax, ymax If not north_up, y will be switched to guarantee the above. Source code adapted from https://github.com/mapbox/rasterio/blob/master/rasterio/features.py#L361

Parameters:

Name Type Description Default
geometry dict

A GeoJSON dict.

required
north_up bool

. Defaults to True.

True
transform [type]

. Defaults to None.

None

Returns:

Name Type Description
list

A list of coordinates representing [left, bottom, right, top]

Source code in geemap/common.py
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
def get_bounds(geometry, north_up=True, transform=None):
    """Bounding box of a GeoJSON geometry, GeometryCollection, or FeatureCollection.
    left, bottom, right, top
    *not* xmin, ymin, xmax, ymax
    If not north_up, y will be switched to guarantee the above.
    Source code adapted from https://github.com/mapbox/rasterio/blob/master/rasterio/features.py#L361

    Args:
        geometry (dict): A GeoJSON dict.
        north_up (bool, optional): . Defaults to True.
        transform ([type], optional): . Defaults to None.

    Returns:
        list: A list of coordinates representing [left, bottom, right, top]
    """

    if "bbox" in geometry:
        return tuple(geometry["bbox"])

    geometry = geometry.get("geometry") or geometry

    # geometry must be a geometry, GeometryCollection, or FeatureCollection
    if not (
        "coordinates" in geometry or "geometries" in geometry or "features" in geometry
    ):
        raise ValueError(
            "geometry must be a GeoJSON-like geometry, GeometryCollection, "
            "or FeatureCollection"
        )

    if "features" in geometry:
        # Input is a FeatureCollection
        xmins = []
        ymins = []
        xmaxs = []
        ymaxs = []
        for feature in geometry["features"]:
            xmin, ymin, xmax, ymax = get_bounds(feature["geometry"])
            xmins.append(xmin)
            ymins.append(ymin)
            xmaxs.append(xmax)
            ymaxs.append(ymax)
        if north_up:
            return min(xmins), min(ymins), max(xmaxs), max(ymaxs)
        else:
            return min(xmins), max(ymaxs), max(xmaxs), min(ymins)

    elif "geometries" in geometry:
        # Input is a geometry collection
        xmins = []
        ymins = []
        xmaxs = []
        ymaxs = []
        for geometry in geometry["geometries"]:
            xmin, ymin, xmax, ymax = get_bounds(geometry)
            xmins.append(xmin)
            ymins.append(ymin)
            xmaxs.append(xmax)
            ymaxs.append(ymax)
        if north_up:
            return min(xmins), min(ymins), max(xmaxs), max(ymaxs)
        else:
            return min(xmins), max(ymaxs), max(xmaxs), min(ymins)

    elif "coordinates" in geometry:
        # Input is a singular geometry object
        if transform is not None:
            xyz = list(explode(geometry["coordinates"]))
            xyz_px = [transform * point for point in xyz]
            xyz = tuple(zip(*xyz_px))
            return min(xyz[0]), max(xyz[1]), max(xyz[0]), min(xyz[1])
        else:
            xyz = tuple(zip(*list(explode(geometry["coordinates"]))))
            if north_up:
                return min(xyz[0]), min(xyz[1]), max(xyz[0]), max(xyz[1])
            else:
                return min(xyz[0]), max(xyz[1]), max(xyz[0]), min(xyz[1])

    # all valid inputs returned above, so whatever falls through is an error
    raise ValueError(
        "geometry must be a GeoJSON-like geometry, GeometryCollection, "
        "or FeatureCollection"
    )

get_census_dict(reset=False)

Returns a dictionary of Census data.

Parameters:

Name Type Description Default
reset bool

Reset the dictionary. Defaults to False.

False

Returns:

Name Type Description
dict

A dictionary of Census data.

Source code in geemap/common.py
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
def get_census_dict(reset=False):
    """Returns a dictionary of Census data.

    Args:
        reset (bool, optional): Reset the dictionary. Defaults to False.

    Returns:
        dict: A dictionary of Census data.
    """
    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)
    census_data = os.path.join(pkg_dir, "data/census_data.json")

    if reset:
        try:
            from owslib.wms import WebMapService
        except ImportError:
            raise ImportError(
                'The owslib package must be installed to use this function. Install with "pip install owslib"'
            )

        census_dict = {}

        names = [
            "Current",
            "ACS 2021",
            "ACS 2019",
            "ACS 2018",
            "ACS 2017",
            "ACS 2016",
            "ACS 2015",
            "ACS 2014",
            "ACS 2013",
            "ACS 2012",
            "ECON 2012",
            "Census 2020",
            "Census 2010",
            "Physical Features",
            "Decennial Census 2020",
            "Decennial Census 2010",
            "Decennial Census 2000",
            "Decennial Physical Features",
        ]

        links = {}

        print("Retrieving data. Please wait ...")
        for name in names:
            if "Decennial" not in name:
                links[name] = (
                    f"https://tigerweb.geo.census.gov/arcgis/services/TIGERweb/tigerWMS_{name.replace(' ', '')}/MapServer/WMSServer"
                )
            else:
                links[name] = (
                    f"https://tigerweb.geo.census.gov/arcgis/services/Census2020/tigerWMS_{name.replace('Decennial', '').replace(' ', '')}/MapServer/WMSServer"
                )

            wms = WebMapService(links[name], timeout=300)
            layers = list(wms.contents)
            layers.sort()
            census_dict[name] = {
                "url": links[name],
                "layers": layers,
                # "title": wms.identification.title,
                # "abstract": wms.identification.abstract,
            }

        with open(census_data, "w") as f:
            json.dump(census_dict, f, indent=4)

    else:
        with open(census_data, "r") as f:
            census_dict = json.load(f)

    return census_dict

get_center(geometry, north_up=True, transform=None)

Get the centroid of a GeoJSON.

Parameters:

Name Type Description Default
geometry dict

A GeoJSON dict.

required
north_up bool

. Defaults to True.

True
transform [type]

. Defaults to None.

None

Returns:

Name Type Description
list

[lon, lat]

Source code in geemap/common.py
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
def get_center(geometry, north_up=True, transform=None):
    """Get the centroid of a GeoJSON.

    Args:
        geometry (dict): A GeoJSON dict.
        north_up (bool, optional): . Defaults to True.
        transform ([type], optional): . Defaults to None.

    Returns:
        list: [lon, lat]
    """
    bounds = get_bounds(geometry, north_up, transform)
    center = ((bounds[0] + bounds[2]) / 2, (bounds[1] + bounds[3]) / 2)  # (lat, lon)
    return center

get_current_latlon()

Get the current latitude and longitude based on the user's location.

Source code in geemap/common.py
9987
9988
9989
9990
9991
9992
9993
9994
9995
def get_current_latlon():
    """Get the current latitude and longitude based on the user's location."""
    import geocoder

    g = geocoder.ip("me")
    props = g.geojson["features"][0]["properties"]
    lat = props["lat"]
    lon = props["lng"]
    return lat, lon

get_current_year()

Get the current year.

Returns:

Name Type Description
int

The current year.

Source code in geemap/common.py
14018
14019
14020
14021
14022
14023
14024
14025
def get_current_year():
    """Get the current year.

    Returns:
        int: The current year.
    """
    today = datetime.date.today()
    return today.year

get_direct_url(url)

Get the direct URL for a given URL.

Parameters:

Name Type Description Default
url str

The URL to get the direct URL for.

required

Returns:

Name Type Description
str

The direct URL.

Source code in geemap/common.py
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
def get_direct_url(url):
    """Get the direct URL for a given URL.

    Args:
        url (str): The URL to get the direct URL for.

    Returns:
        str: The direct URL.
    """

    if not isinstance(url, str):
        raise ValueError("url must be a string.")

    if not url.startswith("http"):
        raise ValueError("url must start with http.")

    r = requests.head(url, allow_redirects=True)
    return r.url

get_ee_token()

Get Earth Engine token.

Returns:

Name Type Description
dict

The Earth Engine token.

Source code in geemap/common.py
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
def get_ee_token():
    """Get Earth Engine token.

    Returns:
        dict: The Earth Engine token.
    """
    credential_file_path = os.path.expanduser("~/.config/earthengine/credentials")

    if os.path.exists(credential_file_path):
        with open(credential_file_path, "r") as f:
            credentials = json.load(f)
            return credentials
    else:
        print("Earth Engine credentials not found. Please run ee.Authenticate()")
        return None

get_env_var(key)

Retrieves an environment variable or Colab secret for the given key.

Colab secrets have precedence over environment variables.

Parameters:

Name Type Description Default
key str

The key that's used to fetch the environment variable.

required

Returns:

Type Description
Optional[str]

Optional[str]: The retrieved key, or None if no environment variable was found.

Source code in geemap/coreutils.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def get_env_var(key: str) -> Optional[str]:
    """Retrieves an environment variable or Colab secret for the given key.

    Colab secrets have precedence over environment variables.

    Args:
        key (str): The key that's used to fetch the environment variable.

    Returns:
        Optional[str]: The retrieved key, or None if no environment variable was found.
    """
    if not key:
        return None

    if in_colab_shell():
        from google.colab import userdata

        try:
            return userdata.get(key)
        except (userdata.SecretNotFoundError, userdata.NotebookAccessError):
            pass

    return os.environ.get(key)

get_geometry_coords(row, geom, coord_type, shape_type, mercator=False)

Returns the coordinates ('x' or 'y') of edges of a Polygon exterior.

:param: (GeoPandas Series) row : The row of each of the GeoPandas DataFrame. :param: (str) geom : The column name. :param: (str) coord_type : Whether it's 'x' or 'y' coordinate. :param: (str) shape_type

Source code in geemap/common.py
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
def get_geometry_coords(row, geom, coord_type, shape_type, mercator=False):
    """
    Returns the coordinates ('x' or 'y') of edges of a Polygon exterior.

    :param: (GeoPandas Series) row : The row of each of the GeoPandas DataFrame.
    :param: (str) geom : The column name.
    :param: (str) coord_type : Whether it's 'x' or 'y' coordinate.
    :param: (str) shape_type
    """

    # Parse the exterior of the coordinate
    if shape_type.lower() in ["polygon", "multipolygon"]:
        exterior = row[geom].geoms[0].exterior
        if coord_type == "x":
            # Get the x coordinates of the exterior
            coords = list(exterior.coords.xy[0])
            if mercator:
                coords = [lnglat_to_meters(x, 0)[0] for x in coords]
            return coords

        elif coord_type == "y":
            # Get the y coordinates of the exterior
            coords = list(exterior.coords.xy[1])
            if mercator:
                coords = [lnglat_to_meters(0, y)[1] for y in coords]
            return coords

    elif shape_type.lower() in ["linestring", "multilinestring"]:
        if coord_type == "x":
            coords = list(row[geom].coords.xy[0])
            if mercator:
                coords = [lnglat_to_meters(x, 0)[0] for x in coords]
            return coords
        elif coord_type == "y":
            coords = list(row[geom].coords.xy[1])
            if mercator:
                coords = [lnglat_to_meters(0, y)[1] for y in coords]
            return coords

    elif shape_type.lower() in ["point", "multipoint"]:
        exterior = row[geom]

        if coord_type == "x":
            # Get the x coordinates of the exterior
            coords = exterior.coords.xy[0][0]
            if mercator:
                coords = lnglat_to_meters(coords, 0)[0]
            return coords

        elif coord_type == "y":
            # Get the y coordinates of the exterior
            coords = exterior.coords.xy[1][0]
            if mercator:
                coords = lnglat_to_meters(0, coords)[1]
            return coords

get_google_maps_api_key(key='GOOGLE_MAPS_API_KEY')

Retrieves the Google Maps API key from the environment or Colab user data.

Parameters:

Name Type Description Default
key str

The name of the environment variable or Colab user data key where the API key is stored. Defaults to 'GOOGLE_MAPS_API_KEY'.

'GOOGLE_MAPS_API_KEY'

Returns:

Name Type Description
str Optional[str]

The API key, or None if it could not be found.

Source code in geemap/coreutils.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
def get_google_maps_api_key(key: str = "GOOGLE_MAPS_API_KEY") -> Optional[str]:
    """
    Retrieves the Google Maps API key from the environment or Colab user data.

    Args:
        key (str, optional): The name of the environment variable or Colab user
            data key where the API key is stored. Defaults to
            'GOOGLE_MAPS_API_KEY'.

    Returns:
        str: The API key, or None if it could not be found.
    """
    if api_key := get_env_var(key):
        return api_key
    return os.environ.get(key, None)

get_image_collection_thumbnails(ee_object, out_dir, vis_params, dimensions=500, region=None, format='jpg', names=None, verbose=True, timeout=300, proxies=None)

Download thumbnails for all images in an ImageCollection.

Parameters:

Name Type Description Default
ee_object object

The ee.ImageCollection instance.

required
out_dir [str

The output directory to store thumbnails.

required
vis_params dict

The visualization parameters.

required
dimensions int

(a number or pair of numbers in format WIDTHxHEIGHT) Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 500.

500
region object

Geospatial region of the image to render, it may be an ee.Geometry, GeoJSON, or an array of lat/lon points (E,S,W,N). If not set the default is the bounds image. Defaults to None.

None
format str

Either 'png' or 'jpg'. Default to 'jpg'.

'jpg'
names list

The list of output file names. Defaults to None.

None
verbose bool

Whether or not to print hints. Defaults to True.

True
timeout int

The number of seconds after which the request will be terminated. Defaults to 300.

300
proxies dict

A dictionary of proxy servers to use for the request. Defaults to None.

None
Source code in geemap/common.py
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
def get_image_collection_thumbnails(
    ee_object,
    out_dir,
    vis_params,
    dimensions=500,
    region=None,
    format="jpg",
    names=None,
    verbose=True,
    timeout=300,
    proxies=None,
):
    """Download thumbnails for all images in an ImageCollection.

    Args:
        ee_object (object): The ee.ImageCollection instance.
        out_dir ([str): The output directory to store thumbnails.
        vis_params (dict): The visualization parameters.
        dimensions (int, optional):(a number or pair of numbers in format WIDTHxHEIGHT) Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 500.
        region (object, optional): Geospatial region of the image to render, it may be an ee.Geometry, GeoJSON, or an array of lat/lon points (E,S,W,N). If not set the default is the bounds image. Defaults to None.
        format (str, optional): Either 'png' or 'jpg'. Default to 'jpg'.
        names (list, optional): The list of output file names. Defaults to None.
        verbose (bool, optional): Whether or not to print hints. Defaults to True.
        timeout (int, optional): The number of seconds after which the request will be terminated. Defaults to 300.
        proxies (dict, optional): A dictionary of proxy servers to use for the request. Defaults to None.
    """
    if not isinstance(ee_object, ee.ImageCollection):
        print("The ee_object must be an ee.ImageCollection.")
        raise TypeError("The ee_object must be an ee.Image.")

    if format not in ["png", "jpg"]:
        raise ValueError("The output image format must be png or jpg.")

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    try:
        count = int(ee_object.size().getInfo())
        if verbose:
            print(f"Total number of images: {count}\n")

        if (names is not None) and (len(names) != count):
            print("The number of names is not equal to the number of images.")
            return

        if names is None:
            names = ee_object.aggregate_array("system:index").getInfo()

        images = ee_object.toList(count)

        for i in range(0, count):
            image = ee.Image(images.get(i))
            name = str(names[i])
            ext = os.path.splitext(name)[1][1:]
            if ext != format:
                name = name + "." + format
            out_img = os.path.join(out_dir, name)
            if verbose:
                print(f"Downloading {i+1}/{count}: {name} ...")

            get_image_thumbnail(
                image,
                out_img,
                vis_params,
                dimensions,
                region,
                format,
                timeout=timeout,
                proxies=proxies,
            )

    except Exception as e:
        print(e)

get_image_thumbnail(ee_object, out_img, vis_params, dimensions=500, region=None, format='jpg', crs='EPSG:3857', timeout=300, proxies=None)

Download a thumbnail for an ee.Image.

Parameters:

Name Type Description Default
ee_object object

The ee.Image instance.

required
out_img str

The output file path to the png thumbnail.

required
vis_params dict

The visualization parameters.

required
dimensions int

(a number or pair of numbers in format WIDTHxHEIGHT) Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 500.

500
region object

Geospatial region of the image to render, it may be an ee.Geometry, GeoJSON, or an array of lat/lon points (E,S,W,N). If not set the default is the bounds image. Defaults to None.

None
format str

Either 'png' or 'jpg'. Default to 'jpg'.

'jpg'
timeout int

The number of seconds after which the request will be terminated. Defaults to 300.

300
proxies dict

A dictionary of proxy servers to use for the request. Defaults to None.

None
Source code in geemap/common.py
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
def get_image_thumbnail(
    ee_object,
    out_img,
    vis_params,
    dimensions=500,
    region=None,
    format="jpg",
    crs="EPSG:3857",
    timeout=300,
    proxies=None,
):
    """Download a thumbnail for an ee.Image.

    Args:
        ee_object (object): The ee.Image instance.
        out_img (str): The output file path to the png thumbnail.
        vis_params (dict): The visualization parameters.
        dimensions (int, optional):(a number or pair of numbers in format WIDTHxHEIGHT) Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 500.
        region (object, optional): Geospatial region of the image to render, it may be an ee.Geometry, GeoJSON, or an array of lat/lon points (E,S,W,N). If not set the default is the bounds image. Defaults to None.
        format (str, optional): Either 'png' or 'jpg'. Default to 'jpg'.
        timeout (int, optional): The number of seconds after which the request will be terminated. Defaults to 300.
        proxies (dict, optional): A dictionary of proxy servers to use for the request. Defaults to None.
    """

    if not isinstance(ee_object, ee.Image):
        raise TypeError("The ee_object must be an ee.Image.")

    ext = os.path.splitext(out_img)[1][1:]
    if ext not in ["png", "jpg"]:
        raise ValueError("The output image format must be png or jpg.")
    else:
        format = ext

    out_image = os.path.abspath(out_img)
    out_dir = os.path.dirname(out_image)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if region is not None:
        vis_params["region"] = region

    vis_params["dimensions"] = dimensions
    vis_params["format"] = format
    vis_params["crs"] = crs
    url = ee_object.getThumbURL(vis_params)

    try:
        r = requests.get(url, stream=True, timeout=timeout, proxies=proxies)
    except Exception as e:
        print("An error occurred while downloading.")
        print(e)

    if r.status_code != 200:
        print("An error occurred while downloading.")
        print(r.json()["error"]["message"])

    else:
        with open(out_img, "wb") as fd:
            for chunk in r.iter_content(chunk_size=1024):
                fd.write(chunk)

get_info(ee_object, layer_name='', opened=False, return_node=False)

Print out the information for an Earth Engine object using a tree structure. The source code was adapted from https://github.com/google/earthengine-jupyter. Credits to Tyler Erickson.

Parameters:

Name Type Description Default
ee_object Union[FeatureCollection, Image, Geometry, Feature]

The Earth Engine object.

required
layer_name str

The name of the layer. Defaults to "".

''
opened bool

Whether to expand the tree. Defaults to False.

False
return_node bool

Whether to return the widget as ipytree.Node. If False, returns the widget as ipytree.Tree. Defaults to False.

False

Returns:

Type Description
Union[Node, Tree, None]

Union[Node, Tree, None]: The tree or node representing the Earth Engine object information.

Source code in geemap/coreutils.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def get_info(
    ee_object: Union[ee.FeatureCollection, ee.Image, ee.Geometry, ee.Feature],
    layer_name: str = "",
    opened: bool = False,
    return_node: bool = False,
) -> Union[Node, Tree, None]:
    """Print out the information for an Earth Engine object using a tree structure.
    The source code was adapted from https://github.com/google/earthengine-jupyter.
    Credits to Tyler Erickson.

    Args:
        ee_object (Union[ee.FeatureCollection, ee.Image, ee.Geometry, ee.Feature]):
            The Earth Engine object.
        layer_name (str, optional): The name of the layer. Defaults to "".
        opened (bool, optional): Whether to expand the tree. Defaults to False.
        return_node (bool, optional): Whether to return the widget as ipytree.Node.
            If False, returns the widget as ipytree.Tree. Defaults to False.

    Returns:
        Union[Node, Tree, None]: The tree or node representing the Earth Engine
            object information.
    """

    tree_json = build_computed_object_tree(ee_object, layer_name, opened)

    def _create_node(data):
        """Create a widget for the computed object tree."""
        node = Node(data.get("label", "Node"), opened=data.get("expanded", False))
        if children := data.get("children"):
            for child in children:
                node.add_node(_create_node(child))
        else:
            node.icon = "file"
            node.value = str(data)  # Store the entire data as a string
        return node

    root_node = _create_node(tree_json)
    if return_node:
        return root_node
    else:
        tree = Tree()
        tree.add_node(root_node)
        return tree

get_js_examples(out_dir=None)

Gets Earth Engine JavaScript examples from the geemap package.

Parameters:

Name Type Description Default
out_dir str

The folder to copy the JavaScript examples to. Defaults to None.

None

Returns:

Name Type Description
str

The folder containing the JavaScript examples.

Source code in geemap/conversion.py
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
def get_js_examples(out_dir=None):
    """Gets Earth Engine JavaScript examples from the geemap package.

    Args:
        out_dir (str, optional): The folder to copy the JavaScript examples to. Defaults to None.

    Returns:
        str: The folder containing the JavaScript examples.
    """
    pkg_dir = Path(__file__).parent
    example_dir = pkg_dir / "data"
    js_dir = example_dir / "javascripts"

    files = list(js_dir.rglob("*.js"))
    if out_dir is None:
        out_dir = js_dir
    else:
        out_dir.mkdir(parent=True, exist_ok=True)

        for file in files:
            out_path = out_dir / file.name
            shutil.copyfile(file, out_path)

    return out_dir

get_local_tile_layer(source, port='default', debug=False, indexes=None, colormap=None, vmin=None, vmax=None, nodata=None, attribution=None, tile_format='ipyleaflet', layer_name='Local COG', return_client=False, quiet=False, **kwargs)

Generate an ipyleaflet/folium TileLayer from a local raster dataset or remote Cloud Optimized GeoTIFF (COG). If you are using this function in JupyterHub on a remote server and the raster does not render properly, try running the following two lines before calling this function:

1
2
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'

Parameters:

Name Type Description Default
source str

The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.

required
port str

The port to use for the server. Defaults to "default".

'default'
debug bool

If True, the server will be started in debug mode. Defaults to False.

False
indexes int

The band(s) to use. Band indexing starts at 1. Defaults to None.

None
colormap str

The name of the colormap from matplotlib to use when plotting a single band. See https://matplotlib.org/stable/gallery/color/colormap_reference.html. Default is greyscale.

None
vmin float

The minimum value to use when colormapping the colormap when plotting a single band. Defaults to None.

None
vmax float

The maximum value to use when colormapping the colormap when plotting a single band. Defaults to None.

None
nodata float

The value from the band to use to interpret as not valid data. Defaults to None.

None
attribution str

Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.

None
tile_format str

The tile layer format. Can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'
layer_name str

The layer name to use. Defaults to None.

'Local COG'
return_client bool

If True, the tile client will be returned. Defaults to False.

False
quiet bool

If True, the error messages will be suppressed. Defaults to False.

False

Returns:

Type Description

ipyleaflet.TileLayer | folium.TileLayer: An ipyleaflet.TileLayer or folium.TileLayer.

Source code in geemap/common.py
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
def get_local_tile_layer(
    source,
    port="default",
    debug=False,
    indexes=None,
    colormap=None,
    vmin=None,
    vmax=None,
    nodata=None,
    attribution=None,
    tile_format="ipyleaflet",
    layer_name="Local COG",
    return_client=False,
    quiet=False,
    **kwargs,
):
    """Generate an ipyleaflet/folium TileLayer from a local raster dataset or remote Cloud Optimized GeoTIFF (COG).
        If you are using this function in JupyterHub on a remote server and the raster does not render properly, try
        running the following two lines before calling this function:

        import os
        os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'

    Args:
        source (str): The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.
        port (str, optional): The port to use for the server. Defaults to "default".
        debug (bool, optional): If True, the server will be started in debug mode. Defaults to False.
        indexes (int, optional): The band(s) to use. Band indexing starts at 1. Defaults to None.
        colormap (str, optional): The name of the colormap from `matplotlib` to use when plotting a single band. See https://matplotlib.org/stable/gallery/color/colormap_reference.html. Default is greyscale.
        vmin (float, optional): The minimum value to use when colormapping the colormap when plotting a single band. Defaults to None.
        vmax (float, optional): The maximum value to use when colormapping the colormap when plotting a single band. Defaults to None.
        nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
        attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
        tile_format (str, optional): The tile layer format. Can be either ipyleaflet or folium. Defaults to "ipyleaflet".
        layer_name (str, optional): The layer name to use. Defaults to None.
        return_client (bool, optional): If True, the tile client will be returned. Defaults to False.
        quiet (bool, optional): If True, the error messages will be suppressed. Defaults to False.

    Returns:
        ipyleaflet.TileLayer | folium.TileLayer: An ipyleaflet.TileLayer or folium.TileLayer.
    """
    import rasterio

    check_package(
        "localtileserver", URL="https://github.com/banesullivan/localtileserver"
    )

    # Handle legacy localtileserver kwargs
    if "cmap" in kwargs:
        warnings.warn(
            "`cmap` is a deprecated keyword argument for get_local_tile_layer. Please use `colormap`."
        )
    if "palette" in kwargs:
        warnings.warn(
            "`palette` is a deprecated keyword argument for get_local_tile_layer. Please use `colormap`."
        )
    if "band" in kwargs or "bands" in kwargs:
        warnings.warn(
            "`band` and `bands` are deprecated keyword arguments for get_local_tile_layer. Please use `indexes`."
        )
    if "projection" in kwargs:
        warnings.warn(
            "`projection` is a deprecated keyword argument for get_local_tile_layer and will be ignored."
        )
    if "style" in kwargs:
        warnings.warn(
            "`style` is a deprecated keyword argument for get_local_tile_layer and will be ignored."
        )

    if "max_zoom" not in kwargs:
        kwargs["max_zoom"] = 30
    if "max_native_zoom" not in kwargs:
        kwargs["max_native_zoom"] = 30
    if "cmap" in kwargs:
        colormap = kwargs.pop("cmap")
    if "palette" in kwargs:
        colormap = kwargs.pop("palette")
    if "band" in kwargs:
        indexes = kwargs.pop("band")
    if "bands" in kwargs:
        indexes = kwargs.pop("bands")

    # Make it compatible with binder and JupyterHub
    if os.environ.get("JUPYTERHUB_SERVICE_PREFIX") is not None:
        os.environ["LOCALTILESERVER_CLIENT_PREFIX"] = (
            f"{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}"
        )

    if is_studio_lab():
        os.environ["LOCALTILESERVER_CLIENT_PREFIX"] = (
            f"studiolab/default/jupyter/proxy/{{port}}"
        )
    elif is_on_aws():
        os.environ["LOCALTILESERVER_CLIENT_PREFIX"] = "proxy/{port}"
    elif "prefix" in kwargs:
        os.environ["LOCALTILESERVER_CLIENT_PREFIX"] = kwargs["prefix"]
        kwargs.pop("prefix")

    from localtileserver import (
        get_leaflet_tile_layer,
        get_folium_tile_layer,
        TileClient,
    )

    # if "show_loading" not in kwargs:
    #     kwargs["show_loading"] = False

    if isinstance(source, str):
        if not source.startswith("http"):
            if source.startswith("~"):
                source = os.path.expanduser(source)
            # else:
            #     source = os.path.abspath(source)
            # if not os.path.exists(source):
            #     raise ValueError("The source path does not exist.")
        else:
            source = github_raw_url(source)
    elif isinstance(source, TileClient) or isinstance(
        source, rasterio.io.DatasetReader
    ):
        pass

    else:
        raise ValueError("The source must either be a string or TileClient")

    if tile_format not in ["ipyleaflet", "folium"]:
        raise ValueError("The tile format must be either ipyleaflet or folium.")

    if layer_name is None:
        if source.startswith("http"):
            layer_name = "RemoteTile_" + random_string(3)
        else:
            layer_name = "LocalTile_" + random_string(3)

    if isinstance(source, str) or isinstance(source, rasterio.io.DatasetReader):
        tile_client = TileClient(source, port=port, debug=debug)
    else:
        tile_client = source

    if quiet:
        output = widgets.Output()
        with output:
            if tile_format == "ipyleaflet":
                tile_layer = get_leaflet_tile_layer(
                    tile_client,
                    port=port,
                    debug=debug,
                    indexes=indexes,
                    colormap=colormap,
                    vmin=vmin,
                    vmax=vmax,
                    nodata=nodata,
                    attribution=attribution,
                    name=layer_name,
                    **kwargs,
                )
            else:
                tile_layer = get_folium_tile_layer(
                    tile_client,
                    port=port,
                    debug=debug,
                    indexes=indexes,
                    colormap=colormap,
                    vmin=vmin,
                    vmax=vmax,
                    nodata=nodata,
                    attr=attribution,
                    overlay=True,
                    name=layer_name,
                    **kwargs,
                )
    else:
        if tile_format == "ipyleaflet":
            tile_layer = get_leaflet_tile_layer(
                tile_client,
                port=port,
                debug=debug,
                indexes=indexes,
                colormap=colormap,
                vmin=vmin,
                vmax=vmax,
                nodata=nodata,
                attribution=attribution,
                name=layer_name,
                **kwargs,
            )
        else:
            tile_layer = get_folium_tile_layer(
                tile_client,
                port=port,
                debug=debug,
                indexes=indexes,
                colormap=colormap,
                vmin=vmin,
                vmax=vmax,
                nodata=nodata,
                attr=attribution,
                overlay=True,
                name=layer_name,
                **kwargs,
            )

    if return_client:
        return tile_layer, tile_client
    else:
        return tile_layer

get_nb_template(download_latest=False, out_file=None)

Get the Earth Engine Jupyter notebook template.

Parameters:

Name Type Description Default
download_latest bool

If True, downloads the latest notebook template from GitHub. Defaults to False.

False
out_file str

Set the output file path of the notebook template. Defaults to None.

None

Returns:

Name Type Description
str

The file path of the template.

Source code in geemap/conversion.py
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
def get_nb_template(download_latest=False, out_file=None):
    """Get the Earth Engine Jupyter notebook template.

    Args:
        download_latest (bool, optional): If True, downloads the latest notebook template from GitHub. Defaults to False.
        out_file (str, optional): Set the output file path of the notebook template. Defaults to None.

    Returns:
        str: The file path of the template.
    """
    pkg_dir = Path(__file__).parent
    example_dir = pkg_dir / "data"
    template_dir = example_dir / "template"
    template_file = template_dir / "template.py"

    if out_file is None:
        out_file = template_file
        return out_file

    out_file = out_file.with_suffix(".py")
    outfile.parent.mkdir(parents=True, exist_ok=True)

    if download_latest:
        template_url = "https://raw.githubusercontent.com/gee-community/geemap/master/examples/template/template.py"
        print(f"Downloading the latest notebook template from {template_url}")
        urllib.request.urlretrieve(template_url, out_file)
    elif out_file is not None:
        shutil.copyfile(template_file, out_file)

    return out_file

get_palettable(types=None)

Get a list of palettable color palettes.

Parameters:

Name Type Description Default
types list

A list of palettable types to return, e.g., types=['matplotlib', 'cartocolors']. Defaults to None.

None

Returns:

Name Type Description
list

A list of palettable color palettes.

Source code in geemap/common.py
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
def get_palettable(types=None):
    """Get a list of palettable color palettes.

    Args:
        types (list, optional): A list of palettable types to return, e.g., types=['matplotlib', 'cartocolors']. Defaults to None.

    Returns:
        list: A list of palettable color palettes.
    """
    try:
        import palettable
    except ImportError:
        raise ImportError(
            "The palettable package is not installed. Please install it with `pip install palettable`."
        )

    if types is not None and (not isinstance(types, list)):
        raise ValueError("The types must be a list.")

    allowed_palettes = [
        "cartocolors",
        "cmocean",
        "colorbrewer",
        "cubehelix",
        "lightbartlein",
        "matplotlib",
        "mycarta",
        "scientific",
        "tableau",
        "wesanderson",
    ]

    if types is None:
        types = allowed_palettes[:]

    if all(x in allowed_palettes for x in types):
        pass
    else:
        raise ValueError(
            "The types must be one of the following: " + ", ".join(allowed_palettes)
        )

    palettes = []

    if "cartocolors" in types:
        cartocolors_diverging = [
            f"cartocolors.diverging.{c}"
            for c in dir(palettable.cartocolors.diverging)[:-19]
        ]
        cartocolors_qualitative = [
            f"cartocolors.qualitative.{c}"
            for c in dir(palettable.cartocolors.qualitative)[:-19]
        ]
        cartocolors_sequential = [
            f"cartocolors.sequential.{c}"
            for c in dir(palettable.cartocolors.sequential)[:-41]
        ]

        palettes = (
            palettes
            + cartocolors_diverging
            + cartocolors_qualitative
            + cartocolors_sequential
        )

    if "cmocean" in types:
        cmocean_diverging = [
            f"cmocean.diverging.{c}" for c in dir(palettable.cmocean.diverging)[:-19]
        ]
        cmocean_sequential = [
            f"cmocean.sequential.{c}" for c in dir(palettable.cmocean.sequential)[:-19]
        ]

        palettes = palettes + cmocean_diverging + cmocean_sequential

    if "colorbrewer" in types:
        colorbrewer_diverging = [
            f"colorbrewer.diverging.{c}"
            for c in dir(palettable.colorbrewer.diverging)[:-19]
        ]
        colorbrewer_qualitative = [
            f"colorbrewer.qualitative.{c}"
            for c in dir(palettable.colorbrewer.qualitative)[:-19]
        ]
        colorbrewer_sequential = [
            f"colorbrewer.sequential.{c}"
            for c in dir(palettable.colorbrewer.sequential)[:-41]
        ]

        palettes = (
            palettes
            + colorbrewer_diverging
            + colorbrewer_qualitative
            + colorbrewer_sequential
        )

    if "cubehelix" in types:
        cubehelix = [
            "classic_16",
            "cubehelix1_16",
            "cubehelix2_16",
            "cubehelix3_16",
            "jim_special_16",
            "perceptual_rainbow_16",
            "purple_16",
            "red_16",
        ]
        cubehelix = [f"cubehelix.{c}" for c in cubehelix]
        palettes = palettes + cubehelix

    if "lightbartlein" in types:
        lightbartlein_diverging = [
            f"lightbartlein.diverging.{c}"
            for c in dir(palettable.lightbartlein.diverging)[:-19]
        ]
        lightbartlein_sequential = [
            f"lightbartlein.sequential.{c}"
            for c in dir(palettable.lightbartlein.sequential)[:-19]
        ]

        palettes = palettes + lightbartlein_diverging + lightbartlein_sequential

    if "matplotlib" in types:
        matplotlib_colors = [
            f"matplotlib.{c}" for c in dir(palettable.matplotlib)[:-16]
        ]
        palettes = palettes + matplotlib_colors

    if "mycarta" in types:
        mycarta = [f"mycarta.{c}" for c in dir(palettable.mycarta)[:-16]]
        palettes = palettes + mycarta

    if "scientific" in types:
        scientific_diverging = [
            f"scientific.diverging.{c}"
            for c in dir(palettable.scientific.diverging)[:-19]
        ]
        scientific_sequential = [
            f"scientific.sequential.{c}"
            for c in dir(palettable.scientific.sequential)[:-19]
        ]

        palettes = palettes + scientific_diverging + scientific_sequential

    if "tableau" in types:
        tableau = [f"tableau.{c}" for c in dir(palettable.tableau)[:-14]]
        palettes = palettes + tableau

    return palettes

get_palette_colors(cmap_name=None, n_class=None, hashtag=False)

Get a palette from a matplotlib colormap. See the list of colormaps at https://matplotlib.org/stable/tutorials/colors/colormaps.html.

Parameters:

Name Type Description Default
cmap_name str

The name of the matplotlib colormap. Defaults to None.

None
n_class int

The number of colors. Defaults to None.

None
hashtag bool

Whether to return a list of hex colors. Defaults to False.

False

Returns:

Name Type Description
list

A list of hex colors.

Source code in geemap/common.py
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
def get_palette_colors(cmap_name=None, n_class=None, hashtag=False):
    """Get a palette from a matplotlib colormap. See the list of colormaps at https://matplotlib.org/stable/tutorials/colors/colormaps.html.

    Args:
        cmap_name (str, optional): The name of the matplotlib colormap. Defaults to None.
        n_class (int, optional): The number of colors. Defaults to None.
        hashtag (bool, optional): Whether to return a list of hex colors. Defaults to False.

    Returns:
        list: A list of hex colors.
    """
    import matplotlib as mpl
    import matplotlib.pyplot as plt

    try:
        cmap = plt.get_cmap(cmap_name, n_class)
    except:
        cmap = plt.cm.get_cmap(cmap_name, n_class)
    colors = [mpl.colors.rgb2hex(cmap(i))[1:] for i in range(cmap.N)]
    if hashtag:
        colors = ["#" + i for i in colors]
    return colors

get_temp_dir()

Returns the temporary directory.

Returns:

Name Type Description
str

The temporary directory.

Source code in geemap/common.py
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
def get_temp_dir():
    """Returns the temporary directory.

    Returns:
        str: The temporary directory.
    """

    import tempfile

    return tempfile.gettempdir()

get_wms_layers(url, return_titles=False)

Returns a list of WMS layers from a WMS service.

Parameters:

Name Type Description Default
url str

The URL of the WMS service.

required
return_titles bool

If True, the titles of the layers will be returned. Defaults to False.

False

Returns:

Name Type Description
list

A list of WMS layers.

Source code in geemap/common.py
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
def get_wms_layers(url, return_titles=False):
    """Returns a list of WMS layers from a WMS service.

    Args:
        url (str): The URL of the WMS service.
        return_titles (bool, optional): If True, the titles of the layers will be returned. Defaults to False.

    Returns:
        list: A list of WMS layers.
    """
    from owslib.wms import WebMapService

    wms = WebMapService(url)
    layers = list(wms.contents)
    layers.sort()
    if return_titles:
        return layers, [wms[layer].title for layer in layers]
    else:
        return layers

gif_fading(in_gif, out_gif, duration=1, verbose=True)

Fade in/out the gif.

Parameters:

Name Type Description Default
in_gif str

The input gif file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"

required
out_gif str

The output gif file.

required
duration float

The duration of the fading. Defaults to 1.

1
verbose bool

Whether to print the progress. Defaults to True.

True

Raises:

Type Description
FileNotFoundError

Raise exception when the input gif does not exist.

Exception

Raise exception when ffmpeg is not installed.

Source code in geemap/timelapse.py
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
def gif_fading(in_gif, out_gif, duration=1, verbose=True):
    """Fade in/out the gif.

    Args:
        in_gif (str): The input gif file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"
        out_gif (str): The output gif file.
        duration (float, optional): The duration of the fading. Defaults to 1.
        verbose (bool, optional): Whether to print the progress. Defaults to True.

    Raises:
        FileNotFoundError: Raise exception when the input gif does not exist.
        Exception: Raise exception when ffmpeg is not installed.
    """
    import glob
    import tempfile

    current_dir = os.getcwd()

    if isinstance(in_gif, str) and in_gif.startswith("http"):
        ext = os.path.splitext(in_gif)[1]
        file_path = temp_file_path(ext)
        download_from_url(in_gif, file_path, verbose=verbose)
        in_gif = file_path

    in_gif = os.path.abspath(in_gif)
    if not in_gif.endswith(".gif"):
        raise Exception("in_gif must be a gif file.")

    if " " in in_gif:
        raise Exception("The filename cannot contain spaces.")

    out_gif = os.path.abspath(out_gif)
    if not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    if not os.path.exists(in_gif):
        raise FileNotFoundError(f"{in_gif} does not exist.")

    basename = os.path.basename(in_gif).replace(".gif", "")
    temp_dir = os.path.join(tempfile.gettempdir(), basename)
    if os.path.exists(temp_dir):
        shutil.rmtree(temp_dir)

    gif_to_png(in_gif, temp_dir, verbose=verbose)

    os.chdir(temp_dir)

    images = list(glob.glob(os.path.join(temp_dir, "*.png")))
    count = len(images)

    files = []
    for i in range(1, count + 1):
        files.append(f"-loop 1 -t {duration} -i {i}.png")
    inputs = " ".join(files)

    filters = []
    for i in range(1, count):
        if i == 1:
            filters.append(
                f"\"[1:v][0:v]blend=all_expr='A*(if(gte(T,3),1,T/3))+B*(1-(if(gte(T,3),1,T/3)))'[v0];"
            )
        else:
            filters.append(
                f"[{i}:v][{i-1}:v]blend=all_expr='A*(if(gte(T,3),1,T/3))+B*(1-(if(gte(T,3),1,T/3)))'[v{i-1}];"
            )

    last_filter = ""
    for i in range(count - 1):
        last_filter += f"[v{i}]"
    last_filter += f'concat=n={count-1}:v=1:a=0[v]" -map "[v]"'
    filters.append(last_filter)
    filters = " ".join(filters)

    cmd = f"ffmpeg -y -loglevel error {inputs} -filter_complex {filters} {out_gif}"

    # if fade >= duration:
    #     duration = fade + 1

    # files = []
    # for i in range(1, count + 1):
    #     files.append(f"-framerate {framerate} -loop 1 -t {duration} -i {i}.png")

    # inputs = " ".join(files)

    # filters = []
    # for i in range(count):
    #     if i == 0:
    #         filters.append(f'"[0:v]fade=t=out:st=4:d={fade}[v0];')
    #     else:
    #         filters.append(
    #             f"[{i}:v]fade=t=in:st=0:d={fade},fade=t=out:st=4:d={fade}[v{i}];"
    #         )

    # last_filter = ""
    # for i in range(count):
    #     last_filter += f"[v{i}]"
    # last_filter += f"concat=n={count}:v=1:a=0,split[v0][v1];"
    # filters.append(last_filter)
    # palette = f'[v0]palettegen[p];[v1][p]paletteuse[v]" -map "[v]"'
    # filters.append(palette)
    # filters = " ".join(filters)

    # cmd = f"ffmpeg -y {inputs} -filter_complex {filters} {out_gif}"

    os.system(cmd)
    try:
        shutil.rmtree(temp_dir)
    except Exception as e:
        print(e)

    os.chdir(current_dir)

gif_to_mp4(in_gif, out_mp4)

Converts a gif to mp4.

Parameters:

Name Type Description Default
in_gif str

The input gif file.

required
out_mp4 str

The output mp4 file.

required
Source code in geemap/timelapse.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def gif_to_mp4(in_gif, out_mp4):
    """Converts a gif to mp4.

    Args:
        in_gif (str): The input gif file.
        out_mp4 (str): The output mp4 file.
    """
    from PIL import Image

    if not os.path.exists(in_gif):
        raise FileNotFoundError(f"{in_gif} does not exist.")

    out_mp4 = os.path.abspath(out_mp4)
    if not out_mp4.endswith(".mp4"):
        out_mp4 = out_mp4 + ".mp4"

    if not os.path.exists(os.path.dirname(out_mp4)):
        os.makedirs(os.path.dirname(out_mp4))

    if not is_tool("ffmpeg"):
        print("ffmpeg is not installed on your computer.")
        return

    width, height = Image.open(in_gif).size

    if width % 2 == 0 and height % 2 == 0:
        cmd = f"ffmpeg -loglevel error -i {in_gif} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
        os.system(cmd)
    else:
        width += width % 2
        height += height % 2
        cmd = f"ffmpeg -loglevel error -i {in_gif} -vf scale={width}:{height} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
        os.system(cmd)

    if not os.path.exists(out_mp4):
        raise Exception(f"Failed to create mp4 file.")

gif_to_png(in_gif, out_dir=None, prefix='', verbose=True)

Converts a gif to png.

Parameters:

Name Type Description Default
in_gif str

The input gif file.

required
out_dir str

The output directory. Defaults to None.

None
prefix str

The prefix of the output png files. Defaults to None.

''
verbose bool

Whether to print the progress. Defaults to True.

True

Raises:

Type Description
FileNotFoundError

Raise exception when the input gif does not exist.

Exception

Raise exception when ffmpeg is not installed.

Source code in geemap/timelapse.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def gif_to_png(in_gif, out_dir=None, prefix="", verbose=True):
    """Converts a gif to png.

    Args:
        in_gif (str): The input gif file.
        out_dir (str, optional): The output directory. Defaults to None.
        prefix (str, optional): The prefix of the output png files. Defaults to None.
        verbose (bool, optional): Whether to print the progress. Defaults to True.

    Raises:
        FileNotFoundError: Raise exception when the input gif does not exist.
        Exception: Raise exception when ffmpeg is not installed.
    """
    import tempfile

    in_gif = os.path.abspath(in_gif)
    if " " in in_gif:
        raise Exception("in_gif cannot contain spaces.")
    if not os.path.exists(in_gif):
        raise FileNotFoundError(f"{in_gif} does not exist.")

    basename = os.path.basename(in_gif).replace(".gif", "")
    if out_dir is None:
        out_dir = os.path.join(tempfile.gettempdir(), basename)
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)
    elif isinstance(out_dir, str) and not os.path.exists(out_dir):
        os.makedirs(out_dir)
    elif not isinstance(out_dir, str):
        raise Exception("out_dir must be a string.")

    out_dir = os.path.abspath(out_dir)
    cmd = f"ffmpeg -loglevel error -i {in_gif} -vsync 0 {out_dir}/{prefix}%d.png"
    os.system(cmd)

    if verbose:
        print(f"Images are saved to {out_dir}")

github_raw_url(url)

Get the raw URL for a GitHub file.

Parameters:

Name Type Description Default
url str

The GitHub URL.

required

Returns:

Name Type Description
str str

The raw URL.

Source code in geemap/coreutils.py
662
663
664
665
666
667
668
669
670
671
672
673
674
675
def github_raw_url(url: str) -> str:
    """Get the raw URL for a GitHub file.

    Args:
        url (str): The GitHub URL.

    Returns:
        str: The raw URL.
    """
    if isinstance(url, str) and url.startswith("https://github.com/") and "blob" in url:
        url = url.replace("github.com", "raw.githubusercontent.com").replace(
            "blob/", "", 1
        )
    return url

goes_fire_timelapse(roi=None, out_gif=None, start_date='2020-09-05T15:00', end_date='2020-09-06T02:00', data='GOES-17', scan='full_disk', dimensions=768, framesPerSecond=10, date_format='YYYY-MM-dd HH:mm', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, crs=None, overlay_data=None, overlay_color='#000000', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)

Create a timelapse of GOES fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
out_gif str

The file path to save the gif.

None
start_date str

The start date of the time series. Defaults to "2021-10-24T14:00:00".

'2020-09-05T15:00'
end_date str

The end date of the time series. Defaults to "2021-10-25T01:00:00".

'2020-09-06T02:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
region Geometry

The region of interest. Defaults to None.

required
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

required
date_format str

The date format to use. Defaults to "YYYY-MM-dd HH:mm".

'YYYY-MM-dd HH:mm'
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('3%', '3%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#ffffff'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
crs str

The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.

None
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'#000000'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Raises:

Type Description
Exception

Raise exception.

Source code in geemap/timelapse.py
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
def goes_fire_timelapse(
    roi=None,
    out_gif=None,
    start_date="2020-09-05T15:00",
    end_date="2020-09-06T02:00",
    data="GOES-17",
    scan="full_disk",
    dimensions=768,
    framesPerSecond=10,
    date_format="YYYY-MM-dd HH:mm",
    xy=("3%", "3%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#ffffff",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    crs=None,
    overlay_data=None,
    overlay_color="#000000",
    overlay_width=1,
    overlay_opacity=1.0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create a timelapse of GOES fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        out_gif (str): The file path to save the gif.
        start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
        end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        region (ee.Geometry, optional): The region of interest. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        date_format (str, optional): The date format to use. Defaults to "YYYY-MM-dd HH:mm".
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        crs (str, optional): The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Raises:
        Exception: Raise exception.
    """

    try:
        if "region" in kwargs:
            roi = kwargs["region"]

        if out_gif is None:
            out_gif = os.path.abspath(f"goes_fire_{random_string(3)}.gif")

        if roi is None:
            roi = ee.Geometry.BBox(-123.17, 36.56, -118.22, 40.03)

        col = goes_fire_timeseries(start_date, end_date, data, scan, roi)
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        # visParams = {
        #     "bands": ["CMI_C02", "CMI_GREEN", "CMI_C01"],
        #     "min": 0,
        #     "max": 0.8,
        #     "dimensions": dimensions,
        #     "framesPerSecond": framesPerSecond,
        #     "region": region,
        #     "crs": col.first().projection(),
        # }

        if crs is None:
            crs = col.first().projection()

        cmiFdcVisParams = {
            "dimensions": dimensions,
            "framesPerSecond": framesPerSecond,
            "region": roi,
            "crs": crs,
        }

        if text_sequence is None:
            text_sequence = image_dates(col, date_format=date_format).getInfo()

        download_ee_video(col, cmiFdcVisParams, out_gif)

        if os.path.exists(out_gif):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy,
                text_sequence,
                font_type,
                font_size,
                font_color,
                add_progress_bar,
                progress_bar_color,
                progress_bar_height,
                duration=1000 / framesPerSecond,
                loop=loop,
            )

            try:
                reduce_gif_size(out_gif)
                if isinstance(fading, bool):
                    fading = int(fading)
                if fading > 0:
                    gif_fading(out_gif, out_gif, duration=fading, verbose=False)

            except Exception as _:
                pass

            if mp4:
                out_mp4 = out_gif.replace(".gif", ".mp4")
                gif_to_mp4(out_gif, out_mp4)

            return out_gif

    except Exception as e:
        raise Exception(e)

goes_fire_timeseries(start_date='2020-09-05T15:00', end_date='2020-09-06T02:00', data='GOES-17', scan='full_disk', region=None, merge=True)

Create a time series of GOES Fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
start_date str

The start date of the time series. Defaults to "2020-09-05T15:00".

'2020-09-05T15:00'
end_date str

The end date of the time series. Defaults to "2020-09-06T02:00".

'2020-09-06T02:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
region Geometry

The region of interest. Defaults to None.

None
merge bool

Whether to merge the fire timeseries with GOES CMI timeseries. Defaults to True.

True

Raises:

Type Description
ValueError

The data must be either GOES-16 or GOES-17.

ValueError

The scan must be either full_disk or conus.

Returns:

Type Description

ee.ImageCollection: GOES fire timeseries.

Source code in geemap/timelapse.py
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
def goes_fire_timeseries(
    start_date="2020-09-05T15:00",
    end_date="2020-09-06T02:00",
    data="GOES-17",
    scan="full_disk",
    region=None,
    merge=True,
):
    """Create a time series of GOES Fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        start_date (str, optional): The start date of the time series. Defaults to "2020-09-05T15:00".
        end_date (str, optional): The end date of the time series. Defaults to "2020-09-06T02:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        region (ee.Geometry, optional): The region of interest. Defaults to None.
        merge (bool, optional): Whether to merge the fire timeseries with GOES CMI timeseries. Defaults to True.

    Raises:
        ValueError: The data must be either GOES-16 or GOES-17.
        ValueError: The scan must be either full_disk or conus.

    Returns:
        ee.ImageCollection: GOES fire timeseries.
    """

    if data not in ["GOES-16", "GOES-17"]:
        raise ValueError("The data must be either GOES-16 or GOES-17.")

    if scan.lower() not in ["full_disk", "conus"]:
        raise ValueError("The scan must be either full_disk or conus.")

    scan_types = {
        "full_disk": "FDCF",
        "conus": "FDCC",
    }

    if region is None:
        region = ee.Geometry.BBox(-123.17, 36.56, -118.22, 40.03)

    # Get the fire/hotspot characterization dataset.
    col = ee.ImageCollection(f"NOAA/GOES/{data[-2:]}/{scan_types[scan.lower()]}")
    fdcCol = col.filterDate(start_date, end_date)

    # Identify fire-detected pixels of medium to high confidence.
    fireMaskCodes = [10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35]
    confVals = [1.0, 1.0, 0.9, 0.9, 0.8, 0.8, 0.5, 0.5, 0.3, 0.3, 0.1, 0.1]
    defaultConfVal = 0

    def fdcVis(img):
        confImg = img.remap(fireMaskCodes, confVals, defaultConfVal, "Mask")
        return (
            confImg.gte(0.3)
            .selfMask()
            .set("system:time_start", img.get("system:time_start"))
        )

    fdcVisCol = fdcCol.map(fdcVis)
    if not merge:
        return fdcVisCol
    else:
        geosVisCol = goes_timeseries(start_date, end_date, data, scan, region)
        # Join the fire collection to the CMI collection.
        joinFilter = ee.Filter.equals(
            **{"leftField": "system:time_start", "rightField": "system:time_start"}
        )
        joinedCol = ee.Join.saveFirst("match").apply(geosVisCol, fdcVisCol, joinFilter)

        def overlayVis(img):
            cmi = ee.Image(img).visualize(
                **{
                    "bands": ["CMI_C02", "CMI_GREEN", "CMI_C01"],
                    "min": 0,
                    "max": 0.8,
                    "gamma": 0.8,
                }
            )
            fdc = ee.Image(img.get("match")).visualize(
                **{"palette": ["ff5349"], "min": 0, "max": 1, "opacity": 0.7}
            )
            return cmi.blend(fdc).set("system:time_start", img.get("system:time_start"))

        cmiFdcVisCol = ee.ImageCollection(joinedCol.map(overlayVis))
        return cmiFdcVisCol

goes_timelapse(roi=None, out_gif=None, start_date='2021-10-24T14:00:00', end_date='2021-10-25T01:00:00', data='GOES-17', scan='full_disk', bands=['CMI_C02', 'CMI_GREEN', 'CMI_C01'], dimensions=768, framesPerSecond=10, date_format='YYYY-MM-dd HH:mm', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, crs=None, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)

Create a timelapse of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
roi Geometry

The region of interest. Defaults to None.

None
out_gif str

The file path to save the gif.

None
start_date str

The start date of the time series. Defaults to "2021-10-24T14:00:00".

'2021-10-24T14:00:00'
end_date str

The end date of the time series. Defaults to "2021-10-25T01:00:00".

'2021-10-25T01:00:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
bands list

The bands to visualize. Defaults to ["CMI_C02", "CMI_GREEN", "CMI_C01"].

['CMI_C02', 'CMI_GREEN', 'CMI_C01']
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

required
date_format str

The date format to use. Defaults to "YYYY-MM-dd HH:mm".

'YYYY-MM-dd HH:mm'
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('3%', '3%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#ffffff'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5. loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

5
crs str

The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.

None
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
mp4 bool

Whether to save the animation as an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
Source code in geemap/timelapse.py
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
def goes_timelapse(
    roi=None,
    out_gif=None,
    start_date="2021-10-24T14:00:00",
    end_date="2021-10-25T01:00:00",
    data="GOES-17",
    scan="full_disk",
    bands=["CMI_C02", "CMI_GREEN", "CMI_C01"],
    dimensions=768,
    framesPerSecond=10,
    date_format="YYYY-MM-dd HH:mm",
    xy=("3%", "3%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#ffffff",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    crs=None,
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create a timelapse of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        roi (ee.Geometry, optional): The region of interest. Defaults to None.
        out_gif (str): The file path to save the gif.
        start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
        end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        bands (list, optional): The bands to visualize. Defaults to ["CMI_C02", "CMI_GREEN", "CMI_C01"].
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        date_format (str, optional): The date format to use. Defaults to "YYYY-MM-dd HH:mm".
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        crs (str, optional): The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        mp4 (bool, optional): Whether to save the animation as an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
    Raises:
        Exception: Raise exception.
    """

    try:
        if "region" in kwargs:
            roi = kwargs["region"]

        if out_gif is None:
            out_gif = os.path.abspath(f"goes_{random_string(3)}.gif")

        visParams = {
            "bands": bands,
            "min": 0,
            "max": 0.8,
        }
        col = goes_timeseries(start_date, end_date, data, scan, roi)
        col = col.select(bands).map(
            lambda img: img.visualize(**visParams).set(
                {
                    "system:time_start": img.get("system:time_start"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if roi is None:
            roi = ee.Geometry.Polygon(
                [
                    [
                        [-159.5954, 60.4088],
                        [-159.5954, 24.5178],
                        [-114.2438, 24.5178],
                        [-114.2438, 60.4088],
                    ]
                ],
                None,
                False,
            )

        if crs is None:
            crs = col.first().projection()

        videoParams = {
            "bands": ["vis-red", "vis-green", "vis-blue"],
            "min": 0,
            "max": 255,
            "dimensions": dimensions,
            "framesPerSecond": framesPerSecond,
            "region": roi,
            "crs": crs,
        }

        if text_sequence is None:
            text_sequence = image_dates(col, date_format=date_format).getInfo()

        download_ee_video(col, videoParams, out_gif)

        if os.path.exists(out_gif):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy,
                text_sequence,
                font_type,
                font_size,
                font_color,
                add_progress_bar,
                progress_bar_color,
                progress_bar_height,
                duration=1000 / framesPerSecond,
                loop=loop,
            )

            try:
                reduce_gif_size(out_gif)

                if isinstance(fading, bool):
                    fading = int(fading)
                if fading > 0:
                    gif_fading(out_gif, out_gif, duration=fading, verbose=False)

            except Exception as _:
                pass

            if mp4:
                out_mp4 = out_gif.replace(".gif", ".mp4")
                gif_to_mp4(out_gif, out_mp4)

            return out_gif

    except Exception as e:
        raise Exception(e)

goes_timeseries(start_date='2021-10-24T14:00:00', end_date='2021-10-25T01:00:00', data='GOES-17', scan='full_disk', region=None, show_night=[False, 'a_mode'])

Create a time series of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
start_date str

The start date of the time series. Defaults to "2021-10-24T14:00:00".

'2021-10-24T14:00:00'
end_date str

The end date of the time series. Defaults to "2021-10-25T01:00:00".

'2021-10-25T01:00:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
region Geometry

The region of interest. Defaults to None.

None
show_night list

Show the clouds at night through [True, "a_mode"] o [True, "b_mode"]. Defaults to [False, "a_mode"]

[False, 'a_mode']

Returns:

Type Description

ee.ImageCollection: GOES timeseries.

Source code in geemap/timelapse.py
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
def goes_timeseries(
    start_date="2021-10-24T14:00:00",
    end_date="2021-10-25T01:00:00",
    data="GOES-17",
    scan="full_disk",
    region=None,
    show_night=[False, "a_mode"],
):
    """Create a time series of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
        end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        region (ee.Geometry, optional): The region of interest. Defaults to None.
        show_night (list, optional): Show the clouds at night through [True, "a_mode"] o [True, "b_mode"].  Defaults to [False, "a_mode"]
    Raises:
        ValueError: The data must be either GOES-16 or GOES-17.
        ValueError: The scan must be either full_disk, conus, or mesoscale.

    Returns:
        ee.ImageCollection: GOES timeseries.
    """

    if data not in ["GOES-16", "GOES-17"]:
        raise ValueError("The data must be either GOES-16 or GOES-17.")

    if scan.lower() not in ["full_disk", "conus", "mesoscale"]:
        raise ValueError("The scan must be either full_disk, conus, or mesoscale.")

    scan_types = {
        "full_disk": "MCMIPF",
        "conus": "MCMIPC",
        "mesoscale": "MCMIPM",
    }

    col = ee.ImageCollection(f"NOAA/GOES/{data[-2:]}/{scan_types[scan.lower()]}")

    if region is None:
        region = ee.Geometry.Polygon(
            [
                [
                    [-159.5954379282731, 60.40883060191719],
                    [-159.5954379282731, 24.517881970830725],
                    [-114.2438754282731, 24.517881970830725],
                    [-114.2438754282731, 60.40883060191719],
                ]
            ],
            None,
            False,
        )

    # Applies scaling factors.
    def applyScaleAndOffset(img):
        def getFactorImg(factorNames):
            factorList = img.toDictionary().select(factorNames).values()
            return ee.Image.constant(factorList)

        scaleImg = getFactorImg(["CMI_C.._scale"])
        offsetImg = getFactorImg(["CMI_C.._offset"])
        scaled = img.select("CMI_C..").multiply(scaleImg).add(offsetImg)
        return img.addBands(**{"srcImg": scaled, "overwrite": True})

    # Adds a synthetic green band.
    def addGreenBand(img):
        green = img.expression(
            "CMI_GREEN = 0.45 * red + 0.10 * nir + 0.45 * blue",
            {
                "blue": img.select("CMI_C01"),
                "red": img.select("CMI_C02"),
                "nir": img.select("CMI_C03"),
            },
        )
        return img.addBands(green)

    # Show at clouds at night (a-mode)
    def showNighta(img):
        # Make normalized infrared
        IR_n = img.select("CMI_C13").unitScale(ee.Number(90), ee.Number(313))
        IR_n = IR_n.expression(
            "ir_p = (1 -IR_n)/1.4",
            {
                "IR_n": IR_n.select("CMI_C13"),
            },
        )

        # Add infrared to rgb bands
        R_ir = img.select("CMI_C02").max(IR_n)
        G_ir = img.select("CMI_GREEN").max(IR_n)
        B_ir = img.select("CMI_C01").max(IR_n)

        return img.addBands([R_ir, G_ir, B_ir], overwrite=True)

    # Show at clouds at night (b-mode)
    def showNightb(img):
        night = img.select("CMI_C03").unitScale(0, 0.016).subtract(1).multiply(-1)

        cmi11 = img.select("CMI_C11").unitScale(100, 310)
        cmi13 = img.select("CMI_C13").unitScale(100, 300)
        cmi15 = img.select("CMI_C15").unitScale(100, 310)
        iNight = cmi15.addBands([cmi13, cmi11]).clamp(0, 1).subtract(1).multiply(-1)

        iRGBNight = iNight.visualize(**{"min": 0, "max": 1, "gamma": 1.4}).updateMask(
            night
        )

        iRGB = img.visualize(
            **{
                "bands": ["CMI_C02", "CMI_C03", "CMI_C01"],
                "min": 0.15,
                "max": 1,
                "gamma": 1.4,
            }
        )
        return iRGB.blend(iRGBNight).set(
            "system:time_start", img.get("system:time_start")
        )

    # Scales select bands for visualization.
    def scaleForVis(img):
        return (
            img.select(["CMI_C01", "CMI_GREEN", "CMI_C02", "CMI_C03", "CMI_C05"])
            .resample("bicubic")
            .log10()
            .interpolate([-1.6, 0.176], [0, 1], "clamp")
            .unmask(0)
            .set("system:time_start", img.get("system:time_start"))
        )

    # Wraps previous functions.
    def processForVis(img):
        if show_night[0]:
            if show_night[1] == "a_mode":
                return scaleForVis(showNighta(addGreenBand(applyScaleAndOffset(img))))

            else:
                return showNightb(applyScaleAndOffset(img))

        else:
            return scaleForVis(addGreenBand(applyScaleAndOffset(img)))

    return col.filterDate(start_date, end_date).filterBounds(region).map(processForVis)

has_transparency(img)

Checks whether an image has transparency.

Parameters:

Name Type Description Default
img object

a PIL Image object.

required

Returns:

Name Type Description
bool

True if it has transparency, False otherwise.

Source code in geemap/common.py
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
def has_transparency(img):
    """Checks whether an image has transparency.

    Args:
        img (object):  a PIL Image object.

    Returns:
        bool: True if it has transparency, False otherwise.
    """

    if img.mode == "P":
        transparent = img.info.get("transparency", -1)
        for _, index in img.getcolors():
            if index == transparent:
                return True
    elif img.mode == "RGBA":
        extrema = img.getextrema()
        if extrema[3][0] < 255:
            return True

    return False

hex_to_rgb(value='FFFFFF')

Converts hex color to RGB color.

Parameters:

Name Type Description Default
value str

Hex color code as a string. Defaults to 'FFFFFF'.

'FFFFFF'

Returns:

Type Description
Tuple[int, int, int]

Tuple[int, int, int]: RGB color as a tuple.

Source code in geemap/coreutils.py
471
472
473
474
475
476
477
478
479
480
481
482
def hex_to_rgb(value: str = "FFFFFF") -> Tuple[int, int, int]:
    """Converts hex color to RGB color.

    Args:
        value (str, optional): Hex color code as a string. Defaults to 'FFFFFF'.

    Returns:
        Tuple[int, int, int]: RGB color as a tuple.
    """
    value = value.lstrip("#")
    lv = len(value)
    return tuple(int(value[i : i + lv // 3], 16) for i in range(0, lv, lv // 3))

hex_to_rgba(hex_color, opacity)

Converts a hex color code to an RGBA color string.

Parameters:

Name Type Description Default
hex_color str

The hex color code to convert. It can be in the format '#RRGGBB' or 'RRGGBB'.

required
opacity float

The opacity value for the RGBA color. It should be a float between 0.0 (completely transparent) and 1.0 (completely opaque).

required

Returns:

Name Type Description
str str

The RGBA color string in the format 'rgba(R, G, B, A)'.

Source code in geemap/common.py
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
def hex_to_rgba(hex_color: str, opacity: float) -> str:
    """
    Converts a hex color code to an RGBA color string.

    Args:
        hex_color (str): The hex color code to convert. It can be in the format
            '#RRGGBB' or 'RRGGBB'.
        opacity (float): The opacity value for the RGBA color. It should be a
            float between 0.0 (completely transparent) and 1.0 (completely opaque).

    Returns:
        str: The RGBA color string in the format 'rgba(R, G, B, A)'.
    """
    hex_color = hex_color.lstrip("#")
    h_len = len(hex_color)
    r, g, b = (
        int(hex_color[i : i + h_len // 3], 16) for i in range(0, h_len, h_len // 3)
    )
    return f"rgba({r},{g},{b},{opacity})"

histogram(data=None, x=None, y=None, color=None, descending=None, max_rows=None, x_label=None, y_label=None, title=None, width=None, height=500, layout_args={}, **kwargs)

Create a line chart with plotly.express,

Parameters:

Name Type Description Default
data

DataFrame | array-like | dict | str (local file path or HTTP URL) This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.

None
x

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Either x or y can optionally be a list of column references or array_likes, in which case the data will be treated as if it were 'wide' rather than 'long'.

None
y

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Either x or y can optionally be a list of column references or array_likes, in which case the data will be treated as if it were 'wide' rather than 'long'.

None
color

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.

None
descending bool

Whether to sort the data in descending order. Defaults to None.

None
max_rows int

Maximum number of rows to display. Defaults to None.

None
x_label str

Label for the x axis. Defaults to None.

None
y_label str

Label for the y axis. Defaults to None.

None
title str

Title for the plot. Defaults to None.

None
width int

Width of the plot in pixels. Defaults to None.

None
height int

Height of the plot in pixels. Defaults to 500.

500
layout_args dict

Layout arguments for the plot to be passed to fig.update_layout(), such as {'title':'Plot Title', 'title_x':0.5}. Defaults to None.

{}
**kwargs

Any additional arguments to pass to plotly.express.bar(), such as:

pattern_shape: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks. facet_row: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction. facet_col: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction. facet_col_wrap: int Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if facet_row or a marginal is set. facet_row_spacing: float between 0 and 1 Spacing between facet rows, in paper units. Default is 0.03 or 0.0.7 when facet_col_wrap is used. facet_col_spacing: float between 0 and 1 Spacing between facet columns, in paper units Default is 0.02. hover_name: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip. hover_data: list of str or int, or Series or array-like, or dict Either a list of names of columns in data_frame, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ':.3f' or '|%a' or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip. custom_data: list of str or int, or Series or array-like Either names of columns in data_frame, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.) text: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels. base: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position the base of the bar. error_x: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. If error_x_minus is None, error bars will be symmetrical, otherwise error_x is used for the positive direction only. error_x_minus: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored if error_x is None. error_y: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. If error_y_minus is None, error bars will be symmetrical, otherwise error_y is used for the positive direction only. error_y_minus: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored if error_y is None. animation_frame: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames. animation_group: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching animation_groups will be treated as if they describe the same object in each frame. category_orders: dict with str keys and list of str values (default {}) By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered in data_frame (and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired. labels: dict with str keys and str values (default {}) By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed. color_discrete_sequence: list of str Strings should define valid CSS-colors. When color is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling through color_discrete_sequence in the order described in category_orders, unless the value of color is a key in color_discrete_map. Various useful color sequences are available in the plotly.express.colors submodules, specifically plotly.express.colors.qualitative. color_discrete_map: dict with str keys and str values (default {}) String values should define valid CSS-colors Used to override color_discrete_sequence to assign a specific colors to marks corresponding with specific values. Keys in color_discrete_map should be values in the column denoted by color. Alternatively, if the values of color are valid colors, the string 'identity' may be passed to cause them to be used directly. color_continuous_scale: list of str Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by color contains numeric data. Various useful color scales are available in the plotly.express.colors submodules, specifically plotly.express.colors.sequential, plotly.express.colors.diverging and plotly.express.colors.cyclical. pattern_shape_sequence: list of str Strings should define valid plotly.js patterns-shapes. When pattern_shape is set, values in that column are assigned patterns- shapes by cycling through pattern_shape_sequence in the order described in category_orders, unless the value of pattern_shape is a key in pattern_shape_map. pattern_shape_map: dict with str keys and str values (default {}) Strings values define plotly.js patterns-shapes. Used to override pattern_shape_sequences to assign a specific patterns-shapes to lines corresponding with specific values. Keys in pattern_shape_map should be values in the column denoted by pattern_shape. Alternatively, if the values of pattern_shape are valid patterns-shapes names, the string 'identity' may be passed to cause them to be used directly. range_color: list of two numbers If provided, overrides auto-scaling on the continuous color scale. color_continuous_midpoint: number (default None) If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when using plotly.express.colors.diverging color scales as the inputs to color_continuous_scale. opacity: float Value between 0 and 1. Sets the opacity for markers. orientation: str, one of 'h' for horizontal or 'v' for vertical. (default 'v' if x and y are provided and both continuous or both categorical, otherwise 'v'('h') if x(y) is categorical and y(x) is continuous, otherwise 'v'('h') if only x(y) is provided) barmode: str (default 'relative') One of 'group', 'overlay' or 'relative' In 'relative' mode, bars are stacked above zero for positive values and below zero for negative values. In 'overlay' mode, bars are drawn on top of one another. In 'group' mode, bars are placed beside each other. log_x: boolean (default False) If True, the x-axis is log-scaled in cartesian coordinates. log_y: boolean (default False) If True, the y-axis is log-scaled in cartesian coordinates. range_x: list of two numbers If provided, overrides auto-scaling on the x-axis in cartesian coordinates. range_y: list of two numbers If provided, overrides auto-scaling on the y-axis in cartesian coordinates. text_auto: bool or string (default False) If True or a string, the x or y or z values will be displayed as text, depending on the orientation A string like '.2f' will be interpreted as a texttemplate numeric formatting directive. template: str or dict or plotly.graph_objects.layout.Template instance The figure template name (must be a key in plotly.io.templates) or definition.

{}

Returns:

Type Description

plotly.graph_objs._figure.Figure: A plotly figure object.

Source code in geemap/plot.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
def histogram(
    data=None,
    x=None,
    y=None,
    color=None,
    descending=None,
    max_rows=None,
    x_label=None,
    y_label=None,
    title=None,
    width=None,
    height=500,
    layout_args={},
    **kwargs,
):
    """Create a line chart with plotly.express,

    Args:
        data: DataFrame | array-like | dict | str (local file path or HTTP URL)
            This argument needs to be passed for column names (and not keyword
            names) to be used. Array-like and dict are transformed internally to a
            pandas DataFrame. Optional: if missing, a DataFrame gets constructed
            under the hood using the other arguments.
        x: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            position marks along the x axis in cartesian coordinates. Either `x` or
            `y` can optionally be a list of column references or array_likes,  in
            which case the data will be treated as if it were 'wide' rather than
            'long'.
        y: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            position marks along the y axis in cartesian coordinates. Either `x` or
            `y` can optionally be a list of column references or array_likes,  in
            which case the data will be treated as if it were 'wide' rather than
            'long'.
        color: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            assign color to marks.
        descending (bool, optional): Whether to sort the data in descending order. Defaults to None.
        max_rows (int, optional): Maximum number of rows to display. Defaults to None.
        x_label (str, optional): Label for the x axis. Defaults to None.
        y_label (str, optional): Label for the y axis. Defaults to None.
        title (str, optional): Title for the plot. Defaults to None.
        width (int, optional): Width of the plot in pixels. Defaults to None.
        height (int, optional): Height of the plot in pixels. Defaults to 500.
        layout_args (dict, optional): Layout arguments for the plot to be passed to fig.update_layout(),
            such as {'title':'Plot Title', 'title_x':0.5}. Defaults to None.
        **kwargs: Any additional arguments to pass to plotly.express.bar(), such as:

            pattern_shape: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign pattern shapes to marks.
            facet_row: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to facetted subplots in the vertical direction.
            facet_col: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to facetted subplots in the horizontal direction.
            facet_col_wrap: int
                Maximum number of facet columns. Wraps the column variable at this
                width, so that the column facets span multiple rows. Ignored if 0, and
                forced to 0 if `facet_row` or a `marginal` is set.
            facet_row_spacing: float between 0 and 1
                Spacing between facet rows, in paper units. Default is 0.03 or 0.0.7
                when facet_col_wrap is used.
            facet_col_spacing: float between 0 and 1
                Spacing between facet columns, in paper units Default is 0.02.
            hover_name: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like appear in bold
                in the hover tooltip.
            hover_data: list of str or int, or Series or array-like, or dict
                Either a list of names of columns in `data_frame`, or pandas Series, or
                array_like objects or a dict with column names as keys, with values
                True (for default formatting) False (in order to remove this column
                from hover information), or a formatting string, for example ':.3f' or
                '|%a' or list-like data to appear in the hover tooltip or tuples with a
                bool or formatting string as first element, and list-like data to
                appear in hover as second element Values from these columns appear as
                extra data in the hover tooltip.
            custom_data: list of str or int, or Series or array-like
                Either names of columns in `data_frame`, or pandas Series, or
                array_like objects Values from these columns are extra data, to be used
                in widgets or Dash callbacks for example. This data is not user-visible
                but is included in events emitted by the figure (lasso selection etc.)
            text: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like appear in the
                figure as text labels.
            base: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                position the base of the bar.
            error_x: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size x-axis error bars. If `error_x_minus` is `None`, error bars will
                be symmetrical, otherwise `error_x` is used for the positive direction
                only.
            error_x_minus: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size x-axis error bars in the negative direction. Ignored if `error_x`
                is `None`.
            error_y: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size y-axis error bars. If `error_y_minus` is `None`, error bars will
                be symmetrical, otherwise `error_y` is used for the positive direction
                only.
            error_y_minus: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size y-axis error bars in the negative direction. Ignored if `error_y`
                is `None`.
            animation_frame: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to animation frames.
            animation_group: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                provide object-constancy across animation frames: rows with matching
                `animation_group`s will be treated as if they describe the same object
                in each frame.
            category_orders: dict with str keys and list of str values (default `{}`)
                By default, in Python 3.6+, the order of categorical values in axes,
                legends and facets depends on the order in which these values are first
                encountered in `data_frame` (and no order is guaranteed by default in
                Python below 3.6). This parameter is used to force a specific ordering
                of values per column. The keys of this dict should correspond to column
                names, and the values should be lists of strings corresponding to the
                specific display order desired.
            labels: dict with str keys and str values (default `{}`)
                By default, column names are used in the figure for axis titles, legend
                entries and hovers. This parameter allows this to be overridden. The
                keys of this dict should correspond to column names, and the values
                should correspond to the desired label to be displayed.
            color_discrete_sequence: list of str
                Strings should define valid CSS-colors. When `color` is set and the
                values in the corresponding column are not numeric, values in that
                column are assigned colors by cycling through `color_discrete_sequence`
                in the order described in `category_orders`, unless the value of
                `color` is a key in `color_discrete_map`. Various useful color
                sequences are available in the `plotly.express.colors` submodules,
                specifically `plotly.express.colors.qualitative`.
            color_discrete_map: dict with str keys and str values (default `{}`)
                String values should define valid CSS-colors Used to override
                `color_discrete_sequence` to assign a specific colors to marks
                corresponding with specific values. Keys in `color_discrete_map` should
                be values in the column denoted by `color`. Alternatively, if the
                values of `color` are valid colors, the string `'identity'` may be
                passed to cause them to be used directly.
            color_continuous_scale: list of str
                Strings should define valid CSS-colors This list is used to build a
                continuous color scale when the column denoted by `color` contains
                numeric data. Various useful color scales are available in the
                `plotly.express.colors` submodules, specifically
                `plotly.express.colors.sequential`, `plotly.express.colors.diverging`
                and `plotly.express.colors.cyclical`.
            pattern_shape_sequence: list of str
                Strings should define valid plotly.js patterns-shapes. When
                `pattern_shape` is set, values in that column are assigned patterns-
                shapes by cycling through `pattern_shape_sequence` in the order
                described in `category_orders`, unless the value of `pattern_shape` is
                a key in `pattern_shape_map`.
            pattern_shape_map: dict with str keys and str values (default `{}`)
                Strings values define plotly.js patterns-shapes. Used to override
                `pattern_shape_sequences` to assign a specific patterns-shapes to lines
                corresponding with specific values. Keys in `pattern_shape_map` should
                be values in the column denoted by `pattern_shape`. Alternatively, if
                the values of `pattern_shape` are valid patterns-shapes names, the
                string `'identity'` may be passed to cause them to be used directly.
            range_color: list of two numbers
                If provided, overrides auto-scaling on the continuous color scale.
            color_continuous_midpoint: number (default `None`)
                If set, computes the bounds of the continuous color scale to have the
                desired midpoint. Setting this value is recommended when using
                `plotly.express.colors.diverging` color scales as the inputs to
                `color_continuous_scale`.
            opacity: float
                Value between 0 and 1. Sets the opacity for markers.
            orientation: str, one of `'h'` for horizontal or `'v'` for vertical.
                (default `'v'` if `x` and `y` are provided and both continuous or both
                categorical,  otherwise `'v'`(`'h'`) if `x`(`y`) is categorical and
                `y`(`x`) is continuous,  otherwise `'v'`(`'h'`) if only `x`(`y`) is
                provided)
            barmode: str (default `'relative'`)
                One of `'group'`, `'overlay'` or `'relative'` In `'relative'` mode,
                bars are stacked above zero for positive values and below zero for
                negative values. In `'overlay'` mode, bars are drawn on top of one
                another. In `'group'` mode, bars are placed beside each other.
            log_x: boolean (default `False`)
                If `True`, the x-axis is log-scaled in cartesian coordinates.
            log_y: boolean (default `False`)
                If `True`, the y-axis is log-scaled in cartesian coordinates.
            range_x: list of two numbers
                If provided, overrides auto-scaling on the x-axis in cartesian
                coordinates.
            range_y: list of two numbers
                If provided, overrides auto-scaling on the y-axis in cartesian
                coordinates.
            text_auto: bool or string (default `False`)
                If `True` or a string, the x or y or z values will be displayed as
                text, depending on the orientation A string like `'.2f'` will be
                interpreted as a `texttemplate` numeric formatting directive.
            template: str or dict or plotly.graph_objects.layout.Template instance
                The figure template name (must be a key in plotly.io.templates) or
                definition.


    Returns:
        plotly.graph_objs._figure.Figure: A plotly figure object.
    """

    if isinstance(data, str):
        if data.startswith("http"):
            data = github_raw_url(data)
            data = get_direct_url(data)

        try:
            data = pd.read_csv(data)
        except Exception as e:
            raise ValueError(f"Could not read data from {data}. {e}")

    if not isinstance(data, pd.DataFrame):
        raise ValueError(
            "data must be a pandas DataFrame, a string or an ee.FeatureCollection."
        )

    if descending is not None:
        data.sort_values([y, x], ascending=not (descending), inplace=True)

    if isinstance(max_rows, int):
        data = data.head(max_rows)

    if "labels" in kwargs:
        labels = kwargs["labels"]
    else:
        labels = {}

    if x_label is not None:
        labels[x] = x_label
    if y_label is not None:
        labels[y] = y_label

    try:
        fig = px.histogram(
            data,
            x=x,
            y=y,
            color=color,
            labels=labels,
            title=title,
            width=width,
            height=height,
            **kwargs,
        )

        if isinstance(layout_args, dict):
            fig.update_layout(**layout_args)

        return fig
    except Exception as e:
        raise ValueError(f"Could not create bar plot. {e}")

html_to_gradio(html, width='100%', height='500px', **kwargs)

Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190

Parameters:

Name Type Description Default
width str

The width of the map. Defaults to '100%'.

'100%'
height str

The height of the map. Defaults to '500px'.

'500px'

Returns:

Name Type Description
str

The HTML string to use in Gradio.

Source code in geemap/common.py
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
def html_to_gradio(html, width="100%", height="500px", **kwargs):
    """Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as
        attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190

    Args:
        width (str, optional): The width of the map. Defaults to '100%'.
        height (str, optional): The height of the map. Defaults to '500px'.

    Returns:
        str: The HTML string to use in Gradio.
    """

    if isinstance(width, int):
        width = f"{width}px"

    if isinstance(height, int):
        height = f"{height}px"

    if isinstance(html, str):
        with open(html, "r") as f:
            lines = f.readlines()
    elif isinstance(html, list):
        lines = html
    else:
        raise TypeError("html must be a file path or a list of strings")

    output = []
    skipped_lines = []
    for index, line in enumerate(lines):
        if index in skipped_lines:
            continue
        if line.lstrip().startswith('{"attribution":'):
            continue
        elif "on(L.Draw.Event.CREATED, function(e)" in line:
            for i in range(14):
                skipped_lines.append(index + i)
        elif "L.Control.geocoder" in line:
            for i in range(5):
                skipped_lines.append(index + i)
        elif "function(e)" in line:
            print(
                f"Warning: The folium plotting backend does not support functions in code blocks. Please delete line {index + 1}."
            )
        else:
            output.append(line + "\n")

    return f"""<iframe style="width: {width}; height: {height}" name="result" allow="midi; geolocation; microphone; camera;
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms
    allow-scripts allow-same-origin allow-popups
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
    allowpaymentrequest="" frameborder="0" srcdoc='{"".join(output)}'></iframe>"""

html_to_streamlit(filename, width=None, height=None, scrolling=False, replace_dict={})

Renders an HTML file as a Streamlit component. Args: filename (str): The filename of the HTML file. width (int, optional): Width of the map. Defaults to None. height (int, optional): Height of the map. Defaults to 600. scrolling (bool, optional): Whether to allow the map to scroll. Defaults to False. replace_dict (dict, optional): A dictionary of strings to replace in the HTML file. Defaults to {}.

Raises:

Type Description
ValueError

If the filename does not exist.

Returns:

Type Description

streamlit.components: components.html object.

Source code in geemap/common.py
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
def html_to_streamlit(
    filename, width=None, height=None, scrolling=False, replace_dict={}
):
    """Renders an HTML file as a Streamlit component.
    Args:
        filename (str): The filename of the HTML file.
        width (int, optional): Width of the map. Defaults to None.
        height (int, optional): Height of the map. Defaults to 600.
        scrolling (bool, optional): Whether to allow the map to scroll. Defaults to False.
        replace_dict (dict, optional): A dictionary of strings to replace in the HTML file. Defaults to {}.

    Raises:
        ValueError: If the filename does not exist.

    Returns:
        streamlit.components: components.html object.
    """

    import streamlit.components.v1 as components

    if not os.path.exists(filename):
        raise ValueError("filename must exist.")

    f = open(filename, "r")

    html = f.read()

    for key, value in replace_dict.items():
        html = html.replace(key, value)

    f.close()
    return components.html(html, width=width, height=height, scrolling=scrolling)

image_area(img, region=None, scale=None, denominator=1.0)

Calculates the area of an image.

Parameters:

Name Type Description Default
img object

ee.Image

required
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
denominator float

The denominator to use for converting size from square meters to other units. Defaults to 1.0.

1.0

Returns:

Name Type Description
object

ee.Dictionary

Source code in geemap/common.py
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
def image_area(img, region=None, scale=None, denominator=1.0):
    """Calculates the area of an image.

    Args:
        img (object): ee.Image
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        denominator (float, optional): The denominator to use for converting size from square meters to other units. Defaults to 1.0.

    Returns:
        object: ee.Dictionary
    """
    if region is None:
        region = img.geometry()

    if scale is None:
        scale = image_scale(img)

    pixel_area = (
        img.unmask().neq(ee.Image(0)).multiply(ee.Image.pixelArea()).divide(denominator)
    )
    img_area = pixel_area.reduceRegion(
        **{
            "geometry": region,
            "reducer": ee.Reducer.sum(),
            "scale": scale,
            "maxPixels": 1e12,
        }
    )
    return img_area

image_area_by_group(img, groups=None, region=None, scale=None, denominator=1.0, out_csv=None, labels=None, decimal_places=4, verbose=True)

Calculates the area of each class of an image.

Parameters:

Name Type Description Default
img object

ee.Image

required
groups object

The groups to use for the area calculation. Defaults to None.

None
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
denominator float

The denominator to use for converting size from square meters to other units. Defaults to 1.0.

1.0
out_csv str

The path to the output CSV file. Defaults to None.

None
labels object

The class labels to use in the output CSV file. Defaults to None.

None
decimal_places int

The number of decimal places to use for the output. Defaults to 2.

4
verbose bool

If True, print the progress. Defaults to True.

True

Returns:

Name Type Description
object

pandas.DataFrame

Source code in geemap/common.py
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
def image_area_by_group(
    img,
    groups=None,
    region=None,
    scale=None,
    denominator=1.0,
    out_csv=None,
    labels=None,
    decimal_places=4,
    verbose=True,
):
    """Calculates the area of each class of an image.

    Args:
        img (object): ee.Image
        groups (object, optional): The groups to use for the area calculation. Defaults to None.
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        denominator (float, optional): The denominator to use for converting size from square meters to other units. Defaults to 1.0.
        out_csv (str, optional): The path to the output CSV file. Defaults to None.
        labels (object, optional): The class labels to use in the output CSV file. Defaults to None.
        decimal_places (int, optional): The number of decimal places to use for the output. Defaults to 2.
        verbose (bool, optional): If True, print the progress. Defaults to True.

    Returns:
        object: pandas.DataFrame
    """
    import pandas as pd

    values = []
    if region is None:
        region = ee.Geometry.BBox(-179.9, -89.5, 179.9, 89.5)

    if groups is None:
        groups = image_value_list(img, region, scale)

    if not isinstance(groups, list):
        groups = groups.getInfo()

    groups.sort(key=int)

    for group in groups:
        if verbose:
            print(f"Calculating area for group {group} ...")
        area = image_area(img.eq(float(group)), region, scale, denominator)
        values.append(area.values().get(0).getInfo())

    d = {"group": groups, "area": values}
    df = pd.DataFrame(data=d)
    df = df.set_index("group")
    df["percentage"] = df["area"] / df["area"].sum()
    df = df.astype(float).round(decimal_places)
    if isinstance(labels, list) and len(labels) == len(values):
        df["labels"] = labels

    if out_csv is not None:
        df.to_csv(out_csv)
    else:
        return df

image_band_names(img)

Gets image band names.

Parameters:

Name Type Description Default
img Image

The input image.

required

Returns:

Type Description

ee.List: The returned list of image band names.

Source code in geemap/common.py
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
def image_band_names(img):
    """Gets image band names.

    Args:
        img (ee.Image): The input image.

    Returns:
        ee.List: The returned list of image band names.
    """
    return img.bandNames()

image_bandcount(image, **kwargs)

Get the number of bands in an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
int

The number of bands in the image.

Source code in geemap/common.py
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
def image_bandcount(image, **kwargs):
    """Get the number of bands in an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        int: The number of bands in the image.
    """

    image_check(image)

    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image
    return len(client.metadata()["bands"])

image_bounds(image, **kwargs)

Get the bounds of an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
list

A list of bounds in the form of [(south, west), (north, east)].

Source code in geemap/common.py
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
def image_bounds(image, **kwargs):
    """Get the bounds of an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        list: A list of bounds in the form of [(south, west), (north, east)].
    """

    image_check(image)
    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image
    bounds = client.bounds()
    return [(bounds[0], bounds[2]), (bounds[1], bounds[3])]

image_cell_size(img)

Retrieves the image cell size (e.g., spatial resolution)

Parameters:

Name Type Description Default
img object

ee.Image

required

Returns:

Name Type Description
float

The nominal scale in meters.

Source code in geemap/common.py
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
def image_cell_size(img):
    """Retrieves the image cell size (e.g., spatial resolution)

    Args:
        img (object): ee.Image

    Returns:
        float: The nominal scale in meters.
    """
    bands = img.bandNames()
    scales = bands.map(lambda b: img.select([b]).projection().nominalScale())
    scale = ee.Algorithms.If(
        scales.distinct().size().gt(1),
        ee.Dictionary.fromLists(bands.getInfo(), scales),
        scales.get(0),
    )
    return scale

image_center(image, **kwargs)

Get the center of an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
tuple

A tuple of (latitude, longitude).

Source code in geemap/common.py
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
def image_center(image, **kwargs):
    """Get the center of an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        tuple: A tuple of (latitude, longitude).
    """
    image_check(image)

    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image
    return client.center()

image_client(image, **kwargs)

Get a LocalTileserver TileClient from an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
TileClient

A LocalTileserver TileClient.

Source code in geemap/common.py
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
def image_client(image, **kwargs):
    """Get a LocalTileserver TileClient from an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        TileClient: A LocalTileserver TileClient.
    """
    image_check(image)

    _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    return client

image_convolution(image, kernel=None, resample=None, projection='EPSG:3857', **kwargs)

Performs a convolution on an image.

Parameters:

Name Type Description Default
image Image | ImageCollection

The image to convolve.

required
kernel Kernel

The kernel to convolve with. Defaults to None, a 7x7 gaussian kernel.

None
resample str

The resample method to use. It can be either 'bilinear' or 'bicubic'". Defaults to None, which uses the image's resample method.

None
projection str

The projection to use. Defaults to 'EPSG:3857'.

'EPSG:3857'

Returns:

Type Description

ee.Image: The convolved image.

Source code in geemap/common.py
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
def image_convolution(
    image, kernel=None, resample=None, projection="EPSG:3857", **kwargs
):
    """Performs a convolution on an image.

    Args:
        image (ee.Image | ee.ImageCollection): The image to convolve.
        kernel (ee.Kernel, optional): The kernel to convolve with. Defaults to None, a 7x7 gaussian kernel.
        resample (str, optional): The resample method to use. It can be either 'bilinear' or 'bicubic'". Defaults to None, which uses the image's resample method.
        projection (str, optional): The projection to use. Defaults to 'EPSG:3857'.

    Returns:
        ee.Image: The convolved image.
    """
    if isinstance(image, ee.ImageCollection):
        image = image.mosaic()
    elif not isinstance(image, ee.Image):
        raise ValueError("image must be an ee.Image or ee.ImageCollection.")

    if kernel is None:
        kernel = ee.Kernel.gaussian(radius=3, sigma=2, units="pixels", normalize=True)
    elif not isinstance(kernel, ee.Kernel):
        raise ValueError("kernel must be an ee.Kernel.")

    if resample is not None:
        if resample not in ["bilinear", "bicubic"]:
            raise ValueError("resample must be one of 'bilinear' or 'bicubic'")

    result = image.convolve(kernel)

    if resample is not None:
        result = result.resample(resample)

    return result.setDefaultProjection(projection)

image_count(collection, region=None, band=None, start_date=None, end_date=None, clip=False)

Create an image with the number of available images for a specific region. Args: collection (ee.ImageCollection): The collection to be queried. region (ee.Geometry | ee.FeatureCollection, optional): The region to be queried. start_date (str | ee.Date, optional): The start date of the query. band (str, optional): The band to be queried. end_date (str | ee.Date, optional): The end date of the query. clip (bool, optional): Whether to clip the image to the region.

Returns:

Type Description

ee.Image: The image with each pixel value representing the number of available images.

Source code in geemap/common.py
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
def image_count(
    collection, region=None, band=None, start_date=None, end_date=None, clip=False
):
    """Create an image with the number of available images for a specific region.
    Args:
        collection (ee.ImageCollection): The collection to be queried.
        region (ee.Geometry | ee.FeatureCollection, optional): The region to be queried.
        start_date (str | ee.Date, optional): The start date of the query.
        band (str, optional): The band to be queried.
        end_date (str | ee.Date, optional): The end date of the query.
        clip (bool, optional): Whether to clip the image to the region.

    Returns:
        ee.Image: The image with each pixel value representing the number of available images.
    """
    if not isinstance(collection, ee.ImageCollection):
        raise TypeError("collection must be an ee.ImageCollection.")

    if region is not None:
        if isinstance(region, ee.Geometry) or isinstance(region, ee.FeatureCollection):
            pass
        else:
            raise TypeError("region must be an ee.Geometry or ee.FeatureCollection.")

    if (start_date is not None) and (end_date is not None):
        pass
    elif (start_date is None) and (end_date is None):
        pass
    else:
        raise ValueError("start_date and end_date must be provided.")

    if band is None:
        first_image = collection.first()
        band = first_image.bandNames().get(0)

    if region is not None:
        collection = collection.filterBounds(region)

    if start_date is not None and end_date is not None:
        collection = collection.filterDate(start_date, end_date)

    image = (
        collection.filter(ee.Filter.listContains("system:band_names", band))
        .select([band])
        .reduce(ee.Reducer.count())
    )

    if clip:
        image = image.clip(region)

    return image

image_date(img, date_format='YYYY-MM-dd')

Retrieves the image acquisition date.

Parameters:

Name Type Description Default
img object

ee.Image

required
date_format str

The date format to use. Defaults to 'YYYY-MM-dd'.

'YYYY-MM-dd'

Returns:

Name Type Description
str

A string representing the acquisition of the image.

Source code in geemap/common.py
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
def image_date(img, date_format="YYYY-MM-dd"):
    """Retrieves the image acquisition date.

    Args:
        img (object): ee.Image
        date_format (str, optional): The date format to use. Defaults to 'YYYY-MM-dd'.

    Returns:
        str: A string representing the acquisition of the image.
    """
    return ee.Date(img.get("system:time_start")).format(date_format)

image_dates(img_col, date_format='YYYY-MM-dd')

Get image dates of all images in an ImageCollection.

Parameters:

Name Type Description Default
img_col object

ee.ImageCollection

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html; if omitted will use ISO standard date formatting. Defaults to 'YYYY-MM-dd'.

'YYYY-MM-dd'

Returns:

Name Type Description
object

ee.List

Source code in geemap/common.py
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
def image_dates(img_col, date_format="YYYY-MM-dd"):
    """Get image dates of all images in an ImageCollection.

    Args:
        img_col (object): ee.ImageCollection
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html; if omitted will use ISO standard date formatting. Defaults to 'YYYY-MM-dd'.

    Returns:
        object: ee.List
    """
    dates = img_col.aggregate_array("system:time_start")
    new_dates = dates.map(lambda d: ee.Date(d).format(date_format))
    return new_dates

image_geotransform(image, **kwargs)

Get the geotransform of an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
list

A list of geotransform values.

Source code in geemap/common.py
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
def image_geotransform(image, **kwargs):
    """Get the geotransform of an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        list: A list of geotransform values.
    """
    image_check(image)

    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image
    return client.metadata()["GeoTransform"]

image_histogram(img, region=None, scale=None, x_label=None, y_label=None, title=None, width=None, height=500, plot_args={}, layout_args={}, return_df=False, **kwargs)

Create a histogram of an image.

Parameters:

Name Type Description Default
img Image

The image to calculate the histogram.

required
region Geometry | FeatureCollection

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
x_label str

Label for the x axis. Defaults to None.

None
y_label str

Label for the y axis. Defaults to None.

None
title str

Title for the plot. Defaults to None.

None
width int

Width of the plot in pixels. Defaults to None.

None
height int

Height of the plot in pixels. Defaults to 500.

500
layout_args dict

Layout arguments for the plot to be passed to fig.update_layout(),

{}
return_df bool

If True, return a pandas dataframe. Defaults to False.

False

Returns:

Type Description

pandas DataFrame | plotly figure object: A dataframe or plotly figure object.

Source code in geemap/common.py
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
def image_histogram(
    img,
    region=None,
    scale=None,
    x_label=None,
    y_label=None,
    title=None,
    width=None,
    height=500,
    plot_args={},
    layout_args={},
    return_df=False,
    **kwargs,
):
    """Create a histogram of an image.

    Args:
        img (ee.Image): The image to calculate the histogram.
        region (ee.Geometry | ee.FeatureCollection, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        x_label (str, optional): Label for the x axis. Defaults to None.
        y_label (str, optional): Label for the y axis. Defaults to None.
        title (str, optional): Title for the plot. Defaults to None.
        width (int, optional): Width of the plot in pixels. Defaults to None.
        height (int, optional): Height of the plot in pixels. Defaults to 500.
        layout_args (dict, optional): Layout arguments for the plot to be passed to fig.update_layout(),
        return_df (bool, optional): If True, return a pandas dataframe. Defaults to False.

    Returns:
        pandas DataFrame | plotly figure object: A dataframe or plotly figure object.
    """
    import pandas as pd
    import plotly.express as px

    hist = image_value_list(img, region, scale, return_hist=True, **kwargs).getInfo()
    keys = sorted(hist, key=int)
    values = [hist.get(key) for key in keys]

    data = pd.DataFrame({"key": keys, "value": values})

    if return_df:
        return data
    else:
        labels = {}

        if x_label is not None:
            labels["key"] = x_label
        if y_label is not None:
            labels["value"] = y_label

        try:
            fig = px.bar(
                data,
                x="key",
                y="value",
                labels=labels,
                title=title,
                width=width,
                height=height,
                **plot_args,
            )

            if isinstance(layout_args, dict):
                fig.update_layout(**layout_args)

            return fig
        except Exception as e:
            raise Exception(e)

image_max_value(img, region=None, scale=None)

Retrieves the maximum value of an image.

Parameters:

Name Type Description Default
img object

The image to calculate the maximum value.

required
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
def image_max_value(img, region=None, scale=None):
    """Retrieves the maximum value of an image.

    Args:
        img (object): The image to calculate the maximum value.
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.

    Returns:
        object: ee.Number
    """
    if region is None:
        region = img.geometry()

    if scale is None:
        scale = image_scale(img)

    max_value = img.reduceRegion(
        **{
            "reducer": ee.Reducer.max(),
            "geometry": region,
            "scale": scale,
            "maxPixels": 1e12,
            "bestEffort": True,
        }
    )
    return max_value

image_mean_value(img, region=None, scale=None)

Retrieves the mean value of an image.

Parameters:

Name Type Description Default
img object

The image to calculate the mean value.

required
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
def image_mean_value(img, region=None, scale=None):
    """Retrieves the mean value of an image.

    Args:
        img (object): The image to calculate the mean value.
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.

    Returns:
        object: ee.Number
    """
    if region is None:
        region = img.geometry()

    if scale is None:
        scale = image_scale(img)

    mean_value = img.reduceRegion(
        **{
            "reducer": ee.Reducer.mean(),
            "geometry": region,
            "scale": scale,
            "maxPixels": 1e12,
            "bestEffort": True,
        }
    )
    return mean_value

image_metadata(image, **kwargs)

Get the metadata of an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
dict

A dictionary of image metadata.

Source code in geemap/common.py
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
def image_metadata(image, **kwargs):
    """Get the metadata of an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        dict: A dictionary of image metadata.
    """
    image_check(image)

    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image
    return client.metadata()

image_min_value(img, region=None, scale=None)

Retrieves the minimum value of an image.

Parameters:

Name Type Description Default
img object

The image to calculate the minimum value.

required
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
def image_min_value(img, region=None, scale=None):
    """Retrieves the minimum value of an image.

    Args:
        img (object): The image to calculate the minimum value.
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.

    Returns:
        object: ee.Number
    """
    if region is None:
        region = img.geometry()

    if scale is None:
        scale = image_scale(img)

    min_value = img.reduceRegion(
        **{
            "reducer": ee.Reducer.min(),
            "geometry": region,
            "scale": scale,
            "maxPixels": 1e12,
            "bestEffort": True,
        }
    )
    return min_value

image_projection(image, **kwargs)

Get the projection of an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
str

The projection of the image.

Source code in geemap/common.py
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
def image_projection(image, **kwargs):
    """Get the projection of an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        str: The projection of the image.
    """
    image_check(image)

    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image
    return client.metadata()["Projection"]

image_props(img, date_format='YYYY-MM-dd')

Gets image properties.

Parameters:

Name Type Description Default
img Image

The input image.

required
date_format str

The output date format. Defaults to 'YYYY-MM-dd HH:mm:ss'.

'YYYY-MM-dd'

Returns:

Type Description

dd.Dictionary: The dictionary containing image properties.

Source code in geemap/common.py
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
def image_props(img, date_format="YYYY-MM-dd"):
    """Gets image properties.

    Args:
        img (ee.Image): The input image.
        date_format (str, optional): The output date format. Defaults to 'YYYY-MM-dd HH:mm:ss'.

    Returns:
        dd.Dictionary: The dictionary containing image properties.
    """
    if not isinstance(img, ee.Image):
        print("The input object must be an ee.Image")
        return

    keys = img.propertyNames().remove("system:footprint").remove("system:bands")
    values = keys.map(lambda p: img.get(p))
    props = ee.Dictionary.fromLists(keys, values)

    names = keys.getInfo()

    bands = img.bandNames()
    scales = bands.map(lambda b: img.select([b]).projection().nominalScale())
    scale = ee.Algorithms.If(
        scales.distinct().size().gt(1),
        ee.Dictionary.fromLists(bands.getInfo(), scales),
        scales.get(0),
    )

    props = props.set("NOMINAL_SCALE", scale)

    if "system:time_start" in names:
        image_date = ee.Date(img.get("system:time_start")).format(date_format)
        time_start = ee.Date(img.get("system:time_start")).format("YYYY-MM-dd HH:mm:ss")
        # time_end = ee.Date(img.get('system:time_end')).format('YYYY-MM-dd HH:mm:ss')
        time_end = ee.Algorithms.If(
            ee.List(img.propertyNames()).contains("system:time_end"),
            ee.Date(img.get("system:time_end")).format("YYYY-MM-dd HH:mm:ss"),
            time_start,
        )
        props = props.set("system:time_start", time_start)
        props = props.set("system:time_end", time_end)
        props = props.set("IMAGE_DATE", image_date)

    if "system:asset_size" in names:
        asset_size = (
            ee.Number(img.get("system:asset_size"))
            .divide(1e6)
            .format()
            .cat(ee.String(" MB"))
        )

        props = props.set("system:asset_size", asset_size)

    return props

image_reclassify(img, in_list, out_list)

Reclassify an image.

Parameters:

Name Type Description Default
img object

The image to which the remapping is applied.

required
in_list list

The source values (numbers or EEArrays). All values in this list will be mapped to the corresponding value in 'out_list'.

required
out_list list

The destination values (numbers or EEArrays). These are used to replace the corresponding values in 'from'. Must have the same number of values as 'in_list'.

required

Returns:

Name Type Description
object

ee.Image

Source code in geemap/common.py
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
def image_reclassify(img, in_list, out_list):
    """Reclassify an image.

    Args:
        img (object): The image to which the remapping is applied.
        in_list (list): The source values (numbers or EEArrays). All values in this list will be mapped to the corresponding value in 'out_list'.
        out_list (list): The destination values (numbers or EEArrays). These are used to replace the corresponding values in 'from'. Must have the same number of values as 'in_list'.

    Returns:
        object: ee.Image
    """
    image = img.remap(in_list, out_list)
    return image

image_resolution(image, **kwargs)

Get the resolution of an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
float

The resolution of the image.

Source code in geemap/common.py
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
def image_resolution(image, **kwargs):
    """Get the resolution of an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        float: The resolution of the image.
    """
    image_check(image)

    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image
    return client.metadata()["GeoTransform"][1]

image_scale(img)

Retrieves the image cell size (e.g., spatial resolution)

Parameters:

Name Type Description Default
img object

ee.Image

required

Returns:

Name Type Description
float

The nominal scale in meters.

Source code in geemap/common.py
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
def image_scale(img):
    """Retrieves the image cell size (e.g., spatial resolution)

    Args:
        img (object): ee.Image

    Returns:
        float: The nominal scale in meters.
    """
    # bands = img.bandNames()
    # scales = bands.map(lambda b: img.select([b]).projection().nominalScale())
    # scale = ee.Algorithms.If(scales.distinct().size().gt(1), ee.Dictionary.fromLists(bands.getInfo(), scales), scales.get(0))
    return img.select(0).projection().nominalScale()

image_set_crs(image, epsg)

Define the CRS of an image.

Parameters:

Name Type Description Default
image str

The input image filepath

required
epsg int

The EPSG code of the CRS to set.

required
Source code in geemap/common.py
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
def image_set_crs(image, epsg):
    """Define the CRS of an image.

    Args:
        image (str): The input image filepath
        epsg (int): The EPSG code of the CRS to set.
    """

    from rasterio.crs import CRS
    import rasterio

    with rasterio.open(image, "r+") as rds:
        rds.crs = CRS.from_epsg(epsg)

image_size(image, **kwargs)

Get the size (width, height) of an image.

Parameters:

Name Type Description Default
image str

The input image filepath or URL.

required

Returns:

Name Type Description
tuple

A tuple of (width, height).

Source code in geemap/common.py
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
def image_size(image, **kwargs):
    """Get the size (width, height) of an image.

    Args:
        image (str): The input image filepath or URL.

    Returns:
        tuple: A tuple of (width, height).
    """
    image_check(image)

    if isinstance(image, str):
        _, client = get_local_tile_layer(image, return_client=True, **kwargs)
    else:
        client = image

    metadata = client.metadata()
    return metadata["sourceSizeX"], metadata["sourceSizeY"]

image_smoothing(img, reducer, kernel)

Smooths an image.

Parameters:

Name Type Description Default
img object

The image to be smoothed.

required
reducer object

ee.Reducer

required
kernel object

ee.Kernel

required

Returns:

Name Type Description
object

ee.Image

Source code in geemap/common.py
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
def image_smoothing(img, reducer, kernel):
    """Smooths an image.

    Args:
        img (object): The image to be smoothed.
        reducer (object): ee.Reducer
        kernel (object): ee.Kernel

    Returns:
        object: ee.Image
    """
    image = img.reduceNeighborhood(
        **{
            "reducer": reducer,
            "kernel": kernel,
        }
    )
    return image

image_stats(img, region=None, scale=None)

Gets image descriptive statistics.

Parameters:

Name Type Description Default
img Image

The input image to calculate descriptive statistics.

required
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None

Returns:

Type Description

ee.Dictionary: A dictionary containing the description statistics of the input image.

Source code in geemap/common.py
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
def image_stats(img, region=None, scale=None):
    """Gets image descriptive statistics.

    Args:
        img (ee.Image): The input image to calculate descriptive statistics.
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.

    Returns:
        ee.Dictionary: A dictionary containing the description statistics of the input image.
    """

    if not isinstance(img, ee.Image):
        print("The input object must be an ee.Image")
        return

    stat_types = ["min", "max", "mean", "std", "sum"]

    image_min = image_min_value(img, region, scale)
    image_max = image_max_value(img, region, scale)
    image_mean = image_mean_value(img, region, scale)
    image_std = image_std_value(img, region, scale)
    image_sum = image_sum_value(img, region, scale)

    stat_results = ee.List([image_min, image_max, image_mean, image_std, image_sum])

    stats = ee.Dictionary.fromLists(stat_types, stat_results)

    return stats

image_stats_by_zone(image, zones, out_csv=None, labels=None, region=None, scale=None, reducer='MEAN', bestEffort=True, **kwargs)

Calculate statistics for an image by zone.

Parameters:

Name Type Description Default
image Image

The image to calculate statistics for.

required
zones Image

The zones to calculate statistics for.

required
out_csv str

The path to the output CSV file. Defaults to None.

None
labels list

The list of zone labels to use for the output CSV. Defaults to None.

None
region Geometry

The region over which to reduce data. Defaults to the footprint of zone image.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
reducer str | Reducer

The reducer to use. It can be one of MEAN, MAXIMUM, MINIMUM, MODE, STD, MIN_MAX, SUM, VARIANCE. Defaults to MEAN.

'MEAN'
bestEffort bool

If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed. Defaults to True.

True

Returns:

Type Description

str | pd.DataFrame: The path to the output CSV file or a pandas DataFrame.

Source code in geemap/common.py
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
def image_stats_by_zone(
    image,
    zones,
    out_csv=None,
    labels=None,
    region=None,
    scale=None,
    reducer="MEAN",
    bestEffort=True,
    **kwargs,
):
    """Calculate statistics for an image by zone.

    Args:
        image (ee.Image): The image to calculate statistics for.
        zones (ee.Image): The zones to calculate statistics for.
        out_csv (str, optional): The path to the output CSV file. Defaults to None.
        labels (list, optional): The list of zone labels to use for the output CSV. Defaults to None.
        region (ee.Geometry, optional): The region over which to reduce data. Defaults to the footprint of zone image.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        reducer (str | ee.Reducer, optional): The reducer to use. It can be one of MEAN, MAXIMUM, MINIMUM, MODE, STD, MIN_MAX, SUM, VARIANCE. Defaults to MEAN.
        bestEffort (bool, optional): If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed. Defaults to True.

    Returns:
        str | pd.DataFrame: The path to the output CSV file or a pandas DataFrame.
    """
    import pandas as pd

    if region is not None:
        if isinstance(region, ee.Geometry):
            pass
        elif isinstance(region, ee.FeatureCollection):
            region = region.geometry()
        else:
            raise ValueError("region must be an ee.Geometry or ee.FeatureCollection")

    if scale is None:
        scale = image_scale(image)

    allowed_stats = {
        "MEAN": ee.Reducer.mean(),
        "MAXIMUM": ee.Reducer.max(),
        "MEDIAN": ee.Reducer.median(),
        "MINIMUM": ee.Reducer.min(),
        "MODE": ee.Reducer.mode(),
        "STD": ee.Reducer.stdDev(),
        "MIN_MAX": ee.Reducer.minMax(),
        "SUM": ee.Reducer.sum(),
        "VARIANCE": ee.Reducer.variance(),
    }

    if isinstance(reducer, str):
        if reducer.upper() not in allowed_stats:
            raise ValueError(
                "reducer must be one of: {}".format(", ".join(allowed_stats.keys()))
            )
        else:
            reducer = allowed_stats[reducer.upper()]
    elif isinstance(reducer, ee.Reducer):
        pass
    else:
        raise ValueError(
            "reducer must be one of: {}".format(", ".join(allowed_stats.keys()))
        )

    values = image_value_list(zones, region=region)
    values = values.map(lambda x: ee.Number.parse(x))

    def get_stats(value):
        img = image.updateMask(zones.eq(ee.Number(value)))
        kwargs["reducer"] = reducer
        kwargs["scale"] = scale
        kwargs["geometry"] = region
        kwargs["bestEffort"] = bestEffort
        stat = img.reduceRegion(**kwargs)
        return ee.Image().set({"zone": value}).set({"stat": stat.values().get(0)})

    collection = ee.ImageCollection(values.map(lambda x: get_stats(x)))
    keys = collection.aggregate_array("zone").getInfo()
    values = collection.aggregate_array("stat").getInfo()

    if labels is not None and isinstance(labels, list):
        if len(labels) != len(keys):
            warnings.warn("labels are not the same length as keys, ignoring labels.")
            df = pd.DataFrame({"zone": keys, "stat": values})
        else:
            df = pd.DataFrame({"zone": keys, "label": labels, "stat": values})
    else:
        df = pd.DataFrame({"zone": keys, "stat": values})

    if out_csv is not None:
        check_file_path(out_csv)
        df.to_csv(out_csv, index=False)
        return out_csv
    else:
        return df

image_std_value(img, region=None, scale=None)

Retrieves the standard deviation of an image.

Parameters:

Name Type Description Default
img object

The image to calculate the standard deviation.

required
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
def image_std_value(img, region=None, scale=None):
    """Retrieves the standard deviation of an image.

    Args:
        img (object): The image to calculate the standard deviation.
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.

    Returns:
        object: ee.Number
    """
    if region is None:
        region = img.geometry()

    if scale is None:
        scale = image_scale(img)

    std_value = img.reduceRegion(
        **{
            "reducer": ee.Reducer.stdDev(),
            "geometry": region,
            "scale": scale,
            "maxPixels": 1e12,
            "bestEffort": True,
        }
    )
    return std_value

image_sum_value(img, region=None, scale=None)

Retrieves the sum of an image.

Parameters:

Name Type Description Default
img object

The image to calculate the standard deviation.

required
region object

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
def image_sum_value(img, region=None, scale=None):
    """Retrieves the sum of an image.

    Args:
        img (object): The image to calculate the standard deviation.
        region (object, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.

    Returns:
        object: ee.Number
    """
    if region is None:
        region = img.geometry()

    if scale is None:
        scale = image_scale(img)

    sum_value = img.reduceRegion(
        **{
            "reducer": ee.Reducer.sum(),
            "geometry": region,
            "scale": scale,
            "maxPixels": 1e12,
            "bestEffort": True,
        }
    )
    return sum_value

image_to_cog(source, dst_path=None, profile='deflate', **kwargs)

Converts an image to a COG file.

Parameters:

Name Type Description Default
source str

A dataset path, URL or rasterio.io.DatasetReader object.

required
dst_path str

An output dataset path or or PathLike object. Defaults to None.

None
profile str

COG profile. More at https://cogeotiff.github.io/rio-cogeo/profile. Defaults to "deflate".

'deflate'

Raises:

Type Description
ImportError

If rio-cogeo is not installed.

FileNotFoundError

If the source file could not be found.

Source code in geemap/common.py
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
def image_to_cog(source, dst_path=None, profile="deflate", **kwargs):
    """Converts an image to a COG file.

    Args:
        source (str): A dataset path, URL or rasterio.io.DatasetReader object.
        dst_path (str, optional): An output dataset path or or PathLike object. Defaults to None.
        profile (str, optional): COG profile. More at https://cogeotiff.github.io/rio-cogeo/profile. Defaults to "deflate".

    Raises:
        ImportError: If rio-cogeo is not installed.
        FileNotFoundError: If the source file could not be found.
    """
    try:
        from rio_cogeo.cogeo import cog_translate
        from rio_cogeo.profiles import cog_profiles

    except ImportError:
        raise ImportError(
            "The rio-cogeo package is not installed. Please install it with `pip install rio-cogeo` or `conda install rio-cogeo -c conda-forge`."
        )

    if not source.startswith("http"):
        source = check_file_path(source)

        if not os.path.exists(source):
            raise FileNotFoundError("The provided input file could not be found.")

    if dst_path is None:
        if not source.startswith("http"):
            dst_path = os.path.splitext(source)[0] + "_cog.tif"
        else:
            dst_path = temp_file_path(extension=".tif")

    dst_path = check_file_path(dst_path)

    dst_profile = cog_profiles.get(profile)
    cog_translate(source, dst_path, dst_profile, **kwargs)

image_to_numpy(image)

Converts an image to a numpy array.

Parameters:

Name Type Description Default
image str

A dataset path, URL or rasterio.io.DatasetReader object.

required

Raises:

Type Description
FileNotFoundError

If the provided file could not be found.

Returns:

Type Description

np.array: A numpy array.

Source code in geemap/common.py
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
def image_to_numpy(image):
    """Converts an image to a numpy array.

    Args:
        image (str): A dataset path, URL or rasterio.io.DatasetReader object.

    Raises:
        FileNotFoundError: If the provided file could not be found.

    Returns:
        np.array: A numpy array.
    """
    import rasterio
    from osgeo import gdal
    from contextlib import contextmanager

    @contextmanager
    def gdal_error_handler():
        """Context manager for GDAL error handler."""
        gdal.PushErrorHandler("CPLQuietErrorHandler")
        try:
            yield
        finally:
            gdal.PopErrorHandler()

    gdal.UseExceptions()

    with gdal_error_handler():

        if not os.path.exists(image):
            raise FileNotFoundError("The provided input file could not be found.")

        with rasterio.open(image, "r") as ds:
            arr = ds.read()  # read all raster values

    return arr

image_value_list(img, region=None, scale=None, return_hist=False, **kwargs)

Get the unique values of an image.

Parameters:

Name Type Description Default
img Image

The image to calculate the unique values.

required
region Geometry | FeatureCollection

The region over which to reduce data. Defaults to the footprint of the image's first band.

None
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
return_hist bool

If True, return a histogram of the values. Defaults to False.

False

Returns:

Type Description

ee.List | ee.Dictionary: A list of unique values or a dictionary containing a list of unique values and a histogram.

Source code in geemap/common.py
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
def image_value_list(img, region=None, scale=None, return_hist=False, **kwargs):
    """Get the unique values of an image.

    Args:
        img (ee.Image): The image to calculate the unique values.
        region (ee.Geometry | ee.FeatureCollection, optional): The region over which to reduce data. Defaults to the footprint of the image's first band.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        return_hist (bool, optional): If True, return a histogram of the values. Defaults to False.

    Returns:
        ee.List | ee.Dictionary: A list of unique values or a dictionary containing a list of unique values and a histogram.
    """
    if region is None:
        geom = img.geometry().bounds()
        region = ee.FeatureCollection([ee.Feature(geom)])
    elif isinstance(region, ee.Geometry):
        region = ee.FeatureCollection([ee.Feature(region)])
    elif isinstance(region, ee.FeatureCollection):
        pass
    else:
        raise ValueError("region must be an ee.Geometry or ee.FeatureCollection")

    if scale is None:
        scale = img.select(0).projection().nominalScale().multiply(10)

    reducer = ee.Reducer.frequencyHistogram()
    kwargs["scale"] = scale
    kwargs["reducer"] = reducer
    kwargs["collection"] = region

    result = img.reduceRegions(**kwargs)
    hist = ee.Dictionary(result.first().get("histogram"))
    if return_hist:
        return hist
    else:
        return hist.keys()

in_colab_shell()

Checks if the code is running in a Google Colab environment.

Returns:

Name Type Description
bool bool

True if running in Google Colab, False otherwise.

Source code in geemap/coreutils.py
361
362
363
364
365
366
367
368
def in_colab_shell() -> bool:
    """
    Checks if the code is running in a Google Colab environment.

    Returns:
        bool: True if running in Google Colab, False otherwise.
    """
    return "google.colab" in sys.modules

install_from_github(url)

Install a package from a GitHub repository.

Parameters:

Name Type Description Default
url str

The URL of the GitHub repository.

required
Source code in geemap/common.py
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
def install_from_github(url):
    """Install a package from a GitHub repository.

    Args:
        url (str): The URL of the GitHub repository.
    """

    try:
        download_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        if not os.path.exists(download_dir):
            os.makedirs(download_dir)

        repo_name = os.path.basename(url)
        zip_url = os.path.join(url, "archive/master.zip")
        filename = repo_name + "-master.zip"
        download_from_url(
            url=zip_url, out_file_name=filename, out_dir=download_dir, unzip=True
        )

        pkg_dir = os.path.join(download_dir, repo_name + "-master")
        pkg_name = os.path.basename(url)
        work_dir = os.getcwd()
        os.chdir(pkg_dir)
        print(f"Installing {pkg_name}...")
        cmd = "pip install ."
        os.system(cmd)
        os.chdir(work_dir)
        print(f"{pkg_name} has been installed successfully.")
        # print("\nPlease comment out 'install_from_github()' and restart the kernel to take effect:\nJupyter menu -> Kernel -> Restart & Clear Output")

    except Exception as e:
        print(e)

install_package(package)

Install a Python package.

Parameters:

Name Type Description Default
package str | list

The package name or a GitHub URL or a list of package names or GitHub URLs.

required
Source code in geemap/common.py
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
def install_package(package):
    """Install a Python package.

    Args:
        package (str | list): The package name or a GitHub URL or a list of package names or GitHub URLs.
    """
    import subprocess

    if isinstance(package, str):
        packages = [package]

    for package in packages:
        if package.startswith("https"):
            package = f"git+{package}"

        # Execute pip install command and show output in real-time
        command = f"pip install {package}"
        process = subprocess.Popen(command.split(), stdout=subprocess.PIPE)

        # Print output in real-time
        while True:
            output = process.stdout.readline()
            if output == b"" and process.poll() is not None:
                break
            if output:
                print(output.decode("utf-8").strip())

        # Wait for process to complete
        process.wait()

is_arcpy()

Check if arcpy is available.

Returns:

Name Type Description
book

True if arcpy is available, False otherwise.

Source code in geemap/common.py
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
def is_arcpy():
    """Check if arcpy is available.

    Returns:
        book: True if arcpy is available, False otherwise.
    """
    import sys

    if "arcpy" in sys.modules:
        return True
    else:
        return False

is_drive_mounted()

Checks whether Google Drive is mounted in Google Colab.

Returns:

Name Type Description
bool

Returns True if Google Drive is mounted, False otherwise.

Source code in geemap/common.py
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
def is_drive_mounted():
    """Checks whether Google Drive is mounted in Google Colab.

    Returns:
        bool: Returns True if Google Drive is mounted, False otherwise.
    """
    drive_path = "/content/drive/My Drive"
    if os.path.exists(drive_path):
        return True
    else:
        return False

is_latlon_valid(location)

Checks whether a pair of coordinates is valid.

Parameters:

Name Type Description Default
location str

A pair of latlon coordinates separated by comma or space.

required

Returns:

Name Type Description
bool

Returns True if valid.

Source code in geemap/common.py
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
def is_latlon_valid(location):
    """Checks whether a pair of coordinates is valid.

    Args:
        location (str): A pair of latlon coordinates separated by comma or space.

    Returns:
        bool: Returns True if valid.
    """
    latlon = []
    if "," in location:
        latlon = [float(x) for x in location.split(",")]
    elif " " in location:
        latlon = [float(x) for x in location.split(" ")]
    else:
        print(
            "The coordinates should be numbers only and separated by comma or space, such as 40.2, -100.3"
        )
        return False

    try:
        lat, lon = float(latlon[0]), float(latlon[1])
        if lat >= -90 and lat <= 90 and lon >= -180 and lon <= 180:
            return True
        else:
            return False
    except Exception as e:
        print(e)
        return False

is_on_aws()

Check if the current notebook is running on AWS.

Returns:

Name Type Description
bool

True if the notebook is running on AWS.

Source code in geemap/common.py
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
def is_on_aws():
    """Check if the current notebook is running on AWS.

    Returns:
        bool: True if the notebook is running on AWS.
    """

    import psutil

    output = psutil.Process().parent().cmdline()

    on_aws = False
    for item in output:
        if item.endswith(".aws") or "ec2-user" in item:
            on_aws = True
    return on_aws

is_studio_lab()

Check if the current notebook is running on Studio Lab.

Returns:

Name Type Description
bool

True if the notebook is running on Studio Lab.

Source code in geemap/common.py
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
def is_studio_lab():
    """Check if the current notebook is running on Studio Lab.

    Returns:
        bool: True if the notebook is running on Studio Lab.
    """

    import psutil

    output = psutil.Process().parent().cmdline()

    on_studio_lab = False
    for item in output:
        if "studiolab/bin" in item:
            on_studio_lab = True
    return on_studio_lab

is_tool(name)

Check whether name is on PATH and marked as executable.

Source code in geemap/common.py
1931
1932
1933
1934
1935
1936
def is_tool(name):
    """Check whether `name` is on PATH and marked as executable."""

    # from shutil import which

    return shutil.which(name) is not None

jpg_to_gif(in_dir, out_gif, fps=10, loop=0)

Convert a list of jpg images to gif.

Parameters:

Name Type Description Default
in_dir str

The input directory containing jpg images.

required
out_gif str

The output file path to the gif.

required
fps int

Frames per second. Defaults to 10.

10
loop bool

controls how many times the animation repeats. 1 means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0

Raises:

Type Description
FileNotFoundError

No jpg images could be found.

Source code in geemap/common.py
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
def jpg_to_gif(in_dir, out_gif, fps=10, loop=0):
    """Convert a list of jpg images to gif.

    Args:
        in_dir (str): The input directory containing jpg images.
        out_gif (str): The output file path to the gif.
        fps (int, optional): Frames per second. Defaults to 10.
        loop (bool, optional): controls how many times the animation repeats. 1 means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

    Raises:
        FileNotFoundError: No jpg images could be found.
    """
    import glob

    from PIL import Image

    if not out_gif.endswith(".gif"):
        raise ValueError("The out_gif must be a gif file.")

    out_gif = os.path.abspath(out_gif)

    out_dir = os.path.dirname(out_gif)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    # Create the frames
    frames = []
    imgs = list(glob.glob(os.path.join(in_dir, "*.jpg")))
    imgs.sort()

    if len(imgs) == 0:
        raise FileNotFoundError(f"No jpg could be found in {in_dir}.")

    for i in imgs:
        new_frame = Image.open(i)
        frames.append(new_frame)

    # Save into a GIF file that loops forever
    frames[0].save(
        out_gif,
        format="GIF",
        append_images=frames[1:],
        save_all=True,
        duration=1000 / fps,
        loop=loop,
    )

jrc_hist_monthly_history(collection=None, region=None, start_date='1984-03-16', end_date=None, start_month=1, end_month=12, scale=None, frequency='year', reducer='mean', denominator=10000.0, x_label=None, y_label=None, title=None, width=None, height=None, layout_args={}, return_df=False, **kwargs)

Create a JRC monthly history plot.

Parameters:

Name Type Description Default
collection ImageCollection

The image collection of JRC surface water monthly history. Default to ee.ImageCollection('JRC/GSW1_4/MonthlyHistory')

None
region Geometry | FeatureCollection

The region to plot. Default to None.

None
start_date str

The start date of the plot. Default to '1984-03-16'.

'1984-03-16'
end_date str

The end date of the plot. Default to the current date.

None
start_month int

The start month of the plot. Default to 1.

1
end_month int

The end month of the plot. Default to 12.

12
scale float

The scale to compute the statistics. Default to None.

None
frequency str

The frequency of the plot. Can be either 'year' or 'month', Default to 'year'.

'year'
reducer str

The reducer to compute the statistics. Can be either 'mean', 'min', 'max', 'median', etc. Default to 'mean'.

'mean'
denominator int

The denominator to convert area from square meters to other units. Default to 1e4, converting to hectares.

10000.0
x_label str

Label for the x axis. Defaults to None.

None
y_label str

Label for the y axis. Defaults to None.

None
title str

Title for the plot. Defaults to None.

None
width int

Width of the plot in pixels. Defaults to None.

None
height int

Height of the plot in pixels. Defaults to 500.

None
layout_args dict

Layout arguments for the plot to be passed to fig.update_layout(),

{}
return_df bool

Whether to return the dataframe of the plot. Defaults to False.

False

Returns:

Type Description

pd.DataFrame: Pandas dataframe of the plot.

Source code in geemap/common.py
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
def jrc_hist_monthly_history(
    collection=None,
    region=None,
    start_date="1984-03-16",
    end_date=None,
    start_month=1,
    end_month=12,
    scale=None,
    frequency="year",
    reducer="mean",
    denominator=1e4,
    x_label=None,
    y_label=None,
    title=None,
    width=None,
    height=None,
    layout_args={},
    return_df=False,
    **kwargs,
):
    """Create a JRC monthly history plot.

    Args:
        collection (ee.ImageCollection, optional): The image collection of JRC surface water monthly history.
            Default to ee.ImageCollection('JRC/GSW1_4/MonthlyHistory')
        region (ee.Geometry | ee.FeatureCollection, optional): The region to plot. Default to None.
        start_date (str, optional): The start date of the plot. Default to '1984-03-16'.
        end_date (str, optional): The end date of the plot. Default to the current date.
        start_month (int, optional): The start month of the plot. Default to 1.
        end_month (int, optional): The end month of the plot. Default to 12.
        scale (float, optional): The scale to compute the statistics. Default to None.
        frequency (str, optional): The frequency of the plot. Can be either 'year' or 'month', Default to 'year'.
        reducer (str, optional): The reducer to compute the statistics. Can be either 'mean', 'min', 'max', 'median', etc. Default to 'mean'.
        denominator (int, optional): The denominator to convert area from square meters to other units. Default to 1e4, converting to hectares.
        x_label (str, optional): Label for the x axis. Defaults to None.
        y_label (str, optional): Label for the y axis. Defaults to None.
        title (str, optional): Title for the plot. Defaults to None.
        width (int, optional): Width of the plot in pixels. Defaults to None.
        height (int, optional): Height of the plot in pixels. Defaults to 500.
        layout_args (dict, optional): Layout arguments for the plot to be passed to fig.update_layout(),
        return_df (bool, optional): Whether to return the dataframe of the plot. Defaults to False.

    Returns:
        pd.DataFrame: Pandas dataframe of the plot.
    """

    from datetime import date
    import pandas as pd
    import plotly.express as px

    if end_date is None:
        end_date = date.today().strftime("%Y-%m-%d")

    if collection is None:
        collection = ee.ImageCollection("JRC/GSW1_4/MonthlyHistory")

    if frequency not in ["year", "month"]:
        raise ValueError("frequency must be 'year' or 'month'.")

    images = (
        collection.filterDate(start_date, end_date)
        .filter(ee.Filter.calendarRange(start_month, end_month, "month"))
        .map(lambda img: img.eq(2).selfMask())
    )

    def cal_area(img):
        pixel_area = img.multiply(ee.Image.pixelArea()).divide(denominator)
        img_area = pixel_area.reduceRegion(
            **{
                "geometry": region,
                "reducer": ee.Reducer.sum(),
                "scale": scale,
                "maxPixels": 1e12,
                "bestEffort": True,
            }
        )
        return img.set({"area": img_area})

    areas = images.map(cal_area)
    stats = areas.aggregate_array("area").getInfo()
    values = [item["water"] for item in stats]
    labels = areas.aggregate_array("system:index").getInfo()
    months = [label.split("_")[1] for label in labels]

    if frequency == "month":
        area_df = pd.DataFrame({"Month": labels, "Area": values, "month": months})
    else:
        dates = [d[:4] for d in labels]
        data_dict = {"Date": labels, "Year": dates, "Area": values}
        df = pd.DataFrame(data_dict)
        result = df.groupby("Year").agg(reducer)
        area_df = pd.DataFrame({"Year": result.index, "Area": result["Area"]})
        area_df = area_df.reset_index(drop=True)

    if return_df:
        return area_df
    else:
        labels = {}

        if x_label is not None:
            labels[frequency.title()] = x_label
        if y_label is not None:
            labels["Area"] = y_label

        fig = px.bar(
            area_df,
            x=frequency.title(),
            y="Area",
            labels=labels,
            title=title,
            width=width,
            height=height,
            **kwargs,
        )

        fig.update_layout(**layout_args)

        return fig

js_snippet_to_py(in_js_snippet, add_new_cell=True, import_ee=True, import_geemap=False, show_map=True, Map='m')

Converts an Earth Engine JavaScript snippet wrapped in triple quotes to Python directly on a Jupyter notebook.

Parameters:

Name Type Description Default
in_js_snippet str

Earth Engine JavaScript within triple quotes.

required
add_new_cell bool

Whether add the converted Python to a new cell.

True
import_ee bool

Whether to import ee. Defaults to True.

True
import_geemap bool

Whether to import geemap. Defaults to False.

False
show_map bool

Whether to show the map. Defaults to True.

True
Map str

The name of the map variable. Defaults to "m".

'm'

Returns:

Name Type Description
list

A list of Python script.

Source code in geemap/conversion.py
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
def js_snippet_to_py(
    in_js_snippet,
    add_new_cell=True,
    import_ee=True,
    import_geemap=False,
    show_map=True,
    Map="m",
):
    """Converts an Earth Engine JavaScript snippet wrapped in triple quotes to Python directly on a Jupyter notebook.

    Args:
        in_js_snippet (str): Earth Engine JavaScript within triple quotes.
        add_new_cell (bool, optional): Whether add the converted Python to a new cell.
        import_ee (bool, optional): Whether to import ee. Defaults to True.
        import_geemap (bool, optional): Whether to import geemap. Defaults to False.
        show_map (bool, optional): Whether to show the map. Defaults to True.
        Map (str, optional): The name of the map variable. Defaults to "m".

    Returns:
        list: A list of Python script.
    """

    in_js = temp_file_path(".js")
    out_py = temp_file_path(".py")

    in_js_snippet = re.sub(
        r"([a-zA-Z0-9_]+)\s*:", r'"\1":', in_js_snippet
    )  # Add quotes around keys

    try:
        with open(in_js, "w") as f:
            f.write(in_js_snippet)
        js_to_python(
            in_js,
            out_file=out_py,
            use_qgis=False,
            show_map=show_map,
            import_geemap=import_geemap,
            Map=Map,
        )

        out_lines = []
        if import_ee:
            out_lines.append("import ee\n")
        # if import_geemap:
        #     out_lines.append("import geemap\n\n")
        #     out_lines.append(f"{Map} = geemap.Map()\n")

        with open(out_py, encoding="utf-8") as f:
            lines = f.readlines()
            for index, line in enumerate(lines):
                if index < (len(lines) - 1):
                    if line.strip() == "import ee":
                        continue

                    next_line = lines[index + 1]
                    if line.strip() == "" and next_line.strip() == "":
                        continue
                    elif ".style(" in line and (".style(**" not in line):
                        line = line.replace(".style(", ".style(**")
                        out_lines.append(line)
                    elif "({" in line:
                        line = line.replace("({", "(**{")
                        out_lines.append(line)
                    else:
                        out_lines.append(line)
                elif index == (len(lines) - 1) and lines[index].strip() != "":
                    out_lines.append(line)

        os.remove(in_js)
        os.remove(out_py)

        if add_new_cell:
            contents = "".join(out_lines).strip()
            create_new_cell(contents)
        else:
            return out_lines

    except Exception as e:
        print(e)

js_to_python(in_file, out_file=None, use_qgis=True, github_repo=None, show_map=True, import_geemap=False, Map='m')

Converts an Earth Engine JavaScript to Python script.

1
2
3
4
Args:
    in_file (str): File path of the input JavaScript.
    out_file (str, optional): File path of the output Python script. Defaults to None.
    use_qgis (bool, optional): Whether to add "from ee_plugin import Map

" to the output script. Defaults to True. github_repo (str, optional): GitHub repo url. Defaults to None. show_map (bool, optional): Whether to add "Map" to the output script. Defaults to True. import_geemap (bool, optional): Whether to add "import geemap" to the output script. Defaults to False. Map (str, optional): The name of the map variable. Defaults to "m".

1
2
Returns:
    list: Python script
Source code in geemap/conversion.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
def js_to_python(
    in_file,
    out_file=None,
    use_qgis=True,
    github_repo=None,
    show_map=True,
    import_geemap=False,
    Map="m",
):
    """Converts an Earth Engine JavaScript to Python script.

    Args:
        in_file (str): File path of the input JavaScript.
        out_file (str, optional): File path of the output Python script. Defaults to None.
        use_qgis (bool, optional): Whether to add "from ee_plugin import Map \n" to the output script. Defaults to True.
        github_repo (str, optional): GitHub repo url. Defaults to None.
        show_map (bool, optional): Whether to add "Map" to the output script. Defaults to True.
        import_geemap (bool, optional): Whether to add "import geemap" to the output script. Defaults to False.
        Map (str, optional): The name of the map variable. Defaults to "m".

    Returns:
        list: Python script
    """
    in_file = os.path.abspath(in_file)
    if out_file is None:
        out_file = in_file.replace(".js", ".py")

    root_dir = os.path.dirname(os.path.abspath(__file__))
    if not os.path.isfile(in_file):
        in_file = os.path.join(root_dir, in_file)
    if not os.path.isfile(out_file):
        out_file = os.path.join(root_dir, out_file)

    is_python = False
    # add_github_url = False

    if use_qgis and import_geemap:
        raise Exception(
            "use_qgis and import_geemap cannot be both True. Please set one of them to False."
        )

    import_str = ""
    if use_qgis:
        import_str = "from ee_plugin import Map\n"
    if import_geemap:
        import_str = f"import geemap\n\n{Map} = geemap.Map()\n"

    github_url = ""
    if github_repo is not None:
        github_url = "# GitHub URL: " + github_repo + in_file + "\n\n"

    math_import = False
    math_import_str = ""

    lines = []
    with open(in_file, encoding="utf-8") as f:
        lines = f.readlines()

        math_import = use_math(lines)

        for line in lines:
            line = line.strip()
            if line == "import ee":
                is_python = True

    if math_import:
        math_import_str = "import math\n"

    output = ""

    if is_python:  # only update the GitHub URL if it is already a GEE Python script
        output = github_url + "".join(map(str, lines))
    else:  # deal with JavaScript
        header = github_url + "import ee \n" + math_import_str + import_str
        # function_defs = []
        output = header + "\n"

        with open(in_file, encoding="utf-8") as f:
            lines = f.readlines()

            numIncorrectParameters = 0
            checkNextLineForPrint = False
            shouldCheckForEmptyLines = False
            currentDictionaryScopeDepth = 0
            currentNumOfNestedFuncs = 0

            # We need to remove all spaces from the beginning of each line to accurately format the indentation
            lines = remove_all_indentation(lines)

            # print('Processing {}'.format(in_file))
            lines = check_map_functions(lines)

            for index, line in enumerate(lines):

                if "Map.setOptions" in line:
                    # Regular expression to remove everything after the comma and before ');'
                    line = re.sub(r",[^)]+(?=\);)", "", line)

                if ("/* color" in line) and ("*/" in line):
                    line = (
                        line[: line.index("/*")].lstrip()
                        + line[(line.index("*/") + 2) :]
                    )

                if (
                    ("= function" in line)
                    or ("=function" in line)
                    or line.strip().startswith("function")
                ):
                    try:
                        bracket_index = line.index("{")

                        (
                            matching_line_index,
                            matching_char_index,
                        ) = find_matching_bracket(lines, index, bracket_index)

                        if "func_" not in line:
                            currentNumOfNestedFuncs += 1

                            for sub_index, tmp_line in enumerate(
                                lines[index + 1 : matching_line_index]
                            ):
                                # lines[sub_index] = ('    ' * currentNumOfNestedFuncs) + tmp_line
                                if "{" in tmp_line and "function" not in line:
                                    currentNumOfNestedFuncs += 1
                                if "}" in tmp_line and "function" not in line:
                                    currentNumOfNestedFuncs -= 1
                                lines[index + 1 + sub_index] = (
                                    "    " * currentNumOfNestedFuncs
                                ) + lines[index + 1 + sub_index]

                            currentNumOfNestedFuncs -= 1

                        line = line[:bracket_index] + line[bracket_index + 1 :]
                        if matching_line_index == index:
                            line = (
                                line[:matching_char_index]
                                + line[matching_char_index + 1 :]
                            )
                        else:
                            tmp_line = lines[matching_line_index]
                            lines[matching_line_index] = (
                                tmp_line[:matching_char_index]
                                + tmp_line[matching_char_index + 1 :]
                            )

                    except Exception as e:
                        print(
                            f"An error occurred when processing {in_file}. The closing curly bracket could not be found in Line {index+1}: {line}. Please reformat the function definition and make sure that both the opening and closing curly brackets appear on the same line as the function keyword. "
                        )
                        return

                    line = (
                        line.replace(" = function", "")
                        .replace("=function", "")
                        .replace("function ", "")
                    )
                    if line.lstrip().startswith("//"):
                        line = line.replace("//", "").lstrip()
                        line = (
                            " " * (len(line) - len(line.lstrip()))
                            + "# def "
                            + line.strip()
                            + ":"
                        )
                    else:
                        line = (
                            " " * (len(line) - len(line.lstrip()))
                            + "def "
                            + line.strip()
                            + ":"
                        )
                elif "{" in line and "({" not in line:
                    bracket_index = line.index("{")
                    (
                        matching_line_index,
                        matching_char_index,
                    ) = find_matching_bracket(lines, index, bracket_index)

                    currentNumOfNestedFuncs += 1

                    for sub_index, tmp_line in enumerate(
                        lines[index + 1 : matching_line_index]
                    ):
                        lines[index + 1 + sub_index] = (
                            "    " * currentNumOfNestedFuncs
                        ) + lines[index + 1 + sub_index]
                        if "{" in tmp_line and "if" not in line and "for" not in line:
                            currentNumOfNestedFuncs += 1
                        if "}" in tmp_line and "if" not in line and "for" not in line:
                            currentNumOfNestedFuncs -= 1

                    currentNumOfNestedFuncs -= 1

                    if (matching_line_index == index) and (":" in line):
                        pass
                    elif (
                        ("for (" in line)
                        or ("for(" in line)
                        or ("if (" in line)
                        or ("if(" in line)
                    ):
                        if "if" not in line:
                            line = convert_for_loop(line)
                        else:
                            start_index = line.index("(")
                            end_index = line.index(")")
                            line = "if " + line[start_index:end_index] + "):{"
                        lines[index] = line
                        bracket_index = line.index("{")
                        (
                            matching_line_index,
                            matching_char_index,
                        ) = find_matching_bracket(lines, index, bracket_index)
                        tmp_line = lines[matching_line_index]
                        lines[matching_line_index] = (
                            tmp_line[:matching_char_index]
                            + tmp_line[matching_char_index + 1 :]
                        )
                        line = line.replace("{", "")

                if line is None:
                    line = ""

                line = line.replace("//", "#")
                line = line.replace("var ", "", 1)
                line = line.replace("/*", "#")
                line = line.replace("*/", "#")
                line = line.replace("true", "True").replace("false", "False")
                line = line.replace("null", "None")
                line = line.replace(".or", ".Or")
                line = line.replace(".and", ".And")
                line = line.replace(".not", ".Not")
                line = line.replace("visualize({", "visualize(**{")
                line = line.replace("Math.PI", "math.pi")
                line = line.replace("Math.", "math.")
                line = line.replace("parseInt", "int")
                line = line.replace("NotNull", "notNull")
                line = line.replace("= new", "=")
                line = line.replace("exports.", "")
                line = line.replace("Map.", f"{Map}.")
                line = line.replace(
                    "Export.table.toDrive", "geemap.ee_export_vector_to_drive"
                )
                line = line.replace(
                    "Export.table.toAsset", "geemap.ee_export_vector_to_asset"
                )
                line = line.replace(
                    "Export.image.toAsset", "geemap.ee_export_image_to_asset"
                )
                line = line.replace(
                    "Export.video.toDrive", "geemap.ee_export_video_to_drive"
                )
                line = line.replace("||", "or")
                line = line.replace(r"\****", "#")
                line = line.replace("def =", "_def =")
                line = line.replace(", def, ", ", _def, ")
                line = line.replace("(def, ", "(_def, ")
                line = line.replace(", def)", ", _def)")
                line = line.replace("===", "==")

                # Replaces all javascript operators with python operators
                if "!" in line:
                    try:
                        if (line.replace(" ", ""))[line.find("!") + 1] != "=":
                            line = line.replace("!", "not ")
                    except:
                        print("continue...")

                line = line.rstrip()

                # If the function concat is used, replace it with python's concatenation
                if "concat" in line:
                    line = line.replace(".concat(", "+")
                    line = line.replace(",", "+")
                    line = line.replace(")", "")

                # Checks if an equal sign is at the end of a line. If so, add backslashes
                if shouldCheckForEmptyLines:
                    if line.strip() == "" or "#" in line:
                        if line.strip().endswith("["):
                            line = "["
                            shouldCheckForEmptyLines = False
                        else:
                            line = "\\"
                    else:
                        shouldCheckForEmptyLines = False

                if line.strip().endswith("="):
                    line = line + " \\"
                    shouldCheckForEmptyLines = True

                # Adds getInfo at the end of print statements involving maps
                endOfPrintReplaced = False

                if ("print(" in line and "=" not in line) or checkNextLineForPrint:
                    for i in range(len(line) - 1):
                        if line[len(line) - i - 1] == ")":
                            line = line[: len(line) - i - 1] + ".getInfo())"
                            # print(line)
                            endOfPrintReplaced = True
                            break
                    if endOfPrintReplaced:
                        checkNextLineForPrint = False
                    else:
                        checkNextLineForPrint = True

                # Removes potential commas after imports. Causes tuple type errors
                if line.endswith(","):
                    if "=" in lines[index + 1] and not lines[
                        index + 1
                    ].strip().startswith("'"):
                        line = line[:-1]

                # Changes object argument to individual parameters
                if (
                    line.strip().endswith("({")
                    and not "ee.Dictionary" in line
                    and not ".set(" in line
                    and ".addLayer" not in line
                    and "cast" not in line
                ):
                    line = line.rstrip()[:-1]
                    numIncorrectParameters = numIncorrectParameters + 1

                if numIncorrectParameters > 0:
                    if line.strip().startswith("})"):
                        line = line.replace("})", ")")
                        numIncorrectParameters = numIncorrectParameters - 1
                    else:
                        if currentDictionaryScopeDepth < 1:
                            line = line.replace(": ", "=")
                            line = line.replace(":", " =")

                if "= {" in line and "({" not in line:
                    currentDictionaryScopeDepth += 1

                if "}" in line and currentDictionaryScopeDepth > 0:
                    currentDictionaryScopeDepth -= 1

                # if ".style(" in line and ".style(**" not in line:
                #     line = line.replace(".style(", ".style(**")

                if line.endswith("+"):
                    line = line + " \\"
                elif line.endswith(";"):
                    line = line[:-1]

                if line.lstrip().startswith("*"):
                    line = line.replace("*", "#")

                if (
                    (":" in line)
                    and (not line.strip().startswith("#"))
                    and (not line.strip().startswith("def"))
                    and (not line.strip().startswith("."))
                    and (not line.strip().startswith("if"))
                ):
                    line = format_params(line)

                if (
                    index < (len(lines) - 1)
                    and line.lstrip().startswith("#")
                    and lines[index + 1].lstrip().startswith(".")
                ):
                    line = ""

                if (
                    "#" in line
                    and not line.strip().startswith("#")
                    and not line[line.index("#") - 1] == "'"
                ):
                    line = line[: line.index("#")]

                if line.lstrip().startswith("."):
                    if lines[index - 1].strip().endswith("\\") and lines[
                        index - 1
                    ].strip().startswith("#"):
                        lines[index - 1] = "\\"
                    if "#" in line:
                        line = line[: line.index("#")]
                    output = output.rstrip() + " " + "\\" + "\n" + line + "\n"
                else:
                    output += line + "\n"

    if show_map:
        output += Map

    out_dir = os.path.dirname(out_file)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    with open(out_file, "w", encoding="utf-8") as f:
        f.write(output)

    return output

js_to_python_dir(in_dir, out_dir=None, use_qgis=True, github_repo=None, import_geemap=False, Map='m')

Converts all Earth Engine JavaScripts in a folder recursively to Python scripts.

1
2
3
4
Args:
    in_dir (str): The input folder containing Earth Engine JavaScripts.
    out_dir (str, optional): The output folder containing Earth Engine Python scripts. Defaults to None.
    use_qgis (bool, optional): Whether to add "from ee_plugin import Map

" to the output script. Defaults to True. github_repo (str, optional): GitHub repo url. Defaults to None. import_geemap (bool, optional): Whether to add "import geemap" to the output script. Defaults to False. Map (str, optional): The name of the map variable. Defaults to "m".

Source code in geemap/conversion.py
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
def js_to_python_dir(
    in_dir,
    out_dir=None,
    use_qgis=True,
    github_repo=None,
    import_geemap=False,
    Map="m",
):
    """Converts all Earth Engine JavaScripts in a folder recursively to Python scripts.

    Args:
        in_dir (str): The input folder containing Earth Engine JavaScripts.
        out_dir (str, optional): The output folder containing Earth Engine Python scripts. Defaults to None.
        use_qgis (bool, optional): Whether to add "from ee_plugin import Map \n" to the output script. Defaults to True.
        github_repo (str, optional): GitHub repo url. Defaults to None.
        import_geemap (bool, optional): Whether to add "import geemap" to the output script. Defaults to False.
        Map (str, optional): The name of the map variable. Defaults to "m".
    """
    print("Converting Earth Engine JavaScripts to Python scripts...\n")
    in_dir = os.path.abspath(in_dir)
    if out_dir is None:
        out_dir = in_dir
    elif not os.path.exists(out_dir):
        out_dir = os.path.abspath(out_dir)
        os.makedirs(out_dir)
    else:
        out_dir = os.path.abspath(out_dir)

    files = list(Path(in_dir).rglob("*.js"))

    for index, in_file in enumerate(files):
        print(f"Processing {index + 1}/{len(files)}: {in_file}")
        # if use_qgis:
        #     out_file = os.path.splitext(in_file)[0] + "_qgis.py"
        # else:
        out_file = os.path.splitext(in_file)[0] + "_geemap.py"
        out_file = out_file.replace(in_dir, out_dir)
        js_to_python(
            in_file,
            out_file,
            use_qgis,
            github_repo,
            import_geemap=import_geemap,
            Map=Map,
        )

Link a slider and a label.

Parameters:

Name Type Description Default
slider IntSlider | FloatSlider

The slider.

required
label Label

The label.

required
Source code in geemap/common.py
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
def jslink_slider_label(slider, label):
    """Link a slider and a label.

    Args:
        slider (ipywidgets.IntSlider | ipywidgets.FloatSlider): The slider.
        label (ipywidgets.Label): The label.
    """

    def update_label(change):
        if change["name"]:
            label.value = str(change["new"])

    slider.observe(update_label, "value")

kml_to_ee(in_kml, **kwargs)

Converts a KML to ee.FeatureCollection.

Parameters:

Name Type Description Default
in_kml str

The file path to the input KML.

required

Raises:

Type Description
FileNotFoundError

The input KML could not be found.

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
def kml_to_ee(in_kml, **kwargs):
    """Converts a KML to ee.FeatureCollection.

    Args:
        in_kml (str): The file path to the input KML.

    Raises:
        FileNotFoundError: The input KML could not be found.

    Returns:
        object: ee.FeatureCollection
    """

    warnings.filterwarnings("ignore")

    in_kml = os.path.abspath(in_kml)
    if not os.path.exists(in_kml):
        raise FileNotFoundError("The input KML could not be found.")

    out_json = os.path.join(os.getcwd(), "tmp.geojson")

    check_package(name="geopandas", URL="https://geopandas.org")

    kml_to_geojson(in_kml, out_json, **kwargs)
    ee_object = geojson_to_ee(out_json)
    os.remove(out_json)
    return ee_object

kml_to_geojson(in_kml, out_geojson=None, **kwargs)

Converts a KML to GeoJSON.

Parameters:

Name Type Description Default
in_kml str

The file path to the input KML.

required
out_geojson str

The file path to the output GeoJSON. Defaults to None.

None

Raises:

Type Description
FileNotFoundError

The input KML could not be found.

TypeError

The output must be a GeoJSON.

Source code in geemap/common.py
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
def kml_to_geojson(in_kml, out_geojson=None, **kwargs):
    """Converts a KML to GeoJSON.

    Args:
        in_kml (str): The file path to the input KML.
        out_geojson (str): The file path to the output GeoJSON. Defaults to None.

    Raises:
        FileNotFoundError: The input KML could not be found.
        TypeError: The output must be a GeoJSON.
    """

    warnings.filterwarnings("ignore")

    in_kml = os.path.abspath(in_kml)
    if not os.path.exists(in_kml):
        raise FileNotFoundError("The input KML could not be found.")

    if out_geojson is not None:
        out_geojson = os.path.abspath(out_geojson)
        ext = os.path.splitext(out_geojson)[1].lower()
        if ext not in [".json", ".geojson"]:
            raise TypeError("The output file must be a GeoJSON.")

        out_dir = os.path.dirname(out_geojson)
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    check_package(name="geopandas", URL="https://geopandas.org")

    import geopandas as gpd
    import fiona

    # print(fiona.supported_drivers)
    fiona.drvsupport.supported_drivers["KML"] = "rw"
    gdf = gpd.read_file(in_kml, driver="KML", **kwargs)

    if out_geojson is not None:
        gdf.to_file(out_geojson, driver="GeoJSON", **kwargs)
    else:
        return gdf.__geo_interface__

kml_to_shp(in_kml, out_shp, **kwargs)

Converts a KML to shapefile.

Parameters:

Name Type Description Default
in_kml str

The file path to the input KML.

required
out_shp str

The file path to the output shapefile.

required

Raises:

Type Description
FileNotFoundError

The input KML could not be found.

TypeError

The output must be a shapefile.

Source code in geemap/common.py
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
def kml_to_shp(in_kml, out_shp, **kwargs):
    """Converts a KML to shapefile.

    Args:
        in_kml (str): The file path to the input KML.
        out_shp (str): The file path to the output shapefile.

    Raises:
        FileNotFoundError: The input KML could not be found.
        TypeError: The output must be a shapefile.
    """

    warnings.filterwarnings("ignore")

    in_kml = os.path.abspath(in_kml)
    if not os.path.exists(in_kml):
        raise FileNotFoundError("The input KML could not be found.")

    out_shp = os.path.abspath(out_shp)
    if not out_shp.endswith(".shp"):
        raise TypeError("The output must be a shapefile.")

    out_dir = os.path.dirname(out_shp)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    check_package(name="geopandas", URL="https://geopandas.org")

    import geopandas as gpd
    import fiona

    # import fiona
    # print(fiona.supported_drivers)
    fiona.drvsupport.supported_drivers["KML"] = "rw"
    df = gpd.read_file(in_kml, driver="KML", **kwargs)
    df.to_file(out_shp, **kwargs)

kmz_to_ee(in_kmz, **kwargs)

Converts a KMZ to ee.FeatureCollection.

Parameters:

Name Type Description Default
in_kmz str

The file path to the input KMZ.

required

Raises:

Type Description
FileNotFoundError

The input KMZ could not be found.

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
def kmz_to_ee(in_kmz, **kwargs):
    """Converts a KMZ to ee.FeatureCollection.

    Args:
        in_kmz (str): The file path to the input KMZ.

    Raises:
        FileNotFoundError: The input KMZ could not be found.

    Returns:
        object: ee.FeatureCollection
    """
    in_kmz = os.path.abspath(in_kmz)
    if not os.path.exists(in_kmz):
        raise FileNotFoundError("The input KMZ could not be found.")

    out_dir = os.path.dirname(in_kmz)
    out_kml = os.path.join(out_dir, "doc.kml")
    with zipfile.ZipFile(in_kmz, "r") as zip_ref:
        zip_ref.extractall(out_dir)

    fc = kml_to_ee(out_kml, **kwargs)
    os.remove(out_kml)
    return fc

landsat_scaling(image, thermal_bands=True, apply_fmask=False)

Apply scaling factors to a Landsat image. See an example at https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2

Parameters:

Name Type Description Default
image Image

The input Landsat image.

required
thermal_bands bool

Whether to apply scaling to thermal bands. Defaults to True.

True
apply_fmask bool

Whether to apply Fmask cloud mask. Defaults to False.

False

Returns:

Type Description

ee.Image: The scaled Landsat image.

Source code in geemap/common.py
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
def landsat_scaling(image, thermal_bands=True, apply_fmask=False):
    """Apply scaling factors to a Landsat image. See an example at
        https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2

    Args:
        image (ee.Image): The input Landsat image.
        thermal_bands (bool, optional): Whether to apply scaling to thermal bands. Defaults to True.
        apply_fmask (bool, optional): Whether to apply Fmask cloud mask. Defaults to False.

    Returns:
        ee.Image: The scaled Landsat image.
    """

    # Apply the scaling factors to the appropriate bands.
    opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2)
    if thermal_bands:
        thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149)

    if apply_fmask:
        # Replace the original bands with the scaled ones and apply the masks.
        # Bit 0 - Fill
        # Bit 1 - Dilated Cloud
        # Bit 2 - Cirrus
        # Bit 3 - Cloud
        # Bit 4 - Cloud Shadow
        qaMask = image.select("QA_PIXEL").bitwiseAnd(int("11111", 2)).eq(0)
        if thermal_bands:
            return (
                image.addBands(thermalBands, None, True)
                .addBands(opticalBands, None, True)
                .updateMask(qaMask)
            )
        else:
            return image.addBands(opticalBands, None, True).updateMask(qaMask)

    else:
        if thermal_bands:
            return image.addBands(thermalBands, None, True).addBands(
                opticalBands, None, True
            )
        else:
            return image.addBands(opticalBands, None, True)

landsat_timelapse(roi=None, out_gif=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue'], overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1)

Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
out_gif str

File path to the output animated GIF. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

1984
end_year int

Ending year for the timelapse. Defaults to None, which will use the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
bands list

Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].

['NIR', 'Red', 'Green']
vis_params dict

Visualization parameters. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 5.

5
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
nd_bands list

A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).

None
nd_threshold float

The threshold for extracting pixels from the normalized difference band.

0
nd_palette list

The color palette to use for displaying the normalized difference band.

['black', 'blue']
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Date format for the timelapse. Defaults to None.

None
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
step int

Step size for the timelapse. Defaults to 1.

1

Returns:

Name Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
def landsat_timelapse(
    roi=None,
    out_gif=None,
    start_year=1984,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    bands=["NIR", "Red", "Green"],
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    apply_fmask=True,
    nd_bands=None,
    nd_threshold=0,
    nd_palette=["black", "blue"],
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    date_format=None,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
    step=1,
):
    """Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 5.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
        nd_threshold (float, optional): The threshold for extracting pixels from the normalized difference band.
        nd_palette (list, optional): The color palette to use for displaying the normalized difference band.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Date format for the timelapse. Defaults to None.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        step (int, optional): Step size for the timelapse. Defaults to 1.

    Returns:
        str: File path to the output GIF image.
    """

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )
    elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
        roi = roi.geometry()
    elif isinstance(roi, ee.Geometry):
        pass
    else:
        raise ValueError("The provided roi is invalid. It must be an ee.Geometry")

    if out_gif is None:
        out_gif = temp_file_path(".gif")
    elif not out_gif.endswith(".gif"):
        raise ValueError("The output file must end with .gif")
    else:
        out_gif = os.path.abspath(out_gif)
    out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if end_year is None:
        end_year = get_current_year()

    allowed_bands = ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"]

    if len(bands) == 3 and all(x in allowed_bands for x in bands):
        pass
    else:
        raise Exception(
            "You can only select 3 bands from the following: {}".format(
                ", ".join(allowed_bands)
            )
        )

    if nd_bands is not None:
        if len(nd_bands) == 2 and all(x in allowed_bands[:-1] for x in nd_bands):
            pass
        else:
            raise Exception(
                "You can only select two bands from the following: {}".format(
                    ", ".join(allowed_bands[:-1])
                )
            )

    try:
        if vis_params is None:
            vis_params = {}
            vis_params["bands"] = bands
            vis_params["min"] = 0
            vis_params["max"] = 0.4
            vis_params["gamma"] = [1, 1, 1]
        raw_col = landsat_timeseries(
            roi,
            start_year,
            end_year,
            start_date,
            end_date,
            apply_fmask,
            frequency,
            date_format,
            step,
        )

        col = raw_col.select(bands).map(
            lambda img: img.visualize(**vis_params).set(
                {
                    "system:time_start": img.get("system:time_start"),
                    "system:date": img.get("system:date"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if (
            isinstance(dimensions, int)
            and dimensions > 768
            or isinstance(dimensions, str)
            and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
        ):
            count = col.size().getInfo()
            basename = os.path.basename(out_gif)[:-4]
            names = [
                os.path.join(
                    out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
                )
                for i in range(count)
            ]
            get_image_collection_thumbnails(
                col,
                out_dir,
                vis_params={
                    "min": 0,
                    "max": 255,
                    "bands": ["vis-red", "vis-green", "vis-blue"],
                },
                dimensions=dimensions,
                names=names,
            )
            make_gif(
                names,
                out_gif,
                fps=frames_per_second,
                loop=loop,
                mp4=False,
                clean_up=True,
            )

        else:
            video_args = vis_params.copy()
            video_args["dimensions"] = dimensions
            video_args["region"] = roi
            video_args["framesPerSecond"] = frames_per_second
            video_args["crs"] = crs
            video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
            video_args["min"] = 0
            video_args["max"] = 255

            download_ee_video(col, video_args, out_gif)

        if os.path.exists(out_gif):
            if title is not None and isinstance(title, str):
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=title_xy,
                    text_sequence=title,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )
            if add_text:
                if text_sequence is None:
                    text_sequence = col.aggregate_array("system:date").getInfo()
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=text_xy,
                    text_sequence=text_sequence,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )

        if nd_bands is not None:
            nd_images = landsat_ts_norm_diff(
                raw_col, bands=nd_bands, threshold=nd_threshold
            )
            out_nd_gif = out_gif.replace(".gif", "_nd.gif")
            landsat_ts_norm_diff_gif(
                nd_images,
                out_gif=out_nd_gif,
                vis_params=None,
                palette=nd_palette,
                dimensions=dimensions,
                frames_per_second=frames_per_second,
            )

        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)

        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        raise Exception(e)

landsat_timelapse_legacy(roi=None, out_gif=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue'], overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False)

Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
out_gif str

File path to the output animated GIF. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

1984
end_year int

Ending year for the timelapse. Defaults to None, which means the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
bands list

Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].

['NIR', 'Red', 'Green']
vis_params dict

Visualization parameters. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 5.

5
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
nd_bands list

A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).

None
nd_threshold float

The threshold for extracting pixels from the normalized difference band.

0
nd_palette list

The color palette to use for displaying the normalized difference band.

['black', 'blue']
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Date format for the timelapse. Defaults to None.

None
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Returns:

Name Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
def landsat_timelapse_legacy(
    roi=None,
    out_gif=None,
    start_year=1984,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    bands=["NIR", "Red", "Green"],
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    apply_fmask=True,
    nd_bands=None,
    nd_threshold=0,
    nd_palette=["black", "blue"],
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    date_format=None,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
):
    """Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 5.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
        nd_threshold (float, optional): The threshold for extracting pixels from the normalized difference band.
        nd_palette (list, optional): The color palette to use for displaying the normalized difference band.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Date format for the timelapse. Defaults to None.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Returns:
        str: File path to the output GIF image.
    """

    if end_year is None:
        end_year = get_current_year()

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )
    elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
        roi = roi.geometry()
    elif isinstance(roi, ee.Geometry):
        pass
    else:
        raise ValueError("The provided roi is invalid. It must be an ee.Geometry")

    if out_gif is None:
        out_gif = temp_file_path(".gif")
    elif not out_gif.endswith(".gif"):
        raise ValueError("The output file must end with .gif")
    else:
        out_gif = os.path.abspath(out_gif)
    out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    allowed_bands = ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"]

    if len(bands) == 3 and all(x in allowed_bands for x in bands):
        pass
    else:
        raise Exception(
            "You can only select 3 bands from the following: {}".format(
                ", ".join(allowed_bands)
            )
        )

    if nd_bands is not None:
        if len(nd_bands) == 2 and all(x in allowed_bands[:-1] for x in nd_bands):
            pass
        else:
            raise Exception(
                "You can only select two bands from the following: {}".format(
                    ", ".join(allowed_bands[:-1])
                )
            )

    try:
        if vis_params is None:
            vis_params = {}
            vis_params["bands"] = bands
            vis_params["min"] = 0
            vis_params["max"] = 4000
            vis_params["gamma"] = [1, 1, 1]
        raw_col = landsat_timeseries(
            roi,
            start_year,
            end_year,
            start_date,
            end_date,
            apply_fmask,
            frequency,
            date_format,
        )

        col = raw_col.select(bands).map(
            lambda img: img.visualize(**vis_params).set(
                {
                    "system:time_start": img.get("system:time_start"),
                    "system:date": img.get("system:date"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if (
            isinstance(dimensions, int)
            and dimensions > 768
            or isinstance(dimensions, str)
            and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
        ):
            count = col.size().getInfo()
            basename = os.path.basename(out_gif)[:-4]
            names = [
                os.path.join(
                    out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
                )
                for i in range(count)
            ]
            get_image_collection_thumbnails(
                col,
                out_dir,
                vis_params={
                    "min": 0,
                    "max": 255,
                    "bands": ["vis-red", "vis-green", "vis-blue"],
                },
                dimensions=dimensions,
                names=names,
            )
            make_gif(
                names,
                out_gif,
                fps=frames_per_second,
                loop=loop,
                mp4=False,
                clean_up=True,
            )

        else:
            video_args = vis_params.copy()
            video_args["dimensions"] = dimensions
            video_args["region"] = roi
            video_args["framesPerSecond"] = frames_per_second
            video_args["crs"] = crs
            video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
            video_args["min"] = 0
            video_args["max"] = 255

            download_ee_video(col, video_args, out_gif)

        if os.path.exists(out_gif):
            if title is not None and isinstance(title, str):
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=title_xy,
                    text_sequence=title,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )
            if add_text:
                if text_sequence is None:
                    text_sequence = col.aggregate_array("system:date").getInfo()
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=text_xy,
                    text_sequence=text_sequence,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )

        if nd_bands is not None:
            nd_images = landsat_ts_norm_diff(
                raw_col, bands=nd_bands, threshold=nd_threshold
            )
            out_nd_gif = out_gif.replace(".gif", "_nd.gif")
            landsat_ts_norm_diff_gif(
                nd_images,
                out_gif=out_nd_gif,
                vis_params=None,
                palette=nd_palette,
                dimensions=dimensions,
                frames_per_second=frames_per_second,
            )

        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)

        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        raise Exception(e)

landsat_timeseries(roi=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', apply_fmask=True, frequency='year', date_format=None, step=1)

Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

1984
end_year int

Ending year for the timelapse. Defaults to None, which means the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Format of the date. Defaults to None.

None
step int

The step size to use when creating the date sequence. Defaults to 1.

1
Source code in geemap/timelapse.py
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
def landsat_timeseries(
    roi=None,
    start_year=1984,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    apply_fmask=True,
    frequency="year",
    date_format=None,
    step=1,
):
    """Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Format of the date. Defaults to None.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
    Returns:
        object: Returns an ImageCollection containing annual Landsat images.
    """

    # Input and output parameters.
    import re

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )

    if end_year is None:
        end_year = get_current_year()

    if not isinstance(roi, ee.Geometry):
        try:
            roi = roi.geometry()
        except Exception as e:
            print("Could not convert the provided roi to ee.Geometry")
            print(e)
            return

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    if frequency not in feq_dict:
        raise ValueError("frequency must be year, quarter, or month.")

    # Setup vars to get dates.
    if (
        isinstance(start_year, int)
        and (start_year >= 1984)
        and (start_year < get_current_year())
    ):
        pass
    else:
        print("The start year must be an integer >= 1984.")
        return

    if (
        isinstance(end_year, int)
        and (end_year > 1984)
        and (end_year <= get_current_year())
    ):
        pass
    else:
        print(f"The end year must be an integer <= {get_current_year()}.")
        return

    if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
        r"[0-9]{2}-[0-9]{2}", end_date
    ):
        pass
    else:
        print("The start date and end date must be month-day, such as 06-10, 09-20")
        return

    try:
        datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
        datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
    except Exception as e:
        print("The input dates are invalid.")
        raise Exception(e)

    def days_between(d1, d2):
        d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
        d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
        return abs((d2 - d1).days)

    n_days = days_between(
        str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
    )
    start_month = int(start_date[:2])
    start_day = int(start_date[3:5])

    # Landsat collection preprocessingEnabled
    # Get Landsat surface reflectance collections for OLI, ETM+ and TM sensors.
    LC09col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2")
    LC08col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")
    LE07col = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2")
    LT05col = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2")
    LT04col = ee.ImageCollection("LANDSAT/LT04/C02/T1_L2")

    # Define a collection filter by date, bounds, and quality.
    def colFilter(col, roi, start_date, end_date):
        return col.filterBounds(roi).filterDate(start_date, end_date)

    # Function to get and rename bands of interest from OLI.
    def renameOli(img):
        return img.select(
            ["SR_B2", "SR_B3", "SR_B4", "SR_B5", "SR_B6", "SR_B7"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2"],
        )

    # Function to get and rename bands of interest from ETM+.
    def renameEtm(img):
        return img.select(
            ["SR_B1", "SR_B2", "SR_B3", "SR_B4", "SR_B5", "SR_B7"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2"],
        )

    def fmask(image):
        # see https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
        # Bit 0 - Fill
        # Bit 1 - Dilated Cloud
        # Bit 2 - Cirrus
        # Bit 3 - Cloud
        # Bit 4 - Cloud Shadow
        qaMask = image.select("QA_PIXEL").bitwiseAnd(int("11111", 2)).eq(0)

        # Apply the scaling factors to the appropriate bands.
        opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2)

        # Replace the original bands with the scaled ones and apply the masks.
        return image.addBands(opticalBands, None, True).updateMask(qaMask)

    # Define function to prepare OLI images.
    def prepOli(img):
        orig = img
        if apply_fmask:
            img = fmask(img)
        else:
            img = img.select("SR_B.").multiply(0.0000275).add(-0.2)
        img = renameOli(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Define function to prepare ETM+ images.
    def prepEtm(img):
        orig = img
        if apply_fmask:
            img = fmask(img)
        else:
            img = img.select("SR_B.").multiply(0.0000275).add(-0.2)
        img = renameEtm(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Get annual median collection.
    def getAnnualComp(y):
        startDate = ee.Date.fromYMD(
            ee.Number(y), ee.Number(start_month), ee.Number(start_day)
        )
        endDate = startDate.advance(ee.Number(n_days), "day")

        # Filter collections and prepare them for merging.
        LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return yearImg.set(
            {
                "year": y,
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get monthly median collection.
    def getMonthlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(1, "month")

        # Filter collections and prepare them for merging.
        LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)

        monthImg = col.median()
        nBands = monthImg.bandNames().size()
        monthImg = ee.Image(ee.Algorithms.If(nBands, monthImg, dummyImg))
        return monthImg.set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get quarterly median collection.
    def getQuarterlyComp(startDate):
        startDate = ee.Date(startDate)

        endDate = startDate.advance(3, "month")

        # Filter collections and prepare them for merging.
        LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)

        quarter = col.median()
        nBands = quarter.bandNames().size()
        quarter = ee.Image(ee.Algorithms.If(nBands, quarter, dummyImg))
        return quarter.set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Make a dummy image for missing years.
    bandNames = ee.List(["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"])
    fillerValues = ee.List.repeat(0, bandNames.size())
    dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()

    # Make list of /quarterly/monthly image composites.

    if frequency == "year":
        years = ee.List.sequence(start_year, end_year, step)
        imgList = years.map(getAnnualComp)
    elif frequency == "quarter":
        quarters = date_sequence(
            str(start_year) + "-01-01",
            str(end_year) + "-12-31",
            "quarter",
            date_format,
            step,
        )
        imgList = quarters.map(getQuarterlyComp)
    elif frequency == "month":
        months = date_sequence(
            str(start_year) + "-01-01",
            str(end_year) + "-12-31",
            "month",
            date_format,
            step,
        )
        imgList = months.map(getMonthlyComp)

    # Convert image composite list to collection
    imgCol = ee.ImageCollection.fromImages(imgList)

    imgCol = imgCol.map(
        lambda img: img.clip(roi).set({"coordinates": roi.coordinates()})
    )

    return imgCol

landsat_timeseries_legacy(roi=None, start_year=1984, end_year=2021, start_date='06-10', end_date='09-20', apply_fmask=True, frequency='year', date_format=None)

Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Args: roi (object, optional): Region of interest to create the timelapse. Defaults to None. start_year (int, optional): Starting year for the timelapse. Defaults to 1984. end_year (int, optional): Ending year for the timelapse. Defaults to 2021. start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. frequency (str, optional): Frequency of the timelapse. Defaults to 'year'. date_format (str, optional): Format of the date. Defaults to None. Returns: object: Returns an ImageCollection containing annual Landsat images.

Source code in geemap/timelapse.py
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
def landsat_timeseries_legacy(
    roi=None,
    start_year=1984,
    end_year=2021,
    start_date="06-10",
    end_date="09-20",
    apply_fmask=True,
    frequency="year",
    date_format=None,
):
    """Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to 2021.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Format of the date. Defaults to None.
    Returns:
        object: Returns an ImageCollection containing annual Landsat images.
    """

    ################################################################################
    # Input and output parameters.
    import re

    # import datetime

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )

    if not isinstance(roi, ee.Geometry):
        try:
            roi = roi.geometry()
        except Exception as e:
            print("Could not convert the provided roi to ee.Geometry")
            print(e)
            return

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    if frequency not in feq_dict:
        raise ValueError("frequency must be year, quarter, or month.")

    ################################################################################

    # Setup vars to get dates.
    if isinstance(start_year, int) and (start_year >= 1984) and (start_year < 2021):
        pass
    else:
        print("The start year must be an integer >= 1984.")
        return

    if isinstance(end_year, int) and (end_year > 1984) and (end_year <= 2021):
        pass
    else:
        print("The end year must be an integer <= 2021.")
        return

    if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
        r"[0-9]{2}-[0-9]{2}", end_date
    ):
        pass
    else:
        print("The start date and end date must be month-day, such as 06-10, 09-20")
        return

    try:
        datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
        datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
    except Exception as e:
        print("The input dates are invalid.")
        raise Exception(e)

    def days_between(d1, d2):
        d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
        d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
        return abs((d2 - d1).days)

    n_days = days_between(
        str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
    )
    start_month = int(start_date[:2])
    start_day = int(start_date[3:5])
    # start_date = str(start_year) + "-" + start_date
    # end_date = str(end_year) + "-" + end_date

    # # Define a collection filter by date, bounds, and quality.
    # def colFilter(col, aoi):  # , startDate, endDate):
    #     return(col.filterBounds(aoi))

    # Landsat collection preprocessingEnabled
    # Get Landsat surface reflectance collections for OLI, ETM+ and TM sensors.
    LC08col = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR")
    LE07col = ee.ImageCollection("LANDSAT/LE07/C01/T1_SR")
    LT05col = ee.ImageCollection("LANDSAT/LT05/C01/T1_SR")
    LT04col = ee.ImageCollection("LANDSAT/LT04/C01/T1_SR")

    # Define a collection filter by date, bounds, and quality.
    def colFilter(col, roi, start_date, end_date):
        return col.filterBounds(roi).filterDate(start_date, end_date)
        # .filter('CLOUD_COVER < 5')
        # .filter('GEOMETRIC_RMSE_MODEL < 15')
        # .filter('IMAGE_QUALITY == 9 || IMAGE_QUALITY_OLI == 9'))

    # Function to get and rename bands of interest from OLI.
    def renameOli(img):
        return img.select(
            ["B2", "B3", "B4", "B5", "B6", "B7", "pixel_qa"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"],
        )

    # Function to get and rename bands of interest from ETM+.
    def renameEtm(img):
        return img.select(
            ["B1", "B2", "B3", "B4", "B5", "B7", "pixel_qa"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"],
        )

    # Add NBR for LandTrendr segmentation.
    def calcNbr(img):
        return img.addBands(
            img.normalizedDifference(["NIR", "SWIR2"]).multiply(-10000).rename("NBR")
        ).int16()

    # Define function to mask out clouds and cloud shadows in images.
    # Use CFmask band included in USGS Landsat SR image product.
    def fmask(img):
        cloudShadowBitMask = 1 << 3
        cloudsBitMask = 1 << 5
        qa = img.select("pixel_qa")
        mask = (
            qa.bitwiseAnd(cloudShadowBitMask)
            .eq(0)
            .And(qa.bitwiseAnd(cloudsBitMask).eq(0))
        )
        return img.updateMask(mask)

    # Define function to prepare OLI images.
    def prepOli(img):
        orig = img
        img = renameOli(img)
        if apply_fmask:
            img = fmask(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Define function to prepare ETM+ images.
    def prepEtm(img):
        orig = img
        img = renameEtm(img)
        if apply_fmask:
            img = fmask(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Get annual median collection.
    def getAnnualComp(y):
        startDate = ee.Date.fromYMD(
            ee.Number(y), ee.Number(start_month), ee.Number(start_day)
        )
        endDate = startDate.advance(ee.Number(n_days), "day")

        # Filter collections and prepare them for merging.
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "year": y,
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get monthly median collection.
    def getMonthlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(1, "month")

        # Filter collections and prepare them for merging.
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)

        monthImg = col.median()
        nBands = monthImg.bandNames().size()
        monthImg = ee.Image(ee.Algorithms.If(nBands, monthImg, dummyImg))
        return calcNbr(monthImg).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get quarterly median collection.
    def getQuarterlyComp(startDate):
        startDate = ee.Date(startDate)

        endDate = startDate.advance(3, "month")

        # Filter collections and prepare them for merging.
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)

        quarter = col.median()
        nBands = quarter.bandNames().size()
        quarter = ee.Image(ee.Algorithms.If(nBands, quarter, dummyImg))
        return calcNbr(quarter).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    ################################################################################

    # Make a dummy image for missing years.
    bandNames = ee.List(["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"])
    fillerValues = ee.List.repeat(0, bandNames.size())
    dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()

    # ################################################################################
    # # Get a list of years
    # years = ee.List.sequence(start_year, end_year)

    # ################################################################################
    # # Make list of annual image composites.
    # imgList = years.map(getAnnualComp)

    if frequency == "year":
        years = ee.List.sequence(start_year, end_year)
        imgList = years.map(getAnnualComp)
    elif frequency == "quarter":
        quarters = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "quarter", date_format
        )
        imgList = quarters.map(getQuarterlyComp)
    elif frequency == "month":
        months = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "month", date_format
        )
        imgList = months.map(getMonthlyComp)

    # Convert image composite list to collection
    imgCol = ee.ImageCollection.fromImages(imgList)

    imgCol = imgCol.map(
        lambda img: img.clip(roi).set({"coordinates": roi.coordinates()})
    )

    return imgCol

landsat_ts_norm_diff(collection, bands=['Green', 'SWIR1'], threshold=0)

Computes a normalized difference index based on a Landsat timeseries.

Parameters:

Name Type Description Default
collection ImageCollection

A Landsat timeseries.

required
bands list

The bands to use for computing normalized difference. Defaults to ['Green', 'SWIR1'].

['Green', 'SWIR1']
threshold float

The threshold to extract features. Defaults to 0.

0

Returns:

Type Description

ee.ImageCollection: An ImageCollection containing images with values greater than the specified threshold.

Source code in geemap/timelapse.py
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
def landsat_ts_norm_diff(collection, bands=["Green", "SWIR1"], threshold=0):
    """Computes a normalized difference index based on a Landsat timeseries.

    Args:
        collection (ee.ImageCollection): A Landsat timeseries.
        bands (list, optional): The bands to use for computing normalized difference. Defaults to ['Green', 'SWIR1'].
        threshold (float, optional): The threshold to extract features. Defaults to 0.

    Returns:
        ee.ImageCollection: An ImageCollection containing images with values greater than the specified threshold.
    """
    nd_images = collection.map(
        lambda img: img.normalizedDifference(bands)
        .gt(threshold)
        .copyProperties(img, img.propertyNames())
    )
    return nd_images

landsat_ts_norm_diff_gif(collection, out_gif=None, vis_params=None, palette=['black', 'blue'], dimensions=768, frames_per_second=10, mp4=False)

[summary]

Parameters:

Name Type Description Default
collection ImageCollection

The normalized difference Landsat timeseires.

required
out_gif str

File path to the output animated GIF. Defaults to None.

None
vis_params dict

Visualization parameters. Defaults to None.

None
palette list

The palette to use for visualizing the timelapse. Defaults to ['black', 'blue']. The first color in the list is the background color.

['black', 'blue']
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

10
mp4 bool

If True, the output gif will be converted to mp4. Defaults to False.

False

Returns:

Name Type Description
str

File path to the output animated GIF.

Source code in geemap/timelapse.py
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
def landsat_ts_norm_diff_gif(
    collection,
    out_gif=None,
    vis_params=None,
    palette=["black", "blue"],
    dimensions=768,
    frames_per_second=10,
    mp4=False,
):
    """[summary]

    Args:
        collection (ee.ImageCollection): The normalized difference Landsat timeseires.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        palette (list, optional): The palette to use for visualizing the timelapse. Defaults to ['black', 'blue']. The first color in the list is the background color.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        mp4 (bool, optional): If True, the output gif will be converted to mp4. Defaults to False.

    Returns:
        str: File path to the output animated GIF.
    """
    coordinates = ee.Image(collection.first()).get("coordinates")
    roi = ee.Geometry.Polygon(coordinates, None, False)

    if out_gif is None:
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        filename = "landsat_ts_nd_" + random_string() + ".gif"
        out_gif = os.path.join(out_dir, filename)
    elif not out_gif.endswith(".gif"):
        raise Exception("The output file must end with .gif")

    bands = ["nd"]
    if vis_params is None:
        vis_params = {}
        vis_params["bands"] = bands
        vis_params["palette"] = palette

    video_args = vis_params.copy()
    video_args["dimensions"] = dimensions
    video_args["region"] = roi
    video_args["framesPerSecond"] = frames_per_second
    video_args["crs"] = "EPSG:3857"

    if "bands" not in video_args.keys():
        video_args["bands"] = bands

    download_ee_video(collection, video_args, out_gif)

    if os.path.exists(out_gif):
        reduce_gif_size(out_gif)

    if mp4:
        out_mp4 = out_gif.replace(".gif", ".mp4")
        gif_to_mp4(out_gif, out_mp4)

latitude_grid(step=1.0, west=-180, east=180, south=-85, north=85)

Create a latitude grid.

Parameters:

Name Type Description Default
step float

The step size in degrees. Defaults to 1.0.

1.0
west int

The west boundary in degrees. Defaults to -180.

-180
east int

The east boundary in degrees. Defaults to 180.

180
south int

The south boundary in degrees. Defaults to -85.

-85
north int

The north boundary in degrees. Defaults to 85.

85

Returns:

Type Description

ee.FeatureCollection: A feature collection of latitude grids.

Source code in geemap/common.py
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
def latitude_grid(step=1.0, west=-180, east=180, south=-85, north=85):
    """Create a latitude grid.

    Args:
        step (float, optional): The step size in degrees. Defaults to 1.0.
        west (int, optional): The west boundary in degrees. Defaults to -180.
        east (int, optional): The east boundary in degrees. Defaults to 180.
        south (int, optional): The south boundary in degrees. Defaults to -85.
        north (int, optional): The north boundary in degrees. Defaults to 85.

    Returns:
        ee.FeatureCollection: A feature collection of latitude grids.
    """
    values = ee.List.sequence(south, north - step, step)

    def create_feature(lat):
        return ee.Feature(
            ee.Geometry.BBox(west, lat, east, ee.Number(lat).add(step))
        ).set(
            {
                "south": lat,
                "west": west,
                "north": ee.Number(lat).add(step),
                "east": east,
            }
        )

    features = ee.FeatureCollection(values.map(create_feature))
    return features

latlon_from_text(location)

Extracts latlon from text.

Parameters:

Name Type Description Default
location str

A pair of latlon coordinates separated by comma or space.

required

Returns:

Name Type Description
bool

Returns (lat, lon) if valid.

Source code in geemap/common.py
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
def latlon_from_text(location):
    """Extracts latlon from text.

    Args:
        location (str): A pair of latlon coordinates separated by comma or space.

    Returns:
        bool: Returns (lat, lon) if valid.
    """
    latlon = []
    try:
        if "," in location:
            latlon = [float(x) for x in location.split(",")]
        elif " " in location:
            latlon = [float(x) for x in location.split(" ")]
        else:
            print(
                "The lat-lon coordinates should be numbers only and separated by comma or space, such as 40.2, -100.3"
            )
            return None

        lat, lon = latlon[0], latlon[1]
        if lat >= -90 and lat <= 90 and lon >= -180 and lon <= 180:
            return lat, lon
        else:
            return None

    except Exception as e:
        print(e)
        print(
            "The lat-lon coordinates should be numbers only and separated by comma or space, such as 40.2, -100.3"
        )
        return None

latlon_grid(lat_step=1.0, lon_step=1.0, west=-180, east=180, south=-85, north=85)

Create a rectangular grid of latitude and longitude.

Parameters:

Name Type Description Default
lat_step float

The step size in degrees. Defaults to 1.0.

1.0
lon_step float

The step size in degrees. Defaults to 1.0.

1.0
west int

The west boundary in degrees. Defaults to -180.

-180
east int

The east boundary in degrees. Defaults to 180.

180
south int

The south boundary in degrees. Defaults to -85.

-85
north int

The north boundary in degrees. Defaults to 85.

85

Returns:

Type Description

ee.FeatureCollection: A feature collection of latitude and longitude grids.

Source code in geemap/common.py
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
def latlon_grid(lat_step=1.0, lon_step=1.0, west=-180, east=180, south=-85, north=85):
    """Create a rectangular grid of latitude and longitude.

    Args:
        lat_step (float, optional): The step size in degrees. Defaults to 1.0.
        lon_step (float, optional): The step size in degrees. Defaults to 1.0.
        west (int, optional): The west boundary in degrees. Defaults to -180.
        east (int, optional): The east boundary in degrees. Defaults to 180.
        south (int, optional): The south boundary in degrees. Defaults to -85.
        north (int, optional): The north boundary in degrees. Defaults to 85.

    Returns:
        ee.FeatureCollection: A feature collection of latitude and longitude grids.
    """
    longitudes = ee.List.sequence(west, east - lon_step, lon_step)
    latitudes = ee.List.sequence(south, north - lat_step, lat_step)

    def create_lat_feature(lat):
        def create_lon_features(lon):
            return ee.Feature(
                ee.Geometry.BBox(
                    lon, lat, ee.Number(lon).add(lon_step), ee.Number(lat).add(lat_step)
                )
            ).set(
                {
                    "south": lat,
                    "west": lon,
                    "north": ee.Number(lat).add(lat_step),
                    "east": ee.Number(lon).add(lon_step),
                }
            )

        return ee.FeatureCollection(longitudes.map(create_lon_features))

    return ee.FeatureCollection(latitudes.map(create_lat_feature)).flatten()

legend_from_ee(ee_class_table)

Extract legend from an Earth Engine class table on the Earth Engine Data Catalog page such as https://developers.google.com/earth-engine/datasets/catalog/MODIS_051_MCD12Q1

Parameters:

Name Type Description Default
ee_class_table str

An Earth Engine class table with triple quotes.

required

Returns:

Name Type Description
dict

Returns a legend dictionary that can be used to create a legend.

Source code in geemap/common.py
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
def legend_from_ee(ee_class_table):
    """Extract legend from an Earth Engine class table on the Earth Engine Data Catalog page
    such as https://developers.google.com/earth-engine/datasets/catalog/MODIS_051_MCD12Q1

    Args:
        ee_class_table (str): An Earth Engine class table with triple quotes.

    Returns:
        dict: Returns a legend dictionary that can be used to create a legend.
    """
    try:
        ee_class_table = ee_class_table.strip()
        lines = ee_class_table.split("\n")[1:]

        if lines[0] == "Value\tColor\tDescription":
            lines = lines[1:]

        legend_dict = {}
        for _, line in enumerate(lines):
            items = line.split("\t")
            items = [item.strip() for item in items]
            color = items[1]
            key = items[0] + " " + items[2]
            legend_dict[key] = color

        return legend_dict

    except Exception as e:
        print(e)

line_chart(data=None, x=None, y=None, color=None, descending=None, max_rows=None, x_label=None, y_label=None, title=None, legend_title=None, width=None, height=500, layout_args={}, **kwargs)

Create a line chart with plotly.express,

Parameters:

Name Type Description Default
data

DataFrame | array-like | dict | str (local file path or HTTP URL) This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.

None
x

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Either x or y can optionally be a list of column references or array_likes, in which case the data will be treated as if it were 'wide' rather than 'long'.

None
y

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Either x or y can optionally be a list of column references or array_likes, in which case the data will be treated as if it were 'wide' rather than 'long'.

None
color

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.

None
descending bool

Whether to sort the data in descending order. Defaults to None.

None
max_rows int

Maximum number of rows to display. Defaults to None.

None
x_label str

Label for the x axis. Defaults to None.

None
y_label str

Label for the y axis. Defaults to None.

None
title str

Title for the plot. Defaults to None.

None
legend_title str

Title for the legend. Defaults to None.

None
width int

Width of the plot in pixels. Defaults to None.

None
height int

Height of the plot in pixels. Defaults to 500.

500
layout_args dict

Layout arguments for the plot to be passed to fig.update_layout(), such as {'title':'Plot Title', 'title_x':0.5}. Defaults to None.

{}
**kwargs

Any additional arguments to pass to plotly.express.bar(), such as:

pattern_shape: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks. facet_row: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction. facet_col: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction. facet_col_wrap: int Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if facet_row or a marginal is set. facet_row_spacing: float between 0 and 1 Spacing between facet rows, in paper units. Default is 0.03 or 0.0.7 when facet_col_wrap is used. facet_col_spacing: float between 0 and 1 Spacing between facet columns, in paper units Default is 0.02. hover_name: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip. hover_data: list of str or int, or Series or array-like, or dict Either a list of names of columns in data_frame, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ':.3f' or '|%a' or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip. custom_data: list of str or int, or Series or array-like Either names of columns in data_frame, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.) text: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels. base: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to position the base of the bar. error_x: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. If error_x_minus is None, error bars will be symmetrical, otherwise error_x is used for the positive direction only. error_x_minus: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored if error_x is None. error_y: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. If error_y_minus is None, error bars will be symmetrical, otherwise error_y is used for the positive direction only. error_y_minus: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored if error_y is None. animation_frame: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames. animation_group: str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching animation_groups will be treated as if they describe the same object in each frame. category_orders: dict with str keys and list of str values (default {}) By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered in data_frame (and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired. labels: dict with str keys and str values (default {}) By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed. color_discrete_sequence: list of str Strings should define valid CSS-colors. When color is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling through color_discrete_sequence in the order described in category_orders, unless the value of color is a key in color_discrete_map. Various useful color sequences are available in the plotly.express.colors submodules, specifically plotly.express.colors.qualitative. color_discrete_map: dict with str keys and str values (default {}) String values should define valid CSS-colors Used to override color_discrete_sequence to assign a specific colors to marks corresponding with specific values. Keys in color_discrete_map should be values in the column denoted by color. Alternatively, if the values of color are valid colors, the string 'identity' may be passed to cause them to be used directly. color_continuous_scale: list of str Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by color contains numeric data. Various useful color scales are available in the plotly.express.colors submodules, specifically plotly.express.colors.sequential, plotly.express.colors.diverging and plotly.express.colors.cyclical. pattern_shape_sequence: list of str Strings should define valid plotly.js patterns-shapes. When pattern_shape is set, values in that column are assigned patterns- shapes by cycling through pattern_shape_sequence in the order described in category_orders, unless the value of pattern_shape is a key in pattern_shape_map. pattern_shape_map: dict with str keys and str values (default {}) Strings values define plotly.js patterns-shapes. Used to override pattern_shape_sequences to assign a specific patterns-shapes to lines corresponding with specific values. Keys in pattern_shape_map should be values in the column denoted by pattern_shape. Alternatively, if the values of pattern_shape are valid patterns-shapes names, the string 'identity' may be passed to cause them to be used directly. range_color: list of two numbers If provided, overrides auto-scaling on the continuous color scale. color_continuous_midpoint: number (default None) If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when using plotly.express.colors.diverging color scales as the inputs to color_continuous_scale. opacity: float Value between 0 and 1. Sets the opacity for markers. orientation: str, one of 'h' for horizontal or 'v' for vertical. (default 'v' if x and y are provided and both continuous or both categorical, otherwise 'v'('h') if x(y) is categorical and y(x) is continuous, otherwise 'v'('h') if only x(y) is provided) barmode: str (default 'relative') One of 'group', 'overlay' or 'relative' In 'relative' mode, bars are stacked above zero for positive values and below zero for negative values. In 'overlay' mode, bars are drawn on top of one another. In 'group' mode, bars are placed beside each other. log_x: boolean (default False) If True, the x-axis is log-scaled in cartesian coordinates. log_y: boolean (default False) If True, the y-axis is log-scaled in cartesian coordinates. range_x: list of two numbers If provided, overrides auto-scaling on the x-axis in cartesian coordinates. range_y: list of two numbers If provided, overrides auto-scaling on the y-axis in cartesian coordinates. text_auto: bool or string (default False) If True or a string, the x or y or z values will be displayed as text, depending on the orientation A string like '.2f' will be interpreted as a texttemplate numeric formatting directive. template: str or dict or plotly.graph_objects.layout.Template instance The figure template name (must be a key in plotly.io.templates) or definition.

{}

Returns:

Type Description

plotly.graph_objs._figure.Figure: A plotly figure object.

Source code in geemap/plot.py
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
def line_chart(
    data=None,
    x=None,
    y=None,
    color=None,
    descending=None,
    max_rows=None,
    x_label=None,
    y_label=None,
    title=None,
    legend_title=None,
    width=None,
    height=500,
    layout_args={},
    **kwargs,
):
    """Create a line chart with plotly.express,

    Args:
        data: DataFrame | array-like | dict | str (local file path or HTTP URL)
            This argument needs to be passed for column names (and not keyword
            names) to be used. Array-like and dict are transformed internally to a
            pandas DataFrame. Optional: if missing, a DataFrame gets constructed
            under the hood using the other arguments.
        x: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            position marks along the x axis in cartesian coordinates. Either `x` or
            `y` can optionally be a list of column references or array_likes,  in
            which case the data will be treated as if it were 'wide' rather than
            'long'.
        y: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            position marks along the y axis in cartesian coordinates. Either `x` or
            `y` can optionally be a list of column references or array_likes,  in
            which case the data will be treated as if it were 'wide' rather than
            'long'.
        color: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            assign color to marks.
        descending (bool, optional): Whether to sort the data in descending order. Defaults to None.
        max_rows (int, optional): Maximum number of rows to display. Defaults to None.
        x_label (str, optional): Label for the x axis. Defaults to None.
        y_label (str, optional): Label for the y axis. Defaults to None.
        title (str, optional): Title for the plot. Defaults to None.
        legend_title (str, optional): Title for the legend. Defaults to None.
        width (int, optional): Width of the plot in pixels. Defaults to None.
        height (int, optional): Height of the plot in pixels. Defaults to 500.
        layout_args (dict, optional): Layout arguments for the plot to be passed to fig.update_layout(),
            such as {'title':'Plot Title', 'title_x':0.5}. Defaults to None.
        **kwargs: Any additional arguments to pass to plotly.express.bar(), such as:

            pattern_shape: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign pattern shapes to marks.
            facet_row: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to facetted subplots in the vertical direction.
            facet_col: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to facetted subplots in the horizontal direction.
            facet_col_wrap: int
                Maximum number of facet columns. Wraps the column variable at this
                width, so that the column facets span multiple rows. Ignored if 0, and
                forced to 0 if `facet_row` or a `marginal` is set.
            facet_row_spacing: float between 0 and 1
                Spacing between facet rows, in paper units. Default is 0.03 or 0.0.7
                when facet_col_wrap is used.
            facet_col_spacing: float between 0 and 1
                Spacing between facet columns, in paper units Default is 0.02.
            hover_name: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like appear in bold
                in the hover tooltip.
            hover_data: list of str or int, or Series or array-like, or dict
                Either a list of names of columns in `data_frame`, or pandas Series, or
                array_like objects or a dict with column names as keys, with values
                True (for default formatting) False (in order to remove this column
                from hover information), or a formatting string, for example ':.3f' or
                '|%a' or list-like data to appear in the hover tooltip or tuples with a
                bool or formatting string as first element, and list-like data to
                appear in hover as second element Values from these columns appear as
                extra data in the hover tooltip.
            custom_data: list of str or int, or Series or array-like
                Either names of columns in `data_frame`, or pandas Series, or
                array_like objects Values from these columns are extra data, to be used
                in widgets or Dash callbacks for example. This data is not user-visible
                but is included in events emitted by the figure (lasso selection etc.)
            text: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like appear in the
                figure as text labels.
            base: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                position the base of the bar.
            error_x: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size x-axis error bars. If `error_x_minus` is `None`, error bars will
                be symmetrical, otherwise `error_x` is used for the positive direction
                only.
            error_x_minus: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size x-axis error bars in the negative direction. Ignored if `error_x`
                is `None`.
            error_y: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size y-axis error bars. If `error_y_minus` is `None`, error bars will
                be symmetrical, otherwise `error_y` is used for the positive direction
                only.
            error_y_minus: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                size y-axis error bars in the negative direction. Ignored if `error_y`
                is `None`.
            animation_frame: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                assign marks to animation frames.
            animation_group: str or int or Series or array-like
                Either a name of a column in `data_frame`, or a pandas Series or
                array_like object. Values from this column or array_like are used to
                provide object-constancy across animation frames: rows with matching
                `animation_group`s will be treated as if they describe the same object
                in each frame.
            category_orders: dict with str keys and list of str values (default `{}`)
                By default, in Python 3.6+, the order of categorical values in axes,
                legends and facets depends on the order in which these values are first
                encountered in `data_frame` (and no order is guaranteed by default in
                Python below 3.6). This parameter is used to force a specific ordering
                of values per column. The keys of this dict should correspond to column
                names, and the values should be lists of strings corresponding to the
                specific display order desired.
            labels: dict with str keys and str values (default `{}`)
                By default, column names are used in the figure for axis titles, legend
                entries and hovers. This parameter allows this to be overridden. The
                keys of this dict should correspond to column names, and the values
                should correspond to the desired label to be displayed.
            color_discrete_sequence: list of str
                Strings should define valid CSS-colors. When `color` is set and the
                values in the corresponding column are not numeric, values in that
                column are assigned colors by cycling through `color_discrete_sequence`
                in the order described in `category_orders`, unless the value of
                `color` is a key in `color_discrete_map`. Various useful color
                sequences are available in the `plotly.express.colors` submodules,
                specifically `plotly.express.colors.qualitative`.
            color_discrete_map: dict with str keys and str values (default `{}`)
                String values should define valid CSS-colors Used to override
                `color_discrete_sequence` to assign a specific colors to marks
                corresponding with specific values. Keys in `color_discrete_map` should
                be values in the column denoted by `color`. Alternatively, if the
                values of `color` are valid colors, the string `'identity'` may be
                passed to cause them to be used directly.
            color_continuous_scale: list of str
                Strings should define valid CSS-colors This list is used to build a
                continuous color scale when the column denoted by `color` contains
                numeric data. Various useful color scales are available in the
                `plotly.express.colors` submodules, specifically
                `plotly.express.colors.sequential`, `plotly.express.colors.diverging`
                and `plotly.express.colors.cyclical`.
            pattern_shape_sequence: list of str
                Strings should define valid plotly.js patterns-shapes. When
                `pattern_shape` is set, values in that column are assigned patterns-
                shapes by cycling through `pattern_shape_sequence` in the order
                described in `category_orders`, unless the value of `pattern_shape` is
                a key in `pattern_shape_map`.
            pattern_shape_map: dict with str keys and str values (default `{}`)
                Strings values define plotly.js patterns-shapes. Used to override
                `pattern_shape_sequences` to assign a specific patterns-shapes to lines
                corresponding with specific values. Keys in `pattern_shape_map` should
                be values in the column denoted by `pattern_shape`. Alternatively, if
                the values of `pattern_shape` are valid patterns-shapes names, the
                string `'identity'` may be passed to cause them to be used directly.
            range_color: list of two numbers
                If provided, overrides auto-scaling on the continuous color scale.
            color_continuous_midpoint: number (default `None`)
                If set, computes the bounds of the continuous color scale to have the
                desired midpoint. Setting this value is recommended when using
                `plotly.express.colors.diverging` color scales as the inputs to
                `color_continuous_scale`.
            opacity: float
                Value between 0 and 1. Sets the opacity for markers.
            orientation: str, one of `'h'` for horizontal or `'v'` for vertical.
                (default `'v'` if `x` and `y` are provided and both continuous or both
                categorical,  otherwise `'v'`(`'h'`) if `x`(`y`) is categorical and
                `y`(`x`) is continuous,  otherwise `'v'`(`'h'`) if only `x`(`y`) is
                provided)
            barmode: str (default `'relative'`)
                One of `'group'`, `'overlay'` or `'relative'` In `'relative'` mode,
                bars are stacked above zero for positive values and below zero for
                negative values. In `'overlay'` mode, bars are drawn on top of one
                another. In `'group'` mode, bars are placed beside each other.
            log_x: boolean (default `False`)
                If `True`, the x-axis is log-scaled in cartesian coordinates.
            log_y: boolean (default `False`)
                If `True`, the y-axis is log-scaled in cartesian coordinates.
            range_x: list of two numbers
                If provided, overrides auto-scaling on the x-axis in cartesian
                coordinates.
            range_y: list of two numbers
                If provided, overrides auto-scaling on the y-axis in cartesian
                coordinates.
            text_auto: bool or string (default `False`)
                If `True` or a string, the x or y or z values will be displayed as
                text, depending on the orientation A string like `'.2f'` will be
                interpreted as a `texttemplate` numeric formatting directive.
            template: str or dict or plotly.graph_objects.layout.Template instance
                The figure template name (must be a key in plotly.io.templates) or
                definition.


    Returns:
        plotly.graph_objs._figure.Figure: A plotly figure object.
    """

    if isinstance(data, str):
        if data.startswith("http"):
            data = github_raw_url(data)
            data = get_direct_url(data)

        try:
            data = pd.read_csv(data)
        except Exception as e:
            raise ValueError(f"Could not read data from {data}. {e}")

    if not isinstance(data, pd.DataFrame):
        raise ValueError(
            "data must be a pandas DataFrame, a string or an ee.FeatureCollection."
        )

    if descending is not None:
        data.sort_values([y, x], ascending=not (descending), inplace=True)

    if isinstance(max_rows, int):
        data = data.head(max_rows)

    if "labels" in kwargs:
        labels = kwargs["labels"]
        kwargs.pop("labels")
    else:
        labels = {}

    if x_label is not None:
        labels[x] = x_label
    if y_label is not None:
        labels[y] = y_label

    if isinstance(legend_title, str):
        if "legend" not in layout_args:
            layout_args["legend"] = {}
        layout_args["legend"]["title"] = legend_title

    try:
        fig = px.line(
            data,
            x=x,
            y=y,
            color=color,
            labels=labels,
            title=title,
            width=width,
            height=height,
            **kwargs,
        )

        if isinstance(layout_args, dict):
            fig.update_layout(**layout_args)

        return fig
    except Exception as e:
        raise ValueError(f"Could not create bar plot. {e}")

list_vars(var_type=None)

Lists all defined avariables.

Parameters:

Name Type Description Default
var_type object

The object type of variables to list. Defaults to None.

None

Returns:

Name Type Description
list

A list of all defined variables.

Source code in geemap/common.py
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
def list_vars(var_type=None):
    """Lists all defined avariables.

    Args:
        var_type (object, optional): The object type of variables to list. Defaults to None.

    Returns:
        list: A list of all defined variables.
    """
    result = []

    for var in globals():
        reserved_vars = [
            "In",
            "Out",
            "get_ipython",
            "exit",
            "quit",
            "json",
            "getsizeof",
            "NamespaceMagics",
            "np",
            "var_dic_list",
            "list_vars",
            "ee",
            "geemap",
        ]

        if (not var.startswith("_")) and (var not in reserved_vars):
            if var_type is not None and isinstance(eval(var), var_type):
                result.append(var)
            elif var_type is None:
                result.append(var)

    return result

lnglat_to_meters(longitude, latitude)

coordinate conversion between lat/lon in decimal degrees to web mercator

Parameters:

Name Type Description Default
longitude float

The longitude.

required
latitude float

The latitude.

required

Returns:

Name Type Description
tuple

A tuple of (x, y) in meters.

Source code in geemap/common.py
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
def lnglat_to_meters(longitude, latitude):
    """coordinate conversion between lat/lon in decimal degrees to web mercator

    Args:
        longitude (float): The longitude.
        latitude (float): The latitude.

    Returns:
        tuple: A tuple of (x, y) in meters.
    """
    import numpy as np

    origin_shift = np.pi * 6378137
    easting = longitude * origin_shift / 180.0
    northing = np.log(np.tan((90 + latitude) * np.pi / 360.0)) * origin_shift / np.pi

    if np.isnan(easting):
        if longitude > 0:
            easting = 20026376
        else:
            easting = -20026376

    if np.isnan(northing):
        if latitude > 0:
            northing = 20048966
        else:
            northing = -20048966

    return (easting, northing)

load_GeoTIFF(URL)

Loads a Cloud Optimized GeoTIFF (COG) as an Image. Only Google Cloud Storage is supported. The URL can be one of the following formats: Option 1: gs://pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif Option 2: https://storage.googleapis.com/pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif Option 3: https://storage.cloud.google.com/gcp-public-data-landsat/LC08/01/044/034/LC08_L1TP_044034_20131228_20170307_01_T1/LC08_L1TP_044034_20131228_20170307_01_T1_B5.TIF

Parameters:

Name Type Description Default
URL str

The Cloud Storage URL of the GeoTIFF to load.

required

Returns:

Type Description

ee.Image: an Earth Engine image.

Source code in geemap/common.py
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
def load_GeoTIFF(URL):
    """Loads a Cloud Optimized GeoTIFF (COG) as an Image. Only Google Cloud Storage is supported. The URL can be one of the following formats:
    Option 1: gs://pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif
    Option 2: https://storage.googleapis.com/pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif
    Option 3: https://storage.cloud.google.com/gcp-public-data-landsat/LC08/01/044/034/LC08_L1TP_044034_20131228_20170307_01_T1/LC08_L1TP_044034_20131228_20170307_01_T1_B5.TIF

    Args:
        URL (str): The Cloud Storage URL of the GeoTIFF to load.

    Returns:
        ee.Image: an Earth Engine image.
    """

    uri = URL.strip()

    if uri.startswith("http"):
        uri = get_direct_url(uri)

    if uri.startswith("https://storage.googleapis.com/"):
        uri = uri.replace("https://storage.googleapis.com/", "gs://")
    elif uri.startswith("https://storage.cloud.google.com/"):
        uri = uri.replace("https://storage.cloud.google.com/", "gs://")

    if not uri.startswith("gs://"):
        raise Exception(
            f'Invalid GCS URL: {uri}. Expected something of the form "gs://bucket/path/to/object.tif".'
        )

    if not uri.lower().endswith(".tif"):
        raise Exception(
            f'Invalid GCS URL: {uri}. Expected something of the form "gs://bucket/path/to/object.tif".'
        )

    cloud_image = ee.Image.loadGeoTIFF(uri)
    return cloud_image

load_GeoTIFFs(URLs)

Loads a list of Cloud Optimized GeoTIFFs (COG) as an ImageCollection. URLs is a list of URL, which can be one of the following formats: Option 1: gs://pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif Option 2: https://storage.googleapis.com/pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif Option 3: https://storage.cloud.google.com/gcp-public-data-landsat/LC08/01/044/034/LC08_L1TP_044034_20131228_20170307_01_T1/LC08_L1TP_044034_20131228_20170307_01_T1_B5.TIF

Parameters:

Name Type Description Default
URLs list

A list of Cloud Storage URL of the GeoTIFF to load.

required

Returns:

Type Description

ee.ImageCollection: An Earth Engine ImageCollection.

Source code in geemap/common.py
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
def load_GeoTIFFs(URLs):
    """Loads a list of Cloud Optimized GeoTIFFs (COG) as an ImageCollection. URLs is a list of URL, which can be one of the following formats:
    Option 1: gs://pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif
    Option 2: https://storage.googleapis.com/pdd-stac/disasters/hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif
    Option 3: https://storage.cloud.google.com/gcp-public-data-landsat/LC08/01/044/034/LC08_L1TP_044034_20131228_20170307_01_T1/LC08_L1TP_044034_20131228_20170307_01_T1_B5.TIF

    Args:
        URLs (list): A list of Cloud Storage URL of the GeoTIFF to load.

    Returns:
        ee.ImageCollection: An Earth Engine ImageCollection.
    """

    if not isinstance(URLs, list):
        raise Exception("The URLs argument must be a list.")

    URIs = []
    for URL in URLs:
        uri = URL.strip()

        if uri.startswith("http"):
            uri = get_direct_url(uri)

        if uri.startswith("https://storage.googleapis.com/"):
            uri = uri.replace("https://storage.googleapis.com/", "gs://")
        elif uri.startswith("https://storage.cloud.google.com/"):
            uri = uri.replace("https://storage.cloud.google.com/", "gs://")

        if not uri.startswith("gs://"):
            raise Exception(
                f'Invalid GCS URL: {uri}. Expected something of the form "gs://bucket/path/to/object.tif".'
            )

        if not uri.lower().endswith(".tif"):
            raise Exception(
                f'Invalid GCS URL: {uri}. Expected something of the form "gs://bucket/path/to/object.tif".'
            )

        URIs.append(uri)

    URIs = ee.List(URIs)
    collection = URIs.map(lambda uri: ee.Image.loadGeoTIFF(uri))
    return ee.ImageCollection(collection)

local_tile_bands(source)

Get band names from COG.

Parameters:

Name Type Description Default
source str | TileClient

A local COG file path or TileClient

required

Returns:

Name Type Description
list

A list of band names.

Source code in geemap/common.py
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
def local_tile_bands(source):
    """Get band names from COG.

    Args:
        source (str | TileClient): A local COG file path or TileClient

    Returns:
        list: A list of band names.
    """
    check_package("localtileserver", "https://github.com/banesullivan/localtileserver")
    from localtileserver import TileClient

    if isinstance(source, str):
        tile_client = TileClient(source)
    elif isinstance(source, TileClient):
        tile_client = source
    else:
        raise ValueError("source must be a string or TileClient object.")

    return tile_client.band_names

local_tile_pixel_value(lon, lat, tile_client, verbose=True, **kwargs)

Get pixel value from COG.

Parameters:

Name Type Description Default
lon float

Longitude of the pixel.

required
lat float

Latitude of the pixel.

required
url str

HTTP URL to a COG, e.g., 'https://github.com/opengeos/data/releases/download/raster/Libya-2023-07-01.tif'

required
bidx str

Dataset band indexes (e.g bidx=1, bidx=1&bidx=2&bidx=3). Defaults to None.

required
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

required
verbose bool

Print status messages. Defaults to True.

True

Returns:

Name Type Description
PointData

rio-tiler point data.

Source code in geemap/common.py
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
def local_tile_pixel_value(
    lon,
    lat,
    tile_client,
    verbose=True,
    **kwargs,
):
    """Get pixel value from COG.

    Args:
        lon (float): Longitude of the pixel.
        lat (float): Latitude of the pixel.
        url (str): HTTP URL to a COG, e.g., 'https://github.com/opengeos/data/releases/download/raster/Libya-2023-07-01.tif'
        bidx (str, optional): Dataset band indexes (e.g bidx=1, bidx=1&bidx=2&bidx=3). Defaults to None.
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        verbose (bool, optional): Print status messages. Defaults to True.

    Returns:
        PointData: rio-tiler point data.
    """
    return tile_client.point(lon, lat, coord_crs="EPSG:4326", **kwargs)

local_tile_vmin_vmax(source, bands=None, **kwargs)

Get vmin and vmax from COG.

Parameters:

Name Type Description Default
source str | TileClient

A local COG file path or TileClient object.

required
bands str | list

A list of band names. Defaults to None.

None

Raises:

Type Description
ValueError

If source is not a TileClient object or a local COG file path.

Returns:

Name Type Description
tuple

A tuple of vmin and vmax.

Source code in geemap/common.py
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
def local_tile_vmin_vmax(
    source,
    bands=None,
    **kwargs,
):
    """Get vmin and vmax from COG.

    Args:
        source (str | TileClient): A local COG file path or TileClient object.
        bands (str | list, optional): A list of band names. Defaults to None.

    Raises:
        ValueError: If source is not a TileClient object or a local COG file path.

    Returns:
        tuple: A tuple of vmin and vmax.
    """
    check_package("localtileserver", "https://github.com/banesullivan/localtileserver")
    from localtileserver import TileClient

    if isinstance(source, str):
        tile_client = TileClient(source)
    elif isinstance(source, TileClient):
        tile_client = source
    else:
        raise ValueError("source must be a string or TileClient object.")

    bandnames = tile_client.band_names
    stats = tile_client.reader.statistics()

    if isinstance(bands, str):
        bands = [bands]
    elif isinstance(bands, list):
        pass
    elif bands is None:
        bands = bandnames

    if all(b in bandnames for b in bands):
        vmin = min([stats[b]["min"] for b in bands])
        vmax = max([stats[b]["max"] for b in bands])
    else:
        vmin = min([stats[b]["min"] for b in bandnames])
        vmax = max([stats[b]["max"] for b in bandnames])
    return vmin, vmax

longitude_grid(step=1.0, west=-180, east=180, south=-85, north=85)

Create a longitude grid.

Parameters:

Name Type Description Default
step float

The step size in degrees. Defaults to 1.0.

1.0
west int

The west boundary in degrees. Defaults to -180.

-180
east int

The east boundary in degrees. Defaults to 180.

180
south int

The south boundary in degrees. Defaults to -85.

-85
north int

The north boundary in degrees. Defaults to 85.

85

Returns:

Type Description

ee.FeatureCollection: A feature collection of longitude grids.

Source code in geemap/common.py
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
def longitude_grid(step=1.0, west=-180, east=180, south=-85, north=85):
    """Create a longitude grid.

    Args:
        step (float, optional): The step size in degrees. Defaults to 1.0.
        west (int, optional): The west boundary in degrees. Defaults to -180.
        east (int, optional): The east boundary in degrees. Defaults to 180.
        south (int, optional): The south boundary in degrees. Defaults to -85.
        north (int, optional): The north boundary in degrees. Defaults to 85.

    Returns:
        ee.FeatureCollection: A feature collection of longitude grids.
    """

    values = ee.List.sequence(west, east - step, step)

    def create_feature(lon):
        return ee.Feature(
            ee.Geometry.BBox(lon, south, ee.Number(lon).add(step), north)
        ).set(
            {
                "south": south,
                "west": lon,
                "north": north,
                "east": ee.Number(lon).add(step),
            }
        )

    features = ee.FeatureCollection(values.map(create_feature))
    return features

make_gif(images, out_gif, ext='jpg', fps=10, loop=0, mp4=False, clean_up=False)

Creates a gif from a list of images.

Parameters:

Name Type Description Default
images list | str

The list of images or input directory to create the gif from.

required
out_gif str

File path to the output gif.

required
ext str

The extension of the images. Defaults to 'jpg'.

'jpg'
fps int

The frames per second of the gif. Defaults to 10.

10
loop int

The number of times to loop the gif. Defaults to 0.

0
mp4 bool

Whether to convert the gif to mp4. Defaults to False.

False
Source code in geemap/timelapse.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def make_gif(
    images: Union[List[str], str],
    out_gif: str,
    ext: str = "jpg",
    fps: int = 10,
    loop: int = 0,
    mp4: bool = False,
    clean_up: bool = False,
) -> None:
    """Creates a gif from a list of images.

    Args:
        images (list | str): The list of images or input directory to create the gif from.
        out_gif (str): File path to the output gif.
        ext (str, optional): The extension of the images. Defaults to 'jpg'.
        fps (int, optional): The frames per second of the gif. Defaults to 10.
        loop (int, optional): The number of times to loop the gif. Defaults to 0.
        mp4 (bool, optional): Whether to convert the gif to mp4. Defaults to False.

    """
    if isinstance(images, str) and os.path.isdir(images):
        images = list(glob.glob(os.path.join(images, f"*.{ext}")))
        if len(images) == 0:
            raise ValueError("No images found in the input directory.")
    elif not isinstance(images, list):
        raise ValueError("images must be a list or a path to the image directory.")

    images.sort()

    frames = [Image.open(image) for image in images]
    frame_one = frames[0]
    frame_one.save(
        out_gif,
        format="GIF",
        append_images=frames,
        save_all=True,
        duration=int(1000 / fps),
        loop=loop,
    )

    if mp4:
        if not is_tool("ffmpeg"):
            print("ffmpeg is not installed on your computer.")
            return

        if os.path.exists(out_gif):
            out_mp4 = out_gif.replace(".gif", ".mp4")
            cmd = f"ffmpeg -loglevel error -i {out_gif} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
            os.system(cmd)
            if not os.path.exists(out_mp4):
                raise Exception(f"Failed to create mp4 file.")
    if clean_up:
        for image in images:
            os.remove(image)

merge_gifs(in_gifs, out_gif)

Merge multiple gifs into one.

Parameters:

Name Type Description Default
in_gifs str | list

The input gifs as a list or a directory path.

required
out_gif str

The output gif.

required

Raises:

Type Description
Exception

Raise exception when gifsicle is not installed.

Source code in geemap/timelapse.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def merge_gifs(in_gifs, out_gif):
    """Merge multiple gifs into one.

    Args:
        in_gifs (str | list): The input gifs as a list or a directory path.
        out_gif (str): The output gif.

    Raises:
        Exception:  Raise exception when gifsicle is not installed.
    """
    import glob

    try:
        if isinstance(in_gifs, str) and os.path.isdir(in_gifs):
            in_gifs = glob.glob(os.path.join(in_gifs, "*.gif"))
        elif not isinstance(in_gifs, list):
            raise Exception("in_gifs must be a list.")

        in_gifs = " ".join(in_gifs)

        cmd = f"gifsicle {in_gifs} > {out_gif}"
        os.system(cmd)

    except Exception as e:
        print(
            "gifsicle is not installed. Run 'sudo apt-get install -y gifsicle' to install it."
        )
        print(e)

meters_to_lnglat(x, y)

coordinate conversion between web mercator to lat/lon in decimal degrees

Parameters:

Name Type Description Default
x float

The x coordinate.

required
y float

The y coordinate.

required

Returns:

Name Type Description
tuple

A tuple of (longitude, latitude) in decimal degrees.

Source code in geemap/common.py
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
def meters_to_lnglat(x, y):
    """coordinate conversion between web mercator to lat/lon in decimal degrees

    Args:
        x (float): The x coordinate.
        y (float): The y coordinate.

    Returns:
        tuple: A tuple of (longitude, latitude) in decimal degrees.
    """
    import numpy as np

    origin_shift = np.pi * 6378137
    longitude = (x / origin_shift) * 180.0
    latitude = (y / origin_shift) * 180.0
    latitude = (
        180 / np.pi * (2 * np.arctan(np.exp(latitude * np.pi / 180.0)) - np.pi / 2.0)
    )
    return (longitude, latitude)

minimum_bounding_box(geojson)

Gets the minimum bounding box for a geojson polygon.

Parameters:

Name Type Description Default
geojson dict

A geojson dictionary.

required

Returns:

Name Type Description
tuple

Returns a tuple containing the minimum bounding box in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -120)).

Source code in geemap/common.py
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
def minimum_bounding_box(geojson):
    """Gets the minimum bounding box for a geojson polygon.

    Args:
        geojson (dict): A geojson dictionary.

    Returns:
        tuple: Returns a tuple containing the minimum bounding box in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -120)).
    """
    coordinates = []
    try:
        if "geometry" in geojson.keys():
            coordinates = geojson["geometry"]["coordinates"][0]
        else:
            coordinates = geojson["coordinates"][0]
        lower_left = min([x[1] for x in coordinates]), min(
            [x[0] for x in coordinates]
        )  # (lat, lon)
        upper_right = max([x[1] for x in coordinates]), max(
            [x[0] for x in coordinates]
        )  # (lat, lon)
        bounds = (lower_left, upper_right)
        return bounds
    except Exception as e:
        raise Exception(e)

modis_ndvi_doy_ts(data='Terra', band='NDVI', start_date=None, end_date=None, region=None)

Create MODIS NDVI timeseries. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

Parameters:

Name Type Description Default
data str

Either "Terra" or "Aqua". Defaults to "Terra".

'Terra'
band str

Either the "NDVI" or "EVI" band. Defaults to "NDVI".

'NDVI'
start_date str

The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.

None
end_date str

The end date used to filter the image collection. Defaults to None.

None
region Geometry

The geometry used to filter the image collection. Defaults to None.

None

Returns:

Type Description

ee.ImageCollection: The MODIS NDVI time series.

Source code in geemap/timelapse.py
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
def modis_ndvi_doy_ts(
    data="Terra", band="NDVI", start_date=None, end_date=None, region=None
):
    """Create MODIS NDVI timeseries. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

    Args:
        data (str, optional): Either "Terra" or "Aqua". Defaults to "Terra".
        band (str, optional): Either the "NDVI" or "EVI" band. Defaults to "NDVI".
        start_date (str, optional): The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.
        end_date (str, optional): The end date used to filter the image collection. Defaults to None.
        region (ee.Geometry, optional): The geometry used to filter the image collection. Defaults to None.

    Returns:
        ee.ImageCollection: The MODIS NDVI time series.
    """
    if data not in ["Terra", "Aqua"]:
        raise Exception("data must be 'Terra' or 'Aqua'.")

    if band not in ["NDVI", "EVI"]:
        raise Exception("band must be 'NDVI' or 'EVI'.")

    if region is not None:
        if isinstance(region, ee.Geometry) or isinstance(region, ee.FeatureCollection):
            pass
        else:
            raise Exception("region must be an ee.Geometry or ee.FeatureCollection.")

    if data == "Terra":
        col = ee.ImageCollection("MODIS/006/MOD13A2").select(band)
    else:
        col = ee.ImageCollection("MODIS/006/MYD13A2").select(band)

    if (start_date is not None) and (end_date is not None):
        col = col.filterDate(start_date, end_date)

    def set_doy(img):
        doy = ee.Date(img.get("system:time_start")).getRelative("day", "year")
        return img.set("doy", doy)

    col = col.map(set_doy)

    # Get a collection of distinct images by 'doy'.
    distinctDOY = col.filterDate("2013-01-01", "2014-01-01")

    # Define a filter that identifies which images from the complete
    # collection match the DOY from the distinct DOY collection.
    filter = ee.Filter.equals(**{"leftField": "doy", "rightField": "doy"})

    # Define a join.
    join = ee.Join.saveAll("doy_matches")

    # Apply the join and convert the resulting FeatureCollection to an
    # ImageCollection.
    joinCol = ee.ImageCollection(join.apply(distinctDOY, col, filter))

    # Apply median reduction among matching DOY collections.

    def match_doy(img):
        doyCol = ee.ImageCollection.fromImages(img.get("doy_matches"))
        return doyCol.reduce(ee.Reducer.median())

    comp = joinCol.map(match_doy)

    if region is not None:
        return comp.map(lambda img: img.clip(region))
    else:
        return comp

modis_ndvi_timelapse(roi=None, out_gif=None, data='Terra', band='NDVI', start_date=None, end_date=None, dimensions=768, framesPerSecond=10, crs='EPSG:3857', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)

Create MODIS NDVI timelapse. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

Parameters:

Name Type Description Default
roi Geometry

The geometry used to filter the image collection. Defaults to None.

None
out_gif str

The output gif file path. Defaults to None.

None
data str

Either "Terra" or "Aqua". Defaults to "Terra".

'Terra'
band str

Either the "NDVI" or "EVI" band. Defaults to "NDVI".

'NDVI'
start_date str

The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.

None
end_date str

The end date used to filter the image collection. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

required
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('3%', '3%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#ffffff'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
mp4 bool

Whether to convert the output gif to mp4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
Source code in geemap/timelapse.py
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
def modis_ndvi_timelapse(
    roi=None,
    out_gif=None,
    data="Terra",
    band="NDVI",
    start_date=None,
    end_date=None,
    dimensions=768,
    framesPerSecond=10,
    crs="EPSG:3857",
    xy=("3%", "3%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#ffffff",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create MODIS NDVI timelapse. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

    Args:
        roi (ee.Geometry, optional): The geometry used to filter the image collection. Defaults to None.
        out_gif (str): The output gif file path. Defaults to None.
        data (str, optional): Either "Terra" or "Aqua". Defaults to "Terra".
        band (str, optional): Either the "NDVI" or "EVI" band. Defaults to "NDVI".
        start_date (str, optional): The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.
        end_date (str, optional): The end date used to filter the image collection. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        mp4 (bool, optional): Whether to convert the output gif to mp4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    """

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-18.6983, 38.1446],
                    [-18.6983, -36.1630],
                    [52.2293, -36.1630],
                    [52.2293, 38.1446],
                ]
            ],
            None,
            False,
        )

    if out_gif is None:
        out_gif = os.path.abspath(f"modis_ndvi_{random_string(3)}.gif")

    try:
        col = modis_ndvi_doy_ts(data, band, start_date, end_date, roi)

        # Define RGB visualization parameters.
        visParams = {
            "min": 0.0,
            "max": 9000.0,
            "palette": [
                "FFFFFF",
                "CE7E45",
                "DF923D",
                "F1B555",
                "FCD163",
                "99B718",
                "74A901",
                "66A000",
                "529400",
                "3E8601",
                "207401",
                "056201",
                "004C00",
                "023B01",
                "012E01",
                "011D01",
                "011301",
            ],
        }

        # Create RGB visualization images for use as animation frames.
        rgbVis = col.map(lambda img: img.visualize(**visParams).clip(roi))

        if overlay_data is not None:
            rgbVis = add_overlay(
                rgbVis,
                overlay_data,
                overlay_color,
                overlay_width,
                overlay_opacity,
                roi,
            )

        # Define GIF visualization arguments.
        videoArgs = {
            "region": roi,
            "dimensions": dimensions,
            "crs": crs,
            "framesPerSecond": framesPerSecond,
        }

        download_ee_video(rgbVis, videoArgs, out_gif)

        if text_sequence is None:
            text = rgbVis.aggregate_array("system:index").getInfo()
            text_sequence = [d.replace("_", "-")[5:] for d in text]

        if os.path.exists(out_gif):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy,
                text_sequence,
                font_type,
                font_size,
                font_color,
                add_progress_bar,
                progress_bar_color,
                progress_bar_height,
                duration=1000 / framesPerSecond,
                loop=loop,
            )

            try:
                reduce_gif_size(out_gif)
                if isinstance(fading, bool):
                    fading = int(fading)
                if fading > 0:
                    gif_fading(out_gif, out_gif, duration=fading, verbose=False)

            except Exception as _:
                pass

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        raise Exception(e)

modis_ocean_color_timelapse(satellite, start_date, end_date, roi=None, bands=None, frequency='year', reducer='median', date_format=None, out_gif=None, palette='coolwarm', vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=True, colorbar_width=6.0, colorbar_height=0.4, colorbar_label='Sea Surface Temperature (°C)', colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color='white', colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False)

Creates a ocean color timelapse from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

Parameters:

Name Type Description Default
satellite str

The satellite to use, can be either "Terra" or "Aqua".

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
roi Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

A list of band names to use in the timelapse. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
out_gif str

The output gif file path. Defaults to None.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

'coolwarm'
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

5
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
add_colorbar bool

Whether to add a colorbar to the timelapse. Defaults to False.

True
colorbar_width float

Width of the colorbar. Defaults to 6.0.

6.0
colorbar_height float

Height of the colorbar. Defaults to 0.4.

0.4
colorbar_label str

Label for the colorbar. Defaults to None.

'Sea Surface Temperature (°C)'
colorbar_label_size int

Font size for the colorbar label. Defaults to 12.

12
colorbar_label_weight str

Font weight for the colorbar label. Defaults to 'normal'.

'normal'
colorbar_tick_size int

Font size for the colorbar ticks. Defaults to 10.

10
colorbar_bg_color str

Background color for the colorbar, can be color like "white", "black". Defaults to None.

'white'
colorbar_orientation str

Orientation of the colorbar. Defaults to 'horizontal'.

'horizontal'
colorbar_dpi str

DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.

'figure'
colorbar_xy tuple

Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
colorbar_size tuple

Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).

(300, 300)
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Returns:

Name Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
def modis_ocean_color_timelapse(
    satellite,
    start_date,
    end_date,
    roi=None,
    bands=None,
    frequency="year",
    reducer="median",
    date_format=None,
    out_gif=None,
    palette="coolwarm",
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    add_colorbar=True,
    colorbar_width=6.0,
    colorbar_height=0.4,
    colorbar_label="Sea Surface Temperature (°C)",
    colorbar_label_size=12,
    colorbar_label_weight="normal",
    colorbar_tick_size=10,
    colorbar_bg_color="white",
    colorbar_orientation="horizontal",
    colorbar_dpi="figure",
    colorbar_xy=None,
    colorbar_size=(300, 300),
    loop=0,
    mp4=False,
    fading=False,
):
    """Creates a ocean color timelapse from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

    Args:
        satellite (str): The satellite to use, can be either "Terra" or "Aqua".
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        roi (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        out_gif (str): The output gif file path. Defaults to None.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
        colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
        colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
        colorbar_label (str, optional): Label for the colorbar. Defaults to None.
        colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
        colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
        colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
        colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
        colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
        colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Returns:
        str: File path to the timelapse gif.
    """
    collection = modis_ocean_color_timeseries(
        satellite, start_date, end_date, roi, bands, frequency, reducer, date_format
    )

    if bands is None:
        bands = ["sst"]

    if len(bands) == 1 and palette is None:
        palette = "coolwarm"

    if roi is None:
        roi = ee.Geometry.BBox(-99.755133, 18.316722, -79.761194, 31.206929)

    out_gif = create_timelapse(
        collection,
        start_date,
        end_date,
        roi,
        bands,
        frequency,
        reducer,
        date_format,
        out_gif,
        palette,
        vis_params,
        dimensions,
        frames_per_second,
        crs,
        overlay_data,
        overlay_color,
        overlay_width,
        overlay_opacity,
        title,
        title_xy,
        add_text,
        text_xy,
        text_sequence,
        font_type,
        font_size,
        font_color,
        add_progress_bar,
        progress_bar_color,
        progress_bar_height,
        add_colorbar,
        colorbar_width,
        colorbar_height,
        colorbar_label,
        colorbar_label_size,
        colorbar_label_weight,
        colorbar_tick_size,
        colorbar_bg_color,
        colorbar_orientation,
        colorbar_dpi,
        colorbar_xy,
        colorbar_size,
        loop,
        mp4,
        fading,
    )

    return out_gif

modis_ocean_color_timeseries(satellite, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1)

Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

Parameters:

Name Type Description Default
satellite str

The satellite to use, can be either "Terra" or "Aqua".

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
region Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

True
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1

Returns:

Type Description

ee.ImageCollection: The timeseries.

Source code in geemap/timelapse.py
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
def modis_ocean_color_timeseries(
    satellite,
    start_date,
    end_date,
    region=None,
    bands=None,
    frequency="year",
    reducer="median",
    drop_empty=True,
    date_format=None,
    parallel_scale=1,
):
    """Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

    Args:
        satellite (str): The satellite to use, can be either "Terra" or "Aqua".
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

    Returns:
        ee.ImageCollection: The timeseries.
    """

    if satellite not in ["Terra", "Aqua"]:
        raise Exception("Satellite must be 'Terra' or 'Aqua'.")

    allowed_frequency = ["year", "quarter", "month", "week", "day"]
    if frequency not in allowed_frequency:
        raise Exception(
            "Frequency must be one of the following: {}".format(allowed_frequency)
        )

    if region is not None:
        if isinstance(region, ee.Geometry) or isinstance(region, ee.FeatureCollection):
            pass
        else:
            raise Exception("region must be an ee.Geometry or ee.FeatureCollection.")

    col = ee.ImageCollection(f"NASA/OCEANDATA/MODIS-{satellite}/L3SMI").filterDate(
        start_date, end_date
    )

    ts = create_timeseries(
        col,
        start_date,
        end_date,
        region,
        bands,
        frequency,
        reducer,
        drop_empty,
        date_format,
        parallel_scale,
    )

    return ts

modis_timeseries(asset_id='MODIS/006/MOD13A2', band_name=None, roi=None, start_year=2001, end_year=None, start_date='01-01', end_date='12-31')

Generates a Monthly MODIS ImageCollection. Args: asset_id (str, optional): The asset id the MODIS ImageCollection. band_name (str, optional): The band name of the image to use. roi (object, optional): Region of interest to create the timelapse. Defaults to None. start_year (int, optional): Starting year for the timelapse. Defaults to 1984. end_year (int, optional): Ending year for the timelapse. Defaults to None, which is the current year. start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. Returns: object: Returns an ImageCollection containing month MODIS images.

Source code in geemap/timelapse.py
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
def modis_timeseries(
    asset_id="MODIS/006/MOD13A2",
    band_name=None,
    roi=None,
    start_year=2001,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
):
    """Generates a Monthly MODIS ImageCollection.
    Args:
        asset_id (str, optional): The asset id the MODIS ImageCollection.
        band_name (str, optional): The band name of the image to use.
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which is the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
    Returns:
        object: Returns an ImageCollection containing month MODIS images.
    """

    try:
        if end_year is None:
            end_year = datetime.datetime.now().year

        collection = ee.ImageCollection(asset_id)
        if band_name is None:
            band_name = collection.first().bandNames().getInfo()[0]
        collection = collection.select(band_name)
        if roi is not None:
            if isinstance(roi, ee.Geometry):
                collection = ee.ImageCollection(
                    collection.map(lambda img: img.clip(roi))
                )
            elif isinstance(roi, ee.FeatureCollection):
                collection = ee.ImageCollection(
                    collection.map(lambda img: img.clipToCollection(roi))
                )

        start = str(start_year) + "-" + start_date
        end = str(end_year) + "-" + end_date

        seq = date_sequence(start, end, "month")

        def monthly_modis(start_d):
            end_d = ee.Date(start_d).advance(1, "month")
            return ee.Image(collection.filterDate(start_d, end_d).mean())

        images = ee.ImageCollection(seq.map(monthly_modis))
        return images

    except Exception as e:
        raise Exception(e)

mosaic(images, output, merge_args={}, verbose=True, **kwargs)

Mosaics a list of images into a single image. Inspired by https://bit.ly/3A6roDK.

Parameters:

Name Type Description Default
images str | list

An input directory containing images or a list of images.

required
output str

The output image filepath.

required
merge_args dict

A dictionary of arguments to pass to the rasterio.merge function. Defaults to {}.

{}
verbose bool

Whether to print progress. Defaults to True.

True
Source code in geemap/common.py
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
def mosaic(images, output, merge_args={}, verbose=True, **kwargs):
    """Mosaics a list of images into a single image. Inspired by https://bit.ly/3A6roDK.

    Args:
        images (str | list): An input directory containing images or a list of images.
        output (str): The output image filepath.
        merge_args (dict, optional): A dictionary of arguments to pass to the rasterio.merge function. Defaults to {}.
        verbose (bool, optional): Whether to print progress. Defaults to True.

    """
    from rasterio.merge import merge
    import rasterio as rio
    from pathlib import Path

    output = os.path.abspath(output)

    if isinstance(images, str):
        path = Path(images)
        raster_files = list(path.iterdir())
    elif isinstance(images, list):
        raster_files = images
    else:
        raise ValueError("images must be a list of raster files.")

    raster_to_mosiac = []

    if not os.path.exists(os.path.dirname(output)):
        os.makedirs(os.path.dirname(output))

    for index, p in enumerate(raster_files):
        if verbose:
            print(f"Reading {index+1}/{len(raster_files)}: {os.path.basename(p)}")
        raster = rio.open(p, **kwargs)
        raster_to_mosiac.append(raster)

    if verbose:
        print("Merging rasters...")
    arr, transform = merge(raster_to_mosiac, **merge_args)

    output_meta = raster.meta.copy()
    output_meta.update(
        {
            "driver": "GTiff",
            "height": arr.shape[1],
            "width": arr.shape[2],
            "transform": transform,
        }
    )

    with rio.open(output, "w", **output_meta) as m:
        m.write(arr)

naip_timelapse(roi, start_year=2003, end_year=None, out_gif=None, bands=None, palette=None, vis_params=None, dimensions=768, frames_per_second=3, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1)

Create a timelapse from NAIP imagery.

Parameters:

Name Type Description Default
roi Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

required
start_year int | str

The start year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to 2003.

2003
end_year int | str

The end year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to None, which will use the current year.

None
out_gif str

The output gif file path. Defaults to None.

None
bands list

A list of band names to use in the timelapse. Defaults to None.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

None
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

3
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Name Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
def naip_timelapse(
    roi,
    start_year=2003,
    end_year=None,
    out_gif=None,
    bands=None,
    palette=None,
    vis_params=None,
    dimensions=768,
    frames_per_second=3,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
    step=1,
):
    """Create a timelapse from NAIP imagery.

    Args:
        roi (ee.Geometry): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        start_year (int | str, optional): The start year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to 2003.
        end_year (int | str, optional): The end year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to None, which will use the current year.
        out_gif (str): The output gif file path. Defaults to None.
        bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        str: File path to the timelapse gif.
    """

    try:
        if end_year is None:
            end_year = datetime.datetime.now().year

        collection = ee.ImageCollection("USDA/NAIP/DOQQ")
        start_date = str(start_year) + "-01-01"
        end_date = str(end_year) + "-12-31"
        frequency = "year"
        reducer = "median"
        date_format = "YYYY"

        if bands is not None and isinstance(bands, list) and "N" in bands:
            collection = collection.filter(
                ee.Filter.listContains("system:band_names", "N")
            )

        return create_timelapse(
            collection,
            start_date,
            end_date,
            roi,
            bands,
            frequency,
            reducer,
            date_format,
            out_gif,
            palette,
            vis_params,
            dimensions,
            frames_per_second,
            crs,
            overlay_data,
            overlay_color,
            overlay_width,
            overlay_opacity,
            title,
            title_xy,
            add_text,
            text_xy,
            text_sequence,
            font_type,
            font_size,
            font_color,
            add_progress_bar,
            progress_bar_color,
            progress_bar_height,
            loop=loop,
            mp4=mp4,
            fading=fading,
            step=step,
        )

    except Exception as e:
        raise Exception(e)

naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False, step=1)

Creates NAIP annual timeseries

Parameters:

Name Type Description Default
roi object

An ee.Geometry representing the region of interest. Defaults to None.

None
start_year int

Starting year for the timeseries. Defaults to 2003.

2003
end_year int

Ending year for the timeseries. Defaults to None, which will use the current year.

None
RGBN bool

Whether to retrieve 4-band NAIP imagery only.

False
step int

The step size to use when creating the date sequence. Defaults to 1.

1
Source code in geemap/timelapse.py
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
def naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False, step=1):
    """Creates NAIP annual timeseries

    Args:
        roi (object, optional): An ee.Geometry representing the region of interest. Defaults to None.
        start_year (int, optional): Starting year for the timeseries. Defaults to 2003.
        end_year (int, optional): Ending year for the timeseries. Defaults to None, which will use the current year.
        RGBN (bool, optional): Whether to retrieve 4-band NAIP imagery only.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
    Returns:
        object: An ee.ImageCollection representing annual NAIP imagery.
    """
    try:
        if end_year is None:
            end_year = datetime.datetime.now().year

        def get_annual_NAIP(year):
            try:
                collection = ee.ImageCollection("USDA/NAIP/DOQQ")
                if roi is not None:
                    collection = collection.filterBounds(roi)
                start_date = ee.Date.fromYMD(year, 1, 1)
                end_date = ee.Date.fromYMD(year, 12, 31)
                naip = collection.filterDate(start_date, end_date)
                if RGBN:
                    naip = naip.filter(ee.Filter.listContains("system:band_names", "N"))
                if roi is not None:
                    if isinstance(roi, ee.Geometry):
                        image = ee.Image(ee.ImageCollection(naip).mosaic().clip(roi))
                    elif isinstance(roi, ee.FeatureCollection):
                        image = ee.Image(
                            ee.ImageCollection(naip).mosaic().clipToCollection(roi)
                        )
                else:
                    image = ee.Image(ee.ImageCollection(naip).mosaic())
                return image.set(
                    {
                        "system:time_start": ee.Date(start_date).millis(),
                        "system:time_end": ee.Date(end_date).millis(),
                        "empty": naip.size().eq(0),
                    }
                )
            except Exception as e:
                raise Exception(e)

        years = ee.List.sequence(start_year, end_year, step)
        collection = ee.ImageCollection(years.map(get_annual_NAIP))
        return collection.filterMetadata("empty", "equals", 0)

    except Exception as e:
        raise Exception(e)

netcdf_tile_layer(filename, variables=None, colormap=None, vmin=None, vmax=None, nodata=None, port='default', debug=False, attribution=None, tile_format='ipyleaflet', layer_name='NetCDF layer', return_client=False, shift_lon=True, lat='lat', lon='lon', **kwargs)

Generate an ipyleaflet/folium TileLayer from a netCDF file. If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer), try adding to following two lines to the beginning of the notebook if the raster does not render properly.

1
2
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = f'{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}'

Parameters:

Name Type Description Default
filename str

File path or HTTP URL to the netCDF file.

required
variables int

The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted.

None
port str

The port to use for the server. Defaults to "default".

'default'
colormap str

The name of the colormap from matplotlib to use when plotting a single band. See https://matplotlib.org/stable/gallery/color/colormap_reference.html. Default is greyscale.

None
vmin float

The minimum value to use when colormapping the colormap when plotting a single band. Defaults to None.

None
vmax float

The maximum value to use when colormapping the colormap when plotting a single band. Defaults to None.

None
nodata float

The value from the band to use to interpret as not valid data. Defaults to None.

None
debug bool

If True, the server will be started in debug mode. Defaults to False.

False
projection str

The projection of the GeoTIFF. Defaults to "EPSG:3857".

required
attribution str

Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.

None
tile_format str

The tile layer format. Can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'
layer_name str

The layer name to use. Defaults to "NetCDF layer".

'NetCDF layer'
return_client bool

If True, the tile client will be returned. Defaults to False.

False
shift_lon bool

Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.

True
lat str

Name of the latitude variable. Defaults to 'lat'.

'lat'
lon str

Name of the longitude variable. Defaults to 'lon'.

'lon'

Returns:

Type Description

ipyleaflet.TileLayer | folium.TileLayer: An ipyleaflet.TileLayer or folium.TileLayer.

Source code in geemap/common.py
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
def netcdf_tile_layer(
    filename,
    variables=None,
    colormap=None,
    vmin=None,
    vmax=None,
    nodata=None,
    port="default",
    debug=False,
    attribution=None,
    tile_format="ipyleaflet",
    layer_name="NetCDF layer",
    return_client=False,
    shift_lon=True,
    lat="lat",
    lon="lon",
    **kwargs,
):
    """Generate an ipyleaflet/folium TileLayer from a netCDF file.
        If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer),
        try adding to following two lines to the beginning of the notebook if the raster does not render properly.

        import os
        os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = f'{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}'

    Args:
        filename (str): File path or HTTP URL to the netCDF file.
        variables (int, optional): The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted.
        port (str, optional): The port to use for the server. Defaults to "default".
        colormap (str, optional): The name of the colormap from `matplotlib` to use when plotting a single band. See https://matplotlib.org/stable/gallery/color/colormap_reference.html. Default is greyscale.
        vmin (float, optional): The minimum value to use when colormapping the colormap when plotting a single band. Defaults to None.
        vmax (float, optional): The maximum value to use when colormapping the colormap when plotting a single band. Defaults to None.
        nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
        debug (bool, optional): If True, the server will be started in debug mode. Defaults to False.
        projection (str, optional): The projection of the GeoTIFF. Defaults to "EPSG:3857".
        attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
        tile_format (str, optional): The tile layer format. Can be either ipyleaflet or folium. Defaults to "ipyleaflet".
        layer_name (str, optional): The layer name to use. Defaults to "NetCDF layer".
        return_client (bool, optional): If True, the tile client will be returned. Defaults to False.
        shift_lon (bool, optional): Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.
        lat (str, optional): Name of the latitude variable. Defaults to 'lat'.
        lon (str, optional): Name of the longitude variable. Defaults to 'lon'.

    Returns:
        ipyleaflet.TileLayer | folium.TileLayer: An ipyleaflet.TileLayer or folium.TileLayer.
    """

    check_package(
        "localtileserver", URL="https://github.com/banesullivan/localtileserver"
    )

    try:
        import xarray as xr
    except ImportError as e:
        raise ImportError(e)

    if filename.startswith("http"):
        filename = download_file(filename)

    if not os.path.exists(filename):
        raise FileNotFoundError(f"{filename} does not exist.")

    output = filename.replace(".nc", ".tif")

    xds = xr.open_dataset(filename, **kwargs)

    if shift_lon:
        xds.coords[lon] = (xds.coords[lon] + 180) % 360 - 180
        xds = xds.sortby(xds.lon)

    allowed_vars = list(xds.data_vars.keys())
    if isinstance(variables, str):
        if variables not in allowed_vars:
            raise ValueError(f"{variables} is not a subset of {allowed_vars}.")
        variables = [variables]

    if variables is not None and len(variables) > 3:
        raise ValueError("Only 3 variables can be plotted at a time.")

    if variables is not None and (not set(variables).issubset(allowed_vars)):
        raise ValueError(f"{variables} must be a subset of {allowed_vars}.")

    xds.rio.set_spatial_dims(x_dim=lon, y_dim=lat).rio.to_raster(output)
    if variables is None:
        if len(allowed_vars) >= 3:
            band_idx = [1, 2, 3]
        else:
            band_idx = [1]
    else:
        band_idx = [allowed_vars.index(var) + 1 for var in variables]

    tile_layer = get_local_tile_layer(
        output,
        port=port,
        debug=debug,
        indexes=band_idx,
        colormap=colormap,
        vmin=vmin,
        vmax=vmax,
        nodata=nodata,
        attribution=attribution,
        tile_format=tile_format,
        layer_name=layer_name,
        return_client=return_client,
    )
    return tile_layer

netcdf_to_ee(nc_file, var_names, band_names=None, lon='lon', lat='lat', decimal=2)

Creates an ee.Image from netCDF variables band_names that are read from nc_file. Currently only supports variables in a regular longitude/latitude grid (EPSG:4326).

Parameters:

Name Type Description Default
nc_file str

the name of the netCDF file to read

required
var_names str or list

the name(s) of the variable(s) to read

required
band_names list

if given, the bands are renamed to band_names. Defaults to the original var_names

None
lon str

the name of the longitude variable in the netCDF file. Defaults to "lon"

'lon'
lat str

the name of the latitude variable in the netCDF file. Defaults to "lat"

'lat'
decimal int

the number of decimal places to round the longitude and latitude values to. Defaults to 2.

2

Returns:

Name Type Description
image

An ee.Image

Source code in geemap/common.py
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
def netcdf_to_ee(nc_file, var_names, band_names=None, lon="lon", lat="lat", decimal=2):
    """
    Creates an ee.Image from netCDF variables band_names that are read from nc_file. Currently only supports variables in a regular longitude/latitude grid (EPSG:4326).

    Args:
        nc_file (str): the name of the netCDF file to read
        var_names (str or list): the name(s) of the variable(s) to read
        band_names (list, optional): if given, the bands are renamed to band_names. Defaults to the original var_names
        lon (str, optional): the name of the longitude variable in the netCDF file. Defaults to "lon"
        lat (str, optional): the name of the latitude variable in the netCDF file. Defaults to "lat"
        decimal (int, optional): the number of decimal places to round the longitude and latitude values to. Defaults to 2.

    Returns:
        image: An ee.Image

    """
    try:
        import xarray as xr

    except Exception:
        raise ImportError(
            "You need to install xarray first. See https://github.com/pydata/xarray"
        )

    import numpy as np
    from collections import Counter

    def most_common_value(lst):
        counter = Counter(lst)
        most_common = counter.most_common(1)
        return float(format(most_common[0][0], f".{decimal}f"))

    try:
        if not isinstance(nc_file, str):
            print("The input file must be a string.")
            return
        if band_names and not isinstance(band_names, (list, str)):
            print("Band names must be a string or list.")
            return
        if not isinstance(lon, str) or not isinstance(lat, str):
            print("The longitude and latitude variable names must be a string.")
            return

        ds = xr.open_dataset(nc_file)
        data = ds[var_names]

        lon_data = data[lon]
        lat_data = data[lat]

        dim_lon = np.unique(np.ediff1d(lon_data))
        dim_lat = np.unique(np.ediff1d(lat_data))
        dim_lon = [most_common_value(dim_lon)]
        dim_lat = [most_common_value(dim_lat)]

        # if (len(dim_lon) != 1) or (len(dim_lat) != 1):
        #     print("The netCDF file is not a regular longitude/latitude grid")
        #     return

        try:
            data = data.to_array()
            # ^ this is only needed (and works) if we have more than 1 variable
            # axis_for_roll will be used in case we need to use np.roll
            # and should be 1 for the case with more than 1 variable
            axis_for_roll = 1
        except Exception:
            axis_for_roll = 0
            # .to_array() does not work (and is not needed!) if there is only 1 variable
            # in this case, the axis_for_roll needs to be 0

        data_np = np.array(data)

        do_transpose = True  # To do: figure out if we need to transpose the data or not
        if do_transpose:
            try:
                data_np = np.transpose(data_np, (0, 2, 1))
            except Exception:
                data_np = np.transpose(data_np)

        # Figure out if we need to roll the data or not
        # (see https://github.com/gee-community/geemap/issues/285#issuecomment-791385176)
        if np.max(lon_data) > 180:
            data_np = np.roll(data_np, 180, axis=axis_for_roll)
            west_lon = lon_data[0] - 180
        else:
            west_lon = lon_data[0]

        transform = [dim_lon[0], 0, float(west_lon), 0, dim_lat[0], float(lat_data[0])]

        if band_names is None:
            band_names = var_names

        image = numpy_to_ee(
            data_np, "EPSG:4326", transform=transform, band_names=band_names
        )

        return image

    except Exception as e:
        print(e)

netcdf_to_tif(filename, output=None, variables=None, shift_lon=True, lat='lat', lon='lon', return_vars=False, **kwargs)

Convert a netcdf file to a GeoTIFF file.

Parameters:

Name Type Description Default
filename str

Path to the netcdf file.

required
output str

Path to the output GeoTIFF file. Defaults to None. If None, the output file will be the same as the input file with the extension changed to .tif.

None
variables str | list

Name of the variable or a list of variables to extract. Defaults to None. If None, all variables will be extracted.

None
shift_lon bool

Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.

True
lat str

Name of the latitude variable. Defaults to 'lat'.

'lat'
lon str

Name of the longitude variable. Defaults to 'lon'.

'lon'
return_vars bool

Flag to return all variables. Defaults to False.

False

Raises:

Type Description
ImportError

If the xarray or rioxarray package is not installed.

FileNotFoundError

If the netcdf file is not found.

ValueError

If the variable is not found in the netcdf file.

Source code in geemap/common.py
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
def netcdf_to_tif(
    filename,
    output=None,
    variables=None,
    shift_lon=True,
    lat="lat",
    lon="lon",
    return_vars=False,
    **kwargs,
):
    """Convert a netcdf file to a GeoTIFF file.

    Args:
        filename (str): Path to the netcdf file.
        output (str, optional): Path to the output GeoTIFF file. Defaults to None. If None, the output file will be the same as the input file with the extension changed to .tif.
        variables (str | list, optional): Name of the variable or a list of variables to extract. Defaults to None. If None, all variables will be extracted.
        shift_lon (bool, optional): Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.
        lat (str, optional): Name of the latitude variable. Defaults to 'lat'.
        lon (str, optional): Name of the longitude variable. Defaults to 'lon'.
        return_vars (bool, optional): Flag to return all variables. Defaults to False.

    Raises:
        ImportError: If the xarray or rioxarray package is not installed.
        FileNotFoundError: If the netcdf file is not found.
        ValueError: If the variable is not found in the netcdf file.
    """
    try:
        import xarray as xr
    except ImportError as e:
        raise ImportError(e)

    if filename.startswith("http"):
        filename = download_file(filename)

    if not os.path.exists(filename):
        raise FileNotFoundError(f"{filename} does not exist.")

    if output is None:
        output = filename.replace(".nc", ".tif")
    else:
        output = check_file_path(output)

    xds = xr.open_dataset(filename, **kwargs)

    if shift_lon:
        xds.coords[lon] = (xds.coords[lon] + 180) % 360 - 180
        xds = xds.sortby(xds.lon)

    allowed_vars = list(xds.data_vars.keys())
    if isinstance(variables, str):
        if variables not in allowed_vars:
            raise ValueError(f"{variables} is not a valid variable.")
        variables = [variables]

    if variables is not None and (not set(variables).issubset(allowed_vars)):
        raise ValueError(f"{variables} must be a subset of {allowed_vars}.")

    if variables is None:
        xds.rio.set_spatial_dims(x_dim=lon, y_dim=lat).rio.to_raster(output)
    else:
        xds[variables].rio.set_spatial_dims(x_dim=lon, y_dim=lat).rio.to_raster(output)

    if return_vars:
        return output, allowed_vars
    else:
        return output

new_tree_node(label, children=None, expanded=False, top_level=False)

Returns node JSON for an interactive representation of an EE ComputedObject.

Source code in geemap/coreutils.py
117
118
119
120
121
122
123
124
125
126
127
128
129
def new_tree_node(
    label: str,
    children: Optional[list[dict[str, Any]]] = None,
    expanded: bool = False,
    top_level: bool = False,
) -> Dict[str, Any]:
    """Returns node JSON for an interactive representation of an EE ComputedObject."""
    return {
        "label": label,
        "children": children or [],
        "expanded": expanded,
        "topLevel": top_level,
    }

num_round(num, decimal=2)

Rounds a number to a specified number of decimal places.

Parameters:

Name Type Description Default
num float

The number to round.

required
decimal int

The number of decimal places to round. Defaults to 2.

2

Returns:

Name Type Description
float

The number with the specified decimal places rounded.

Source code in geemap/common.py
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
def num_round(num, decimal=2):
    """Rounds a number to a specified number of decimal places.

    Args:
        num (float): The number to round.
        decimal (int, optional): The number of decimal places to round. Defaults to 2.

    Returns:
        float: The number with the specified decimal places rounded.
    """
    return round(num, decimal)

numpy_to_cog(np_array, out_cog, bounds=None, profile=None, dtype=None, crs='epsg:4326')

Converts a numpy array to a COG file.

Parameters:

Name Type Description Default
np_array array

A numpy array representing the image.

required
out_cog str

The output COG file path.

required
bounds tuple

The bounds of the image in the format of (minx, miny, maxx, maxy). Defaults to None.

None
profile str | dict

File path to an existing COG file or a dictionary representing the profile. Defaults to None.

None
dtype str

The data type of the output COG file. Defaults to None.

None
crs str

The coordinate reference system of the output COG file. Defaults to "epsg:4326".

'epsg:4326'
Source code in geemap/common.py
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
def numpy_to_cog(
    np_array, out_cog, bounds=None, profile=None, dtype=None, crs="epsg:4326"
):
    """Converts a numpy array to a COG file.

    Args:
        np_array (np.array): A numpy array representing the image.
        out_cog (str): The output COG file path.
        bounds (tuple, optional): The bounds of the image in the format of (minx, miny, maxx, maxy). Defaults to None.
        profile (str | dict, optional): File path to an existing COG file or a dictionary representing the profile. Defaults to None.
        dtype (str, optional): The data type of the output COG file. Defaults to None.
        crs (str, optional): The coordinate reference system of the output COG file. Defaults to "epsg:4326".

    """

    import numpy as np
    import rasterio
    from rasterio.io import MemoryFile
    from rasterio.transform import from_bounds

    from rio_cogeo.cogeo import cog_translate
    from rio_cogeo.profiles import cog_profiles

    warnings.filterwarnings("ignore")

    if not isinstance(np_array, np.ndarray):
        raise TypeError("The input array must be a numpy array.")

    out_dir = os.path.dirname(out_cog)
    check_dir(out_dir)

    if profile is not None:
        if isinstance(profile, str):
            if not os.path.exists(profile):
                raise FileNotFoundError("The provided file could not be found.")
            with rasterio.open(profile) as ds:
                bounds = ds.bounds
        elif isinstance(profile, rasterio.profiles.Profile):
            profile = dict(profile)
        elif not isinstance(profile, dict):
            raise TypeError("The provided profile must be a file path or a dictionary.")

    if bounds is None:
        bounds = (-180.0, -85.0511287798066, 180.0, 85.0511287798066)

    if not isinstance(bounds, tuple) and len(bounds) != 4:
        raise TypeError("The provided bounds must be a tuple of length 4.")

    # Rasterio uses numpy array of shape of `(bands, height, width)`

    if len(np_array.shape) == 3:
        nbands = np_array.shape[0]
        height = np_array.shape[1]
        width = np_array.shape[2]
    elif len(np_array.shape) == 2:
        nbands = 1
        height = np_array.shape[0]
        width = np_array.shape[1]
        np_array = np_array.reshape((1, height, width))
    else:
        raise ValueError("The input array must be a 2D or 3D numpy array.")

    src_transform = from_bounds(*bounds, width=width, height=height)
    if dtype is None:
        dtype = str(np_array.dtype)

    if isinstance(profile, dict):
        src_profile = profile
        src_profile["count"] = nbands
    else:
        src_profile = dict(
            driver="GTiff",
            dtype=dtype,
            count=nbands,
            height=height,
            width=width,
            crs=crs,
            transform=src_transform,
        )

    with MemoryFile() as memfile:
        with memfile.open(**src_profile) as mem:
            # Populate the input file with numpy array
            mem.write(np_array)

            dst_profile = cog_profiles.get("deflate")
            cog_translate(
                mem,
                out_cog,
                dst_profile,
                in_memory=True,
                quiet=True,
            )

numpy_to_ee(np_array, crs=None, transform=None, transformWkt=None, band_names=None)

Creates an ee.Image from a 3D numpy array where each 2D numpy slice is added to a band, and a geospatial transform that indicates where to put the data. If the np_array is already 2D only, then it is only a one-band image.

Parameters:

Name Type Description Default
np_array array

the 3D (or 2D) numpy array to add to an image

required
crs str

The base coordinate reference system of this Projection, given as a well-known authority code (e.g. 'EPSG:4326') or a WKT string.

None
transform list

The transform between projected coordinates and the base coordinate system, specified as a 2x3 affine transform matrix in row-major order: [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation]. May not specify both this and 'transformWkt'.

None
transformWkt str

The transform between projected coordinates and the base coordinate system, specified as a WKT string. May not specify both this and 'transform'.

None
band_names str or list

The list of names for the bands. The default names are 'constant', and 'constant_1', 'constant_2', etc.

None

Returns:

Name Type Description
image

An ee.Image

Source code in geemap/common.py
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
def numpy_to_ee(np_array, crs=None, transform=None, transformWkt=None, band_names=None):
    """
    Creates an ee.Image from a 3D numpy array where each 2D numpy slice is added to a band, and a geospatial transform that indicates where to put the data. If the np_array is already 2D only, then it is only a one-band image.

    Args:
        np_array (np.array): the 3D (or 2D) numpy array to add to an image
        crs (str): The base coordinate reference system of this Projection, given as a well-known authority code (e.g. 'EPSG:4326') or a WKT string.
        transform (list): The transform between projected coordinates and the base coordinate system, specified as a 2x3 affine transform matrix in row-major order: [xScale, xShearing, xTranslation, yShearing, yScale, yTranslation]. May not specify both this and 'transformWkt'.
        transformWkt (str): The transform between projected coordinates and the base coordinate system, specified as a WKT string. May not specify both this and 'transform'.
        band_names (str or list, optional): The list of names for the bands. The default names are 'constant', and 'constant_1', 'constant_2', etc.

    Returns:
        image: An ee.Image

    """
    import numpy as np

    if not isinstance(np_array, np.ndarray):
        print("The input must be a numpy.ndarray.")
        return
    if not len(np_array.shape) in [2, 3]:
        print("The input must have 2 or 3 dimensions")
        return
    if band_names and not isinstance(band_names, (list, str)):
        print("Band names must be a str or list")
        return

    try:
        projection = ee.Projection(crs, transform, transformWkt)
        coords = ee.Image.pixelCoordinates(projection).floor().int32()
        x = coords.select("x")
        y = coords.select("y")
        s = np_array.shape
        if len(s) < 3:
            dimx = s[0]
            dimy = s[1]
        else:
            dimx = s[1]
            dimy = s[2]
            dimz = s[0]

        coord_mask = x.gte(0).And(y.gte(0)).And(x.lt(dimx)).And(y.lt(dimy))
        coords = coords.updateMask(coord_mask)

        def list_to_ee(a_list):
            ee_data = ee.Array(a_list)
            image = ee.Image(ee_data).arrayGet(coords)
            return image

        if len(s) < 3:
            image = list_to_ee(np_array.tolist())
        else:
            image = list_to_ee(np_array[0].tolist())
            for z in np.arange(1, dimz):
                image = image.addBands(list_to_ee(np_array[z].tolist()))

        if band_names:
            image = image.rename(band_names)

        return image

    except Exception as e:
        print(e)

nwi_add_color(fc)

Converts NWI vector dataset to image and add color to it.

Parameters:

Name Type Description Default
fc object

ee.FeatureCollection

required

Returns:

Name Type Description
object

ee.Image

Source code in geemap/common.py
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
def nwi_add_color(fc):
    """Converts NWI vector dataset to image and add color to it.

    Args:
        fc (object): ee.FeatureCollection

    Returns:
        object: ee.Image
    """
    emergent = ee.FeatureCollection(
        fc.filter(ee.Filter.eq("WETLAND_TY", "Freshwater Emergent Wetland"))
    )
    emergent = emergent.map(lambda f: f.set("R", 127).set("G", 195).set("B", 28))
    # print(emergent.first())

    forested = fc.filter(
        ee.Filter.eq("WETLAND_TY", "Freshwater Forested/Shrub Wetland")
    )
    forested = forested.map(lambda f: f.set("R", 0).set("G", 136).set("B", 55))

    pond = fc.filter(ee.Filter.eq("WETLAND_TY", "Freshwater Pond"))
    pond = pond.map(lambda f: f.set("R", 104).set("G", 140).set("B", 192))

    lake = fc.filter(ee.Filter.eq("WETLAND_TY", "Lake"))
    lake = lake.map(lambda f: f.set("R", 19).set("G", 0).set("B", 124))

    riverine = fc.filter(ee.Filter.eq("WETLAND_TY", "Riverine"))
    riverine = riverine.map(lambda f: f.set("R", 1).set("G", 144).set("B", 191))

    fc = ee.FeatureCollection(
        emergent.merge(forested).merge(pond).merge(lake).merge(riverine)
    )

    #   base = ee.Image(0).mask(0).toInt8()
    base = ee.Image().byte()
    img = base.paint(fc, "R").addBands(
        base.paint(fc, "G").addBands(base.paint(fc, "B"))
    )

    return img

open_github(subdir=None)

Opens the GitHub repository for this package.

Parameters:

Name Type Description Default
subdir str

Sub-directory of the repository. Defaults to None.

None
Source code in geemap/common.py
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
def open_github(subdir=None):
    """Opens the GitHub repository for this package.

    Args:
        subdir (str, optional): Sub-directory of the repository. Defaults to None.
    """
    import webbrowser

    url = "https://github.com/gee-community/geemap"

    if subdir == "source":
        url += "/tree/master/geemap/"
    elif subdir == "examples":
        url += "/tree/master/examples"
    elif subdir == "tutorials":
        url += "/tree/master/tutorials"

    webbrowser.open_new_tab(url)

open_image_from_url(url, timeout=300, proxies=None)

Loads an image from the specified URL.

Parameters:

Name Type Description Default
url str

URL of the image.

required
timeout int

Timeout in seconds. Defaults to 300.

300
proxies dict

Dictionary of proxies. Defaults to None.

None

Returns:

Name Type Description
object

Image object.

Source code in geemap/common.py
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
def open_image_from_url(url, timeout=300, proxies=None):
    """Loads an image from the specified URL.

    Args:
        url (str): URL of the image.
        timeout (int, optional): Timeout in seconds. Defaults to 300.
        proxies (dict, optional): Dictionary of proxies. Defaults to None.

    Returns:
        object: Image object.
    """
    from PIL import Image

    # from io import BytesIO
    # from urllib.parse import urlparse

    try:
        url = get_direct_url(url)
        response = requests.get(url, timeout=timeout, proxies=proxies)
        img = Image.open(io.BytesIO(response.content))
        return img
    except Exception as e:
        print(e)

open_url(url)

Opens the URL in a new browser tab.

Parameters:

Name Type Description Default
url str

The URL to open.

required
Source code in geemap/coreutils.py
646
647
648
649
650
651
652
653
654
655
656
657
658
659
def open_url(url: str) -> None:
    """Opens the URL in a new browser tab.

    Args:
        url (str): The URL to open.
    """
    if in_colab_shell():
        display(
            Javascript('window.open("{url}", "_blank", "noopener")'.format(url=url))
        )
    else:
        import webbrowser

        webbrowser.open_new_tab(url)

open_youtube()

Opens the YouTube tutorials for geemap.

Source code in geemap/common.py
1918
1919
1920
1921
1922
1923
def open_youtube():
    """Opens the YouTube tutorials for geemap."""
    import webbrowser

    url = "https://www.youtube.com/playlist?list=PLAxJ4-o7ZoPccOFv1dCwvGI6TYnirRTg3"
    webbrowser.open_new_tab(url)

osm_gdf_from_address(address, tags, dist=1000)

Create GeoDataFrame of OSM entities within some distance N, S, E, W of address.

Parameters:

Name Type Description Default
address str

The address to geocode and use as the central point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
dist int

Distance in meters. Defaults to 1000.

1000

Returns:

Name Type Description
GeoDataFrame

A GeoDataFrame of OSM entities.

Source code in geemap/osm.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def osm_gdf_from_address(address, tags, dist=1000):
    """Create GeoDataFrame of OSM entities within some distance N, S, E, W of address.

    Args:
        address (str): The address to geocode and use as the central point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        dist (int, optional): Distance in meters. Defaults to 1000.

    Returns:
        GeoDataFrame: A GeoDataFrame of OSM entities.
    """
    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/#installation")
    import osmnx as ox

    gdf = ox.geometries_from_address(address, tags, dist)
    return gdf

osm_gdf_from_bbox(north, south, east, west, tags)

Create a GeoDataFrame of OSM entities within a N, S, E, W bounding box.

Parameters:

Name Type Description Default
north float

Northern latitude of bounding box.

required
south float

Southern latitude of bounding box.

required
east float

Eastern longitude of bounding box.

required
west float

Western longitude of bounding box.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required

Returns:

Name Type Description
GeoDataFrame

A GeoDataFrame of OSM entities.

Source code in geemap/osm.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def osm_gdf_from_bbox(north, south, east, west, tags):
    """Create a GeoDataFrame of OSM entities within a N, S, E, W bounding box.

    Args:
        north (float): Northern latitude of bounding box.
        south (float): Southern latitude of bounding box.
        east (float): Eastern longitude of bounding box.
        west (float): Western longitude of bounding box.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

    Returns:
        GeoDataFrame: A GeoDataFrame of OSM entities.
    """
    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/#installation")
    import osmnx as ox

    gdf = ox.geometries_from_bbox(north, south, east, west, tags)
    return gdf

osm_gdf_from_geocode(query, which_result=None, by_osmid=False, buffer_dist=None)

Retrieves place(s) by name or ID from the Nominatim API as a GeoDataFrame.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
which_result INT

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None

Returns:

Name Type Description
GeoDataFrame

A GeoPandas GeoDataFrame.

Source code in geemap/osm.py
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
def osm_gdf_from_geocode(
    query,
    which_result=None,
    by_osmid=False,
    buffer_dist=None,
):
    """Retrieves place(s) by name or ID from the Nominatim API as a GeoDataFrame.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.

    Returns:
        GeoDataFrame: A GeoPandas GeoDataFrame.
    """

    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/")

    import osmnx as ox

    gdf = ox.geocode_to_gdf(query, which_result, by_osmid, buffer_dist)
    return gdf

osm_gdf_from_place(query, tags, which_result=None, buffer_dist=None)

Create GeoDataFrame of OSM entities within boundaries of geocodable place(s).

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
which_result int

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None

Returns:

Name Type Description
GeoDataFrame

A GeoDataFrame of OSM entities.

Source code in geemap/osm.py
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def osm_gdf_from_place(query, tags, which_result=None, buffer_dist=None):
    """Create GeoDataFrame of OSM entities within boundaries of geocodable place(s).

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.

    Returns:
        GeoDataFrame: A GeoDataFrame of OSM entities.
    """
    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/#installation")
    import osmnx as ox

    ox.config(use_cache=True, log_console=True)

    gdf = ox.geometries_from_place(query, tags, which_result, buffer_dist)
    return gdf

osm_gdf_from_point(center_point, tags, dist=1000)

Create GeoDataFrame of OSM entities within some distance N, S, E, W of a point.

Parameters:

Name Type Description Default
center_point tuple

The (lat, lng) center point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
dist int

Distance in meters. Defaults to 1000.

1000

Returns:

Name Type Description
GeoDataFrame

A GeoDataFrame of OSM entities.

Source code in geemap/osm.py
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def osm_gdf_from_point(center_point, tags, dist=1000):
    """Create GeoDataFrame of OSM entities within some distance N, S, E, W of a point.

    Args:
        center_point (tuple): The (lat, lng) center point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        dist (int, optional): Distance in meters. Defaults to 1000.

    Returns:
        GeoDataFrame: A GeoDataFrame of OSM entities.
    """
    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/#installation")
    import osmnx as ox

    gdf = ox.geometries_from_point(center_point, tags, dist)
    return gdf

osm_gdf_from_polygon(polygon, tags)

Create GeoDataFrame of OSM entities within boundaries of a (multi)polygon.

Parameters:

Name Type Description Default
polygon Polygon | MultiPolygon

Geographic boundaries to fetch geometries within

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required

Returns:

Name Type Description
GeoDataFrame

A GeoDataFrame of OSM entities.

Source code in geemap/osm.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def osm_gdf_from_polygon(polygon, tags):
    """Create GeoDataFrame of OSM entities within boundaries of a (multi)polygon.

    Args:
        polygon (shapely.geometry.Polygon | shapely.geometry.MultiPolygon): Geographic boundaries to fetch geometries within
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

    Returns:
        GeoDataFrame: A GeoDataFrame of OSM entities.
    """
    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/#installation")
    import osmnx as ox

    gdf = ox.geometries_from_polygon(polygon, tags)
    return gdf

osm_gdf_from_xml(filepath, polygon=None, tags=None)

Create a GeoDataFrame of OSM entities in an OSM-formatted XML file.

Parameters:

Name Type Description Default
filepath str

File path to file containing OSM XML data

required
polygon Polygon

Optional geographic boundary to filter objects. Defaults to None.

None
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

None

Returns:

Name Type Description
GeoDataFrame

A GeoDataFrame of OSM entities.

Source code in geemap/osm.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def osm_gdf_from_xml(filepath, polygon=None, tags=None):
    """Create a GeoDataFrame of OSM entities in an OSM-formatted XML file.

    Args:
        filepath (str): File path to file containing OSM XML data
        polygon (shapely.geometry.Polygon, optional): Optional geographic boundary to filter objects. Defaults to None.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

    Returns:
        GeoDataFrame: A GeoDataFrame of OSM entities.
    """
    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/#installation")
    import osmnx as ox

    gdf = ox.geometries_from_xml(filepath, polygon, tags)
    return gdf

osm_geojson_from_address(address, tags, filepath=None, dist=1000)

Download OSM entities within some distance N, S, E, W of address as a GeoJSON.

Parameters:

Name Type Description Default
address str

The address to geocode and use as the central point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output GeoJSON. Defaults to None.

None
dist int

Distance in meters. Defaults to 1000.

1000

Returns:

Name Type Description
dict

A GeoJSON dictionary of OSM entities.

Source code in geemap/osm.py
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def osm_geojson_from_address(address, tags, filepath=None, dist=1000):
    """Download OSM entities within some distance N, S, E, W of address as a GeoJSON.

    Args:
        address (str): The address to geocode and use as the central point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str, optional): File path to the output GeoJSON. Defaults to None.
        dist (int, optional): Distance in meters. Defaults to 1000.

    Returns:
        dict: A GeoJSON dictionary of OSM entities.
    """
    gdf = osm_gdf_from_address(address, tags, dist)
    if filepath is not None:
        gdf.to_file(filepath, driver="GeoJSON")
    else:
        return gdf.__geo_interface__

osm_geojson_from_bbox(north, south, east, west, tags, filepath=None)

Download OSM entities within a N, S, E, W bounding box as a GeoJSON.

Parameters:

Name Type Description Default
north float

Northern latitude of bounding box.

required
south float

Southern latitude of bounding box.

required
east float

Eastern longitude of bounding box.

required
west float

Western longitude of bounding box.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output GeoJSON.

None

Returns:

Name Type Description
dict

A GeoJSON dictionary of OSM entities.

Source code in geemap/osm.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
def osm_geojson_from_bbox(north, south, east, west, tags, filepath=None):
    """Download OSM entities within a N, S, E, W bounding box as a GeoJSON.

    Args:
        north (float): Northern latitude of bounding box.
        south (float): Southern latitude of bounding box.
        east (float): Eastern longitude of bounding box.
        west (float): Western longitude of bounding box.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str, optional): File path to the output GeoJSON.

    Returns:
        dict: A GeoJSON dictionary of OSM entities.
    """
    gdf = osm_gdf_from_bbox(north, south, east, west, tags)
    if filepath is not None:
        gdf.to_file(filepath, driver="GeoJSON")
    else:
        return gdf.__geo_interface__

osm_geojson_from_geocode(query, filepath=None, which_result=None, by_osmid=False, buffer_dist=None)

Download place(s) by name or ID from the Nominatim API as a GeoJSON.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
filepath str

File path to the output GeoJSON.

None
which_result int

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None

Returns:

Name Type Description
dict

A GeoJSON dictionary of OSM entities.

Source code in geemap/osm.py
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
def osm_geojson_from_geocode(
    query,
    filepath=None,
    which_result=None,
    by_osmid=False,
    buffer_dist=None,
):
    """Download place(s) by name or ID from the Nominatim API as a GeoJSON.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        filepath (str): File path to the output GeoJSON.
        which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.

    Returns:
        dict: A GeoJSON dictionary of OSM entities.
    """
    gdf = osm_gdf_from_geocode(query, which_result, by_osmid, buffer_dist)
    if filepath is not None:
        gdf.to_file(filepath, driver="GeoJSON")
    else:
        return gdf.__geo_interface__

osm_geojson_from_place(query, tags, filepath=None, which_result=None, buffer_dist=None)

Download OSM entities within boundaries of geocodable place(s) as a GeoJSON.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output shapefile.

None
which_result int

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None

Returns:

Name Type Description
dict

A GeoJSON dictionary of OSM entities.

Source code in geemap/osm.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def osm_geojson_from_place(
    query, tags, filepath=None, which_result=None, buffer_dist=None
):
    """Download OSM entities within boundaries of geocodable place(s) as a GeoJSON.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str): File path to the output shapefile.
        which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.

    Returns:
        dict: A GeoJSON dictionary of OSM entities.
    """

    gdf = osm_gdf_from_place(query, tags, which_result, buffer_dist)
    if filepath is not None:
        gdf.to_file(filepath, driver="GeoJSON")
    else:
        return gdf.__geo_interface__

osm_geojson_from_point(center_point, tags, filepath=None, dist=1000)

Download OSM entities within some distance N, S, E, W of point as a GeoJSON.

Parameters:

Name Type Description Default
center_point tuple

The (lat, lng) center point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output shapefile.

None
dist int

Distance in meters. Defaults to 1000.

1000

Returns:

Name Type Description
dict

A GeoJSON dictionary of OSM entities.

Source code in geemap/osm.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def osm_geojson_from_point(center_point, tags, filepath=None, dist=1000):
    """Download OSM entities within some distance N, S, E, W of point as a GeoJSON.

    Args:
        center_point (tuple): The (lat, lng) center point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str): File path to the output shapefile.
        dist (int, optional): Distance in meters. Defaults to 1000.

    Returns:
        dict: A GeoJSON dictionary of OSM entities.
    """
    gdf = osm_gdf_from_point(center_point, tags, dist)
    if filepath is not None:
        gdf.to_file(filepath, driver="GeoJSON")
    else:
        return gdf.__geo_interface__

osm_geojson_from_polygon(polygon, tags, filepath=None)

Download OSM entities within boundaries of a (multi)polygon as a GeoJSON.

Parameters:

Name Type Description Default
polygon Polygon | MultiPolygon

Geographic boundaries to fetch geometries within

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output GeoJSON.

None

Returns:

Name Type Description
dict

A GeoJSON dictionary of OSM entities.

Source code in geemap/osm.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def osm_geojson_from_polygon(polygon, tags, filepath=None):
    """Download OSM entities within boundaries of a (multi)polygon as a GeoJSON.

    Args:
        polygon (shapely.geometry.Polygon | shapely.geometry.MultiPolygon): Geographic boundaries to fetch geometries within
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str, optional): File path to the output GeoJSON.

    Returns:
        dict: A GeoJSON dictionary of OSM entities.
    """
    gdf = osm_gdf_from_polygon(polygon, tags)
    if filepath is not None:
        gdf.to_file(filepath, driver="GeoJSON")
    else:
        return gdf.__geo_interface__

osm_shp_from_address(address, tags, filepath, dist=1000)

Download OSM entities within some distance N, S, E, W of address as a shapefile.

Parameters:

Name Type Description Default
address str

The address to geocode and use as the central point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output shapefile.

required
dist int

Distance in meters. Defaults to 1000.

1000
Source code in geemap/osm.py
33
34
35
36
37
38
39
40
41
42
43
44
def osm_shp_from_address(address, tags, filepath, dist=1000):
    """Download OSM entities within some distance N, S, E, W of address as a shapefile.

    Args:
        address (str): The address to geocode and use as the central point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str): File path to the output shapefile.
        dist (int, optional): Distance in meters. Defaults to 1000.

    """
    gdf = osm_gdf_from_address(address, tags, dist)
    gdf.to_file(filepath)

osm_shp_from_bbox(north, south, east, west, tags, filepath)

Download OSM entities within a N, S, E, W bounding box as a shapefile.

Parameters:

Name Type Description Default
north float

Northern latitude of bounding box.

required
south float

Southern latitude of bounding box.

required
east float

Eastern longitude of bounding box.

required
west float

Western longitude of bounding box.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output shapefile.

required
Source code in geemap/osm.py
241
242
243
244
245
246
247
248
249
250
251
252
253
def osm_shp_from_bbox(north, south, east, west, tags, filepath):
    """Download OSM entities within a N, S, E, W bounding box as a shapefile.

    Args:
        north (float): Northern latitude of bounding box.
        south (float): Southern latitude of bounding box.
        east (float): Eastern longitude of bounding box.
        west (float): Western longitude of bounding box.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str): File path to the output shapefile.
    """
    gdf = osm_gdf_from_bbox(north, south, east, west, tags)
    gdf.to_file(filepath)

osm_shp_from_geocode(query, filepath, which_result=None, by_osmid=False, buffer_dist=None)

Download place(s) by name or ID from the Nominatim API as a shapefile.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
filepath str

File path to the output shapefile.

required
which_result int

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None
Source code in geemap/osm.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def osm_shp_from_geocode(
    query,
    filepath,
    which_result=None,
    by_osmid=False,
    buffer_dist=None,
):
    """Download place(s) by name or ID from the Nominatim API as a shapefile.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        filepath (str): File path to the output shapefile.
        which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
    """
    gdf = osm_gdf_from_geocode(query, which_result, by_osmid, buffer_dist)
    gdf.to_file(filepath)

osm_shp_from_place(query, tags, filepath, which_result=None, buffer_dist=None)

Download OSM entities within boundaries of geocodable place(s) as a shapefile.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output shapefile.

required
which_result int

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None
Source code in geemap/osm.py
87
88
89
90
91
92
93
94
95
96
97
98
def osm_shp_from_place(query, tags, filepath, which_result=None, buffer_dist=None):
    """Download OSM entities within boundaries of geocodable place(s) as a shapefile.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str): File path to the output shapefile.
        which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
    """
    gdf = osm_gdf_from_place(query, tags, which_result, buffer_dist)
    gdf.to_file(filepath)

osm_shp_from_point(center_point, tags, filepath, dist=1000)

Download OSM entities within some distance N, S, E, W of point as a shapefile.

Parameters:

Name Type Description Default
center_point tuple

The (lat, lng) center point around which to get the geometries.

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output shapefile.

required
dist int

Distance in meters. Defaults to 1000.

1000
Source code in geemap/osm.py
142
143
144
145
146
147
148
149
150
151
152
def osm_shp_from_point(center_point, tags, filepath, dist=1000):
    """Download OSM entities within some distance N, S, E, W of point as a shapefile.

    Args:
        center_point (tuple): The (lat, lng) center point around which to get the geometries.
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str): File path to the output shapefile.
        dist (int, optional): Distance in meters. Defaults to 1000.
    """
    gdf = osm_gdf_from_point(center_point, tags, dist)
    gdf.to_file(filepath)

osm_shp_from_polygon(polygon, tags, filepath)

Download OSM entities within boundaries of a (multi)polygon as a shapefile.

Parameters:

Name Type Description Default
polygon Polygon | MultiPolygon

Geographic boundaries to fetch geometries within

required
tags dict

Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

required
filepath str

File path to the output shapefile.

required
Source code in geemap/osm.py
191
192
193
194
195
196
197
198
199
200
def osm_shp_from_polygon(polygon, tags, filepath):
    """Download OSM entities within boundaries of a (multi)polygon as a shapefile.

    Args:
        polygon (shapely.geometry.Polygon | shapely.geometry.MultiPolygon): Geographic boundaries to fetch geometries within
        tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
        filepath (str): File path to the output shapefile.
    """
    gdf = osm_gdf_from_polygon(polygon, tags)
    gdf.to_file(filepath)

osm_tags_list()

Open a browser to see all tags of OSM features.

Source code in geemap/osm.py
367
368
369
370
371
def osm_tags_list():
    """Open a browser to see all tags of OSM features."""
    import webbrowser

    webbrowser.open_new_tab("https://wiki.openstreetmap.org/wiki/Map_features")

osm_to_ee(query, which_result=None, by_osmid=False, buffer_dist=None, geodesic=True)

Retrieves place(s) by name or ID from the Nominatim API as an ee.FeatureCollection.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
which_result INT

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None
geodesic bool

Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

True

Returns:

Type Description

ee.FeatureCollection: An Earth Engine FeatureCollection.

Source code in geemap/common.py
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
def osm_to_ee(
    query, which_result=None, by_osmid=False, buffer_dist=None, geodesic=True
):
    """Retrieves place(s) by name or ID from the Nominatim API as an ee.FeatureCollection.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
        geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

    Returns:
        ee.FeatureCollection: An Earth Engine FeatureCollection.
    """
    gdf = osm_to_gdf(query, which_result, by_osmid, buffer_dist)
    fc = gdf_to_ee(gdf, geodesic)
    return fc

osm_to_gdf(query, which_result=None, by_osmid=False, buffer_dist=None)

Retrieves place(s) by name or ID from the Nominatim API as a GeoDataFrame.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
which_result INT

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None

Returns:

Name Type Description
GeoDataFrame

A GeoPandas GeoDataFrame.

Source code in geemap/common.py
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
def osm_to_gdf(
    query,
    which_result=None,
    by_osmid=False,
    buffer_dist=None,
):
    """Retrieves place(s) by name or ID from the Nominatim API as a GeoDataFrame.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.

    Returns:
        GeoDataFrame: A GeoPandas GeoDataFrame.
    """
    check_package(
        "geopandas", "https://geopandas.org/getting_started.html#installation"
    )
    check_package("osmnx", "https://osmnx.readthedocs.io/en/stable/")

    try:
        import osmnx as ox

        gdf = ox.geocode_to_gdf(query, which_result, by_osmid, buffer_dist)
        return gdf
    except Exception as e:
        raise Exception(e)

osm_to_geojson(query, which_result=None, by_osmid=False, buffer_dist=None)

Retrieves place(s) by name or ID from the Nominatim API as an ee.FeatureCollection.

Parameters:

Name Type Description Default
query str | dict | list

Query string(s) or structured dict(s) to geocode.

required
which_result INT

Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.

None
by_osmid bool

If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.

False
buffer_dist float

Distance to buffer around the place geometry, in meters. Defaults to None.

None

Returns:

Type Description

ee.FeatureCollection: An Earth Engine FeatureCollection.

Source code in geemap/common.py
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
def osm_to_geojson(query, which_result=None, by_osmid=False, buffer_dist=None):
    """Retrieves place(s) by name or ID from the Nominatim API as an ee.FeatureCollection.

    Args:
        query (str | dict | list): Query string(s) or structured dict(s) to geocode.
        which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
        by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
        buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.

    Returns:
        ee.FeatureCollection: An Earth Engine FeatureCollection.
    """
    gdf = osm_to_gdf(query, which_result, by_osmid, buffer_dist)
    return gdf.__geo_interface__

pie_chart(data, names=None, values=None, descending=True, max_rows=None, other_label=None, color=None, color_discrete_sequence=None, color_discrete_map=None, hover_name=None, hover_data=None, custom_data=None, labels=None, title=None, legend_title=None, template=None, width=None, height=None, opacity=None, hole=None, layout_args={}, **kwargs)

Create a plotly pie chart.

Parameters:

Name Type Description Default
data

DataFrame or array-like or dict This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.

required
names

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used as labels for sectors.

None
values

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to set values associated to sectors.

None
descending bool

Whether to sort the data in descending order. Defaults to True.

True
max_rows int

Maximum number of rows to display. Defaults to None.

None
other_label str

Label for the "other" category. Defaults to None.

None
color

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.

None
color_discrete_sequence

list of str Strings should define valid CSS-colors. When color is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling through color_discrete_sequence in the order described in category_orders, unless the value of color is a key in color_discrete_map. Various useful color sequences are available in the plotly.express.colors submodules, specifically plotly.express.colors.qualitative.

None
color_discrete_map

dict with str keys and str values (default {}) String values should define valid CSS-colors Used to override color_discrete_sequence to assign a specific colors to marks corresponding with specific values. Keys in color_discrete_map should be values in the column denoted by color. Alternatively, if the values of color are valid colors, the string 'identity' may be passed to cause them to be used directly.

None
hover_name

str or int or Series or array-like Either a name of a column in data_frame, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.

None
hover_data

list of str or int, or Series or array-like, or dict Either a list of names of columns in data_frame, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ':.3f' or '|%a' or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.

None
custom_data

list of str or int, or Series or array-like Either names of columns in data_frame, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)

None
labels

dict with str keys and str values (default {}) By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.

None
title

str The figure title.

None
template

str or dict or plotly.graph_objects.layout.Template instance The figure template name (must be a key in plotly.io.templates) or definition.

None
width

int (default None) The figure width in pixels.

None
height

int (default None) The figure height in pixels.

None
opacity

float Value between 0 and 1. Sets the opacity for markers.

None
hole

float Sets the fraction of the radius to cut out of the pie.Use this to make a donut chart.

None

Returns:

Type Description

plotly.graph_objs._figure.Figure: A plotly figure object.

Source code in geemap/plot.py
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
def pie_chart(
    data,
    names=None,
    values=None,
    descending=True,
    max_rows=None,
    other_label=None,
    color=None,
    color_discrete_sequence=None,
    color_discrete_map=None,
    hover_name=None,
    hover_data=None,
    custom_data=None,
    labels=None,
    title=None,
    legend_title=None,
    template=None,
    width=None,
    height=None,
    opacity=None,
    hole=None,
    layout_args={},
    **kwargs,
):
    """Create a plotly pie chart.

    Args:
        data: DataFrame or array-like or dict
            This argument needs to be passed for column names (and not keyword
            names) to be used. Array-like and dict are transformed internally to a
            pandas DataFrame. Optional: if missing, a DataFrame gets constructed
            under the hood using the other arguments.
        names: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used as
            labels for sectors.
        values: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            set values associated to sectors.
        descending (bool, optional): Whether to sort the data in descending order. Defaults to True.
        max_rows (int, optional): Maximum number of rows to display. Defaults to None.
        other_label (str, optional): Label for the "other" category. Defaults to None.
        color: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like are used to
            assign color to marks.
        color_discrete_sequence: list of str
            Strings should define valid CSS-colors. When `color` is set and the
            values in the corresponding column are not numeric, values in that
            column are assigned colors by cycling through `color_discrete_sequence`
            in the order described in `category_orders`, unless the value of
            `color` is a key in `color_discrete_map`. Various useful color
            sequences are available in the `plotly.express.colors` submodules,
            specifically `plotly.express.colors.qualitative`.
        color_discrete_map: dict with str keys and str values (default `{}`)
            String values should define valid CSS-colors Used to override
            `color_discrete_sequence` to assign a specific colors to marks
            corresponding with specific values. Keys in `color_discrete_map` should
            be values in the column denoted by `color`. Alternatively, if the
            values of `color` are valid colors, the string `'identity'` may be
            passed to cause them to be used directly.
        hover_name: str or int or Series or array-like
            Either a name of a column in `data_frame`, or a pandas Series or
            array_like object. Values from this column or array_like appear in bold
            in the hover tooltip.
        hover_data: list of str or int, or Series or array-like, or dict
            Either a list of names of columns in `data_frame`, or pandas Series, or
            array_like objects or a dict with column names as keys, with values
            True (for default formatting) False (in order to remove this column
            from hover information), or a formatting string, for example ':.3f' or
            '|%a' or list-like data to appear in the hover tooltip or tuples with a
            bool or formatting string as first element, and list-like data to
            appear in hover as second element Values from these columns appear as
            extra data in the hover tooltip.
        custom_data: list of str or int, or Series or array-like
            Either names of columns in `data_frame`, or pandas Series, or
            array_like objects Values from these columns are extra data, to be used
            in widgets or Dash callbacks for example. This data is not user-visible
            but is included in events emitted by the figure (lasso selection etc.)
        labels: dict with str keys and str values (default `{}`)
            By default, column names are used in the figure for axis titles, legend
            entries and hovers. This parameter allows this to be overridden. The
            keys of this dict should correspond to column names, and the values
            should correspond to the desired label to be displayed.
        title: str
            The figure title.
        template: str or dict or plotly.graph_objects.layout.Template instance
            The figure template name (must be a key in plotly.io.templates) or
            definition.
        width: int (default `None`)
            The figure width in pixels.
        height: int (default `None`)
            The figure height in pixels.
        opacity: float
            Value between 0 and 1. Sets the opacity for markers.
        hole: float
            Sets the fraction of the radius to cut out of the pie.Use this to make
            a donut chart.

    Returns:
        plotly.graph_objs._figure.Figure: A plotly figure object.
    """
    if isinstance(data, str):
        if data.startswith("http"):
            data = github_raw_url(data)
            data = get_direct_url(data)

        try:
            data = pd.read_csv(data)
        except Exception as e:
            raise ValueError(f"Could not read data from {data}. {e}")

    if not isinstance(data, pd.DataFrame):
        raise ValueError(
            "data must be a pandas DataFrame, a string or an ee.FeatureCollection."
        )

    if descending is not None and isinstance(values, str):
        data.sort_values([values], ascending=not (descending), inplace=True)

    if other_label is None:
        other_label = "Other"

    if max_rows is not None and isinstance(names, str) and isinstance(values, str):
        max_rows = min(len(data), max_rows) - 2
        value = data.iloc[max_rows][values]
        data.loc[data[values] < value, names] = other_label

    if isinstance(legend_title, str):
        if "legend" not in layout_args:
            layout_args["legend"] = {}
        layout_args["legend"]["title"] = legend_title

    try:
        fig = px.pie(
            data_frame=data,
            names=names,
            values=values,
            color=color,
            color_discrete_sequence=color_discrete_sequence,
            color_discrete_map=color_discrete_map,
            hover_name=hover_name,
            hover_data=hover_data,
            custom_data=custom_data,
            labels=labels,
            title=title,
            template=template,
            width=width,
            height=height,
            opacity=opacity,
            hole=hole,
            **kwargs,
        )

        if isinstance(layout_args, dict):
            fig.update_layout(**layout_args)

        return fig
    except Exception as e:
        raise Exception(f"Could not create pie chart. {e}")

planet_biannual_tiles_tropical(api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet bi-annual imagery TileLayer based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
def planet_biannual_tiles_tropical(
    api_key=None, token_name="PLANET_API_KEY", tile_format="ipyleaflet"
):
    """Generates Planet  bi-annual imagery TileLayer based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """

    import folium
    import ipyleaflet

    if tile_format not in ["ipyleaflet", "folium"]:
        raise ValueError("The tile format must be either ipyleaflet or folium.")

    tiles = {}
    link = planet_biannual_tropical(api_key, token_name)
    for url in link:
        index = url.find("20")
        name = "Planet_" + url[index : index + 15]
        if tile_format == "ipyleaflet":
            tile = ipyleaflet.TileLayer(url=url, attribution="Planet", name=name)
        else:
            tile = folium.TileLayer(
                tiles=url,
                attr="Planet",
                name=name,
                overlay=True,
                control=True,
            )
        tiles[name] = tile

    return tiles

planet_biannual_tropical(api_key=None, token_name='PLANET_API_KEY')

Generates Planet bi-annual imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Raises:

Type Description
ValueError

If the API key could not be found.

Returns:

Name Type Description
list

A list of tile URLs.

Source code in geemap/common.py
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
def planet_biannual_tropical(api_key=None, token_name="PLANET_API_KEY"):
    """Generates Planet bi-annual imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Raises:
        ValueError: If the API key could not be found.

    Returns:
        list: A list of tile URLs.
    """

    if api_key is None:
        api_key = os.environ.get(token_name)
        if api_key is None:
            raise ValueError("The Planet API Key must be provided.")

    dates = [
        "2015-12_2016-05",
        "2016-06_2016-11",
        "2016-12_2017-05",
        "2017-06_2017-11",
        "2017-12_2018-05",
        "2018-06_2018-11",
        "2018-12_2019-05",
        "2019-06_2019-11",
        "2019-12_2020-05",
        "2020-06_2020-08",
    ]

    link = []
    prefix = "https://tiles.planet.com/basemaps/v1/planet-tiles/planet_medres_normalized_analytic_"
    subfix = "_mosaic/gmap/{z}/{x}/{y}.png?api_key="

    for d in dates:
        url = f"{prefix}{d}{subfix}{api_key}"
        link.append(url)

    return link

planet_by_month(year=2016, month=1, api_key=None, token_name='PLANET_API_KEY')

Gets Planet global mosaic tile url by month. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

Parameters:

Name Type Description Default
year int

The year of Planet global mosaic, must be >=2016. Defaults to 2016.

2016
month int

The month of Planet global mosaic, must be 1-12. Defaults to 1.

1
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Raises:

Type Description
ValueError

The Planet API key is not provided.

ValueError

The year is invalid.

ValueError

The month is invalid.

ValueError

The month is invalid.

Returns:

Name Type Description
str

A Planet global mosaic tile url.

Source code in geemap/common.py
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
def planet_by_month(
    year=2016,
    month=1,
    api_key=None,
    token_name="PLANET_API_KEY",
):
    """Gets Planet global mosaic tile url by month. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

    Args:
        year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
        month (int, optional): The month of Planet global mosaic, must be 1-12. Defaults to 1.
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Raises:
        ValueError: The Planet API key is not provided.
        ValueError: The year is invalid.
        ValueError: The month is invalid.
        ValueError: The month is invalid.

    Returns:
        str: A Planet global mosaic tile url.
    """
    # from datetime import date

    if api_key is None:
        api_key = os.environ.get(token_name)
        if api_key is None:
            raise ValueError("The Planet API Key must be provided.")

    today = datetime.date.today()
    year_now = int(today.strftime("%Y"))
    month_now = int(today.strftime("%m"))
    # quarter_now = (month_now - 1) // 3 + 1

    if year > year_now:
        raise ValueError(f"Year must be between 2016 and {year_now}.")
    elif year == year_now and month >= month_now:
        raise ValueError(f"Month must be less than {month_now} for year {year_now}")

    if month < 1 or month > 12:
        raise ValueError("Month must be between 1 and 12.")

    prefix = "https://tiles.planet.com/basemaps/v1/planet-tiles/global_monthly_"
    subfix = "_mosaic/gmap/{z}/{x}/{y}.png?api_key="

    m_str = str(year) + "_" + str(month).zfill(2)
    url = f"{prefix}{m_str}{subfix}{api_key}"

    return url

planet_by_quarter(year=2016, quarter=1, api_key=None, token_name='PLANET_API_KEY')

Gets Planet global mosaic tile url by quarter. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

Parameters:

Name Type Description Default
year int

The year of Planet global mosaic, must be >=2016. Defaults to 2016.

2016
quarter int

The quarter of Planet global mosaic, must be 1-4. Defaults to 1.

1
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Raises:

Type Description
ValueError

The Planet API key is not provided.

ValueError

The year is invalid.

ValueError

The quarter is invalid.

ValueError

The quarter is invalid.

Returns:

Name Type Description
str

A Planet global mosaic tile url.

Source code in geemap/common.py
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
def planet_by_quarter(
    year=2016,
    quarter=1,
    api_key=None,
    token_name="PLANET_API_KEY",
):
    """Gets Planet global mosaic tile url by quarter. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

    Args:
        year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
        quarter (int, optional): The quarter of Planet global mosaic, must be 1-4. Defaults to 1.
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Raises:
        ValueError: The Planet API key is not provided.
        ValueError: The year is invalid.
        ValueError: The quarter is invalid.
        ValueError: The quarter is invalid.

    Returns:
        str: A Planet global mosaic tile url.
    """
    # from datetime import date

    if api_key is None:
        api_key = os.environ.get(token_name)
        if api_key is None:
            raise ValueError("The Planet API Key must be provided.")

    today = datetime.date.today()
    year_now = int(today.strftime("%Y"))
    month_now = int(today.strftime("%m"))
    quarter_now = (month_now - 1) // 3 + 1

    if year > year_now:
        raise ValueError(f"Year must be between 2016 and {year_now}.")
    elif year == year_now and quarter >= quarter_now:
        raise ValueError(f"Quarter must be less than {quarter_now} for year {year_now}")

    if quarter < 1 or quarter > 4:
        raise ValueError("Quarter must be between 1 and 4.")

    prefix = "https://tiles.planet.com/basemaps/v1/planet-tiles/global_quarterly_"
    subfix = "_mosaic/gmap/{z}/{x}/{y}.png?api_key="

    m_str = str(year) + "q" + str(quarter)
    url = f"{prefix}{m_str}{subfix}{api_key}"

    return url

planet_catalog(api_key=None, token_name='PLANET_API_KEY')

Generates Planet bi-annual and monthly imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Returns:

Name Type Description
list

A list of tile URLs.

Source code in geemap/common.py
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
def planet_catalog(api_key=None, token_name="PLANET_API_KEY"):
    """Generates Planet bi-annual and monthly imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Returns:
        list: A list of tile URLs.
    """
    quarterly = planet_quarterly(api_key, token_name)
    monthly = planet_monthly(api_key, token_name)
    return quarterly + monthly

planet_catalog_tropical(api_key=None, token_name='PLANET_API_KEY')

Generates Planet bi-annual and monthly imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Returns:

Name Type Description
list

A list of tile URLs.

Source code in geemap/common.py
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
def planet_catalog_tropical(api_key=None, token_name="PLANET_API_KEY"):
    """Generates Planet bi-annual and monthly imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Returns:
        list: A list of tile URLs.
    """
    biannual = planet_biannual_tropical(api_key, token_name)
    monthly = planet_monthly_tropical(api_key, token_name)
    return biannual + monthly

planet_monthly(api_key=None, token_name='PLANET_API_KEY')

Generates Planet monthly imagery URLs based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Raises:

Type Description
ValueError

If the API key could not be found.

Returns:

Name Type Description
list

A list of tile URLs.

Source code in geemap/common.py
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
def planet_monthly(api_key=None, token_name="PLANET_API_KEY"):
    """Generates Planet monthly imagery URLs based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Raises:
        ValueError: If the API key could not be found.

    Returns:
        list: A list of tile URLs.
    """
    # from datetime import date

    if api_key is None:
        api_key = os.environ.get(token_name)
        if api_key is None:
            raise ValueError("The Planet API Key must be provided.")

    today = datetime.date.today()
    year_now = int(today.strftime("%Y"))
    month_now = int(today.strftime("%m"))

    link = []
    prefix = "https://tiles.planet.com/basemaps/v1/planet-tiles/global_monthly_"
    subfix = "_mosaic/gmap/{z}/{x}/{y}.png?api_key="

    for year in range(2016, year_now + 1):
        for month in range(1, 13):
            m_str = str(year) + "_" + str(month).zfill(2)

            if year == year_now and month >= month_now:
                break

            url = f"{prefix}{m_str}{subfix}{api_key}"
            link.append(url)

    return link

planet_monthly_tiles(api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet monthly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
def planet_monthly_tiles(
    api_key=None, token_name="PLANET_API_KEY", tile_format="ipyleaflet"
):
    """Generates Planet  monthly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """
    import folium
    import ipyleaflet

    if tile_format not in ["ipyleaflet", "folium"]:
        raise ValueError("The tile format must be either ipyleaflet or folium.")

    tiles = {}
    link = planet_monthly(api_key, token_name)

    for url in link:
        index = url.find("20")
        name = "Planet_" + url[index : index + 7]

        if tile_format == "ipyleaflet":
            tile = ipyleaflet.TileLayer(url=url, attribution="Planet", name=name)
        else:
            tile = folium.TileLayer(
                tiles=url,
                attr="Planet",
                name=name,
                overlay=True,
                control=True,
            )

        tiles[name] = tile

    return tiles

planet_monthly_tiles_tropical(api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet monthly imagery TileLayer based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
def planet_monthly_tiles_tropical(
    api_key=None, token_name="PLANET_API_KEY", tile_format="ipyleaflet"
):
    """Generates Planet  monthly imagery TileLayer based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """
    import folium
    import ipyleaflet

    if tile_format not in ["ipyleaflet", "folium"]:
        raise ValueError("The tile format must be either ipyleaflet or folium.")

    tiles = {}
    link = planet_monthly_tropical(api_key, token_name)
    for url in link:
        index = url.find("20")
        name = "Planet_" + url[index : index + 7]

        if tile_format == "ipyleaflet":
            tile = ipyleaflet.TileLayer(url=url, attribution="Planet", name=name)
        else:
            tile = folium.TileLayer(
                tiles=url,
                attr="Planet",
                name=name,
                overlay=True,
                control=True,
            )

        tiles[name] = tile

    return tiles

planet_monthly_tropical(api_key=None, token_name='PLANET_API_KEY')

Generates Planet monthly imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Raises:

Type Description
ValueError

If the API key could not be found.

Returns:

Name Type Description
list

A list of tile URLs.

Source code in geemap/common.py
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
def planet_monthly_tropical(api_key=None, token_name="PLANET_API_KEY"):
    """Generates Planet monthly imagery URLs based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Raises:
        ValueError: If the API key could not be found.

    Returns:
        list: A list of tile URLs.
    """
    # from datetime import date

    if api_key is None:
        api_key = os.environ.get(token_name)
        if api_key is None:
            raise ValueError("The Planet API Key must be provided.")

    today = datetime.date.today()
    year_now = int(today.strftime("%Y"))
    month_now = int(today.strftime("%m"))

    links = []
    prefix = "https://tiles.planet.com/basemaps/v1/planet-tiles/planet_medres_normalized_analytic_"
    subfix = "_mosaic/gmap/{z}/{x}/{y}.png?api_key="

    for year in range(2020, year_now + 1):
        for month in range(1, 13):
            m_str = str(year) + "-" + str(month).zfill(2)

            if year == 2020 and month < 9:
                continue
            if year == year_now and month >= month_now:
                break

            url = f"{prefix}{m_str}{subfix}{api_key}"
            links.append(url)

    return links

planet_quarterly(api_key=None, token_name='PLANET_API_KEY')

Generates Planet quarterly imagery URLs based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'

Raises:

Type Description
ValueError

If the API key could not be found.

Returns:

Name Type Description
list

A list of tile URLs.

Source code in geemap/common.py
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
def planet_quarterly(api_key=None, token_name="PLANET_API_KEY"):
    """Generates Planet quarterly imagery URLs based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".

    Raises:
        ValueError: If the API key could not be found.

    Returns:
        list: A list of tile URLs.
    """
    # from datetime import date

    if api_key is None:
        api_key = os.environ.get(token_name)
        if api_key is None:
            raise ValueError("The Planet API Key must be provided.")

    today = datetime.date.today()
    year_now = int(today.strftime("%Y"))
    month_now = int(today.strftime("%m"))
    quarter_now = (month_now - 1) // 3 + 1

    link = []
    prefix = "https://tiles.planet.com/basemaps/v1/planet-tiles/global_quarterly_"
    subfix = "_mosaic/gmap/{z}/{x}/{y}.png?api_key="

    for year in range(2016, year_now + 1):
        for quarter in range(1, 5):
            m_str = str(year) + "q" + str(quarter)

            if year == year_now and quarter >= quarter_now:
                break

            url = f"{prefix}{m_str}{subfix}{api_key}"
            link.append(url)

    return link

planet_quarterly_tiles(api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet quarterly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
def planet_quarterly_tiles(
    api_key=None, token_name="PLANET_API_KEY", tile_format="ipyleaflet"
):
    """Generates Planet  quarterly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """
    import folium
    import ipyleaflet

    if tile_format not in ["ipyleaflet", "folium"]:
        raise ValueError("The tile format must be either ipyleaflet or folium.")

    tiles = {}
    links = planet_quarterly(api_key, token_name)

    for url in links:
        index = url.find("20")
        name = "Planet_" + url[index : index + 6]

        if tile_format == "ipyleaflet":
            tile = ipyleaflet.TileLayer(url=url, attribution="Planet", name=name)
        else:
            tile = folium.TileLayer(
                tiles=url,
                attr="Planet",
                name=name,
                overlay=True,
                control=True,
            )

        tiles[name] = tile

    return tiles

planet_tile_by_month(year=2016, month=1, name=None, api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet monthly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis

Parameters:

Name Type Description Default
year int

The year of Planet global mosaic, must be >=2016. Defaults to 2016.

2016
month int

The month of Planet global mosaic, must be 1-12. Defaults to 1.

1
name str

The layer name to use. Defaults to None.

None
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
def planet_tile_by_month(
    year=2016,
    month=1,
    name=None,
    api_key=None,
    token_name="PLANET_API_KEY",
    tile_format="ipyleaflet",
):
    """Generates Planet monthly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis

    Args:
        year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
        month (int, optional): The month of Planet global mosaic, must be 1-12. Defaults to 1.
        name (str, optional): The layer name to use. Defaults to None.
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """
    import folium
    import ipyleaflet

    if tile_format not in ["ipyleaflet", "folium"]:
        raise ValueError("The tile format must be either ipyleaflet or folium.")

    url = planet_by_month(year, month, api_key, token_name)

    if name is None:
        name = "Planet_" + str(year) + "_" + str(month).zfill(2)

    if tile_format == "ipyleaflet":
        tile = ipyleaflet.TileLayer(url=url, attribution="Planet", name=name)
    else:
        tile = folium.TileLayer(
            tiles=url,
            attr="Planet",
            name=name,
            overlay=True,
            control=True,
        )

    return tile

planet_tile_by_quarter(year=2016, quarter=1, name=None, api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet quarterly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis

Parameters:

Name Type Description Default
year int

The year of Planet global mosaic, must be >=2016. Defaults to 2016.

2016
quarter int

The quarter of Planet global mosaic, must be 1-4. Defaults to 1.

1
name str

The layer name to use. Defaults to None.

None
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
def planet_tile_by_quarter(
    year=2016,
    quarter=1,
    name=None,
    api_key=None,
    token_name="PLANET_API_KEY",
    tile_format="ipyleaflet",
):
    """Generates Planet quarterly imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis

    Args:
        year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
        quarter (int, optional): The quarter of Planet global mosaic, must be 1-4. Defaults to 1.
        name (str, optional): The layer name to use. Defaults to None.
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """

    import folium
    import ipyleaflet

    if tile_format not in ["ipyleaflet", "folium"]:
        raise ValueError("The tile format must be either ipyleaflet or folium.")

    url = planet_by_quarter(year, quarter, api_key, token_name)

    if name is None:
        name = "Planet_" + str(year) + "_q" + str(quarter)

    if tile_format == "ipyleaflet":
        tile = ipyleaflet.TileLayer(url=url, attribution="Planet", name=name)
    else:
        tile = folium.TileLayer(
            tiles=url,
            attr="Planet",
            name=name,
            overlay=True,
            control=True,
        )

    return tile

planet_tiles(api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
def planet_tiles(api_key=None, token_name="PLANET_API_KEY", tile_format="ipyleaflet"):
    """Generates Planet imagery TileLayer based on an API key. To get a Planet API key, see https://developers.planet.com/quickstart/apis/

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """

    catalog = {}
    quarterly = planet_quarterly_tiles(api_key, token_name, tile_format)
    monthly = planet_monthly_tiles(api_key, token_name, tile_format)

    for key in quarterly:
        catalog[key] = quarterly[key]

    for key in monthly:
        catalog[key] = monthly[key]

    return catalog

planet_tiles_tropical(api_key=None, token_name='PLANET_API_KEY', tile_format='ipyleaflet')

Generates Planet monthly imagery TileLayer based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

Parameters:

Name Type Description Default
api_key str

The Planet API key. Defaults to None.

None
token_name str

The environment variable name of the API key. Defaults to "PLANET_API_KEY".

'PLANET_API_KEY'
tile_format str

The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

'ipyleaflet'

Raises:

Type Description
ValueError

If the tile layer format is invalid.

Returns:

Name Type Description
dict

A dictionary of TileLayer.

Source code in geemap/common.py
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
def planet_tiles_tropical(
    api_key=None, token_name="PLANET_API_KEY", tile_format="ipyleaflet"
):
    """Generates Planet  monthly imagery TileLayer based on an API key. See https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

    Args:
        api_key (str, optional): The Planet API key. Defaults to None.
        token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
        tile_format (str, optional): The TileLayer format, can be either ipyleaflet or folium. Defaults to "ipyleaflet".

    Raises:
        ValueError: If the tile layer format is invalid.

    Returns:
        dict: A dictionary of TileLayer.
    """

    catalog = {}
    biannul = planet_biannual_tiles_tropical(api_key, token_name, tile_format)
    monthly = planet_monthly_tiles_tropical(api_key, token_name, tile_format)

    for key in biannul:
        catalog[key] = biannul[key]

    for key in monthly:
        catalog[key] = monthly[key]

    return catalog

plot_raster(image, band=None, cmap='terrain', proj='EPSG:3857', figsize=None, open_kwargs={}, **kwargs)

Plot a raster image.

Parameters:

Name Type Description Default
image str | DataArray

The input raster image, can be a file path, HTTP URL, or xarray.DataArray.

required
band int

The band index, starting from zero. Defaults to None.

None
cmap str

The matplotlib colormap to use. Defaults to "terrain".

'terrain'
proj str

The EPSG projection code. Defaults to "EPSG:3857".

'EPSG:3857'
figsize tuple

The figure size as a tuple, such as (10, 8). Defaults to None.

None
open_kwargs dict

The keyword arguments to pass to rioxarray.open_rasterio. Defaults to {}.

{}
**kwargs

Additional keyword arguments to pass to xarray.DataArray.plot().

{}
Source code in geemap/common.py
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
def plot_raster(
    image,
    band=None,
    cmap="terrain",
    proj="EPSG:3857",
    figsize=None,
    open_kwargs={},
    **kwargs,
):
    """Plot a raster image.

    Args:
        image (str | xarray.DataArray ): The input raster image, can be a file path, HTTP URL, or xarray.DataArray.
        band (int, optional): The band index, starting from zero. Defaults to None.
        cmap (str, optional): The matplotlib colormap to use. Defaults to "terrain".
        proj (str, optional): The EPSG projection code. Defaults to "EPSG:3857".
        figsize (tuple, optional): The figure size as a tuple, such as (10, 8). Defaults to None.
        open_kwargs (dict, optional): The keyword arguments to pass to rioxarray.open_rasterio. Defaults to {}.
        **kwargs: Additional keyword arguments to pass to xarray.DataArray.plot().

    """
    if os.environ.get("USE_MKDOCS") is not None:
        return

    if in_colab_shell():
        print("The plot_raster() function is not supported in Colab.")
        return

    try:
        import pvxarray
        import rioxarray
        import xarray
    except ImportError:
        raise ImportError(
            "pyxarray and rioxarray are required for plotting. Please install them using 'pip install rioxarray pyvista-xarray'."
        )

    if isinstance(image, str):
        da = rioxarray.open_rasterio(image, **open_kwargs)
    elif isinstance(image, xarray.DataArray):
        da = image
    else:
        raise ValueError("image must be a string or xarray.Dataset.")

    if band is not None:
        da = da[dict(band=band)]

    da = da.rio.reproject(proj)
    kwargs["cmap"] = cmap
    kwargs["figsize"] = figsize
    da.plot(**kwargs)

plot_raster_3d(image, band=None, cmap='terrain', factor=1.0, proj='EPSG:3857', background=None, x=None, y=None, z=None, order=None, component=None, open_kwargs={}, mesh_kwargs={}, **kwargs)

Plot a raster image in 3D.

Parameters:

Name Type Description Default
image str | DataArray

The input raster image, can be a file path, HTTP URL, or xarray.DataArray.

required
band int

The band index, starting from zero. Defaults to None.

None
cmap str

The matplotlib colormap to use. Defaults to "terrain".

'terrain'
factor float

The scaling factor for the raster. Defaults to 1.0.

1.0
proj str

The EPSG projection code. Defaults to "EPSG:3857".

'EPSG:3857'
background str

The background color. Defaults to None.

None
x str

The x coordinate. Defaults to None.

None
y str

The y coordinate. Defaults to None.

None
z str

The z coordinate. Defaults to None.

None
order str

The order of the coordinates. Defaults to None.

None
component str

The component of the coordinates. Defaults to None.

None
open_kwargs dict

The keyword arguments to pass to rioxarray.open_rasterio. Defaults to {}.

{}
mesh_kwargs dict

The keyword arguments to pass to pyvista.mesh.warp_by_scalar(). Defaults to {}.

{}
**kwargs

Additional keyword arguments to pass to xarray.DataArray.plot().

{}
Source code in geemap/common.py
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
def plot_raster_3d(
    image,
    band=None,
    cmap="terrain",
    factor=1.0,
    proj="EPSG:3857",
    background=None,
    x=None,
    y=None,
    z=None,
    order=None,
    component=None,
    open_kwargs={},
    mesh_kwargs={},
    **kwargs,
):
    """Plot a raster image in 3D.

    Args:
        image (str | xarray.DataArray): The input raster image, can be a file path, HTTP URL, or xarray.DataArray.
        band (int, optional): The band index, starting from zero. Defaults to None.
        cmap (str, optional): The matplotlib colormap to use. Defaults to "terrain".
        factor (float, optional): The scaling factor for the raster. Defaults to 1.0.
        proj (str, optional): The EPSG projection code. Defaults to "EPSG:3857".
        background (str, optional): The background color. Defaults to None.
        x (str, optional): The x coordinate. Defaults to None.
        y (str, optional): The y coordinate. Defaults to None.
        z (str, optional): The z coordinate. Defaults to None.
        order (str, optional): The order of the coordinates. Defaults to None.
        component (str, optional): The component of the coordinates. Defaults to None.
        open_kwargs (dict, optional): The keyword arguments to pass to rioxarray.open_rasterio. Defaults to {}.
        mesh_kwargs (dict, optional): The keyword arguments to pass to pyvista.mesh.warp_by_scalar(). Defaults to {}.
        **kwargs: Additional keyword arguments to pass to xarray.DataArray.plot().
    """

    if os.environ.get("USE_MKDOCS") is not None:
        return

    if in_colab_shell():
        print("The plot_raster_3d() function is not supported in Colab.")
        return

    try:
        import pvxarray
        import pyvista
        import rioxarray
        import xarray
    except ImportError:
        raise ImportError(
            "pyxarray and rioxarray are required for plotting. Please install them using 'pip install rioxarray pyvista-xarray'."
        )

    if isinstance(background, str):
        pyvista.global_theme.background = background

    if isinstance(image, str):
        da = rioxarray.open_rasterio(image, **open_kwargs)
    elif isinstance(image, xarray.DataArray):
        da = image
    else:
        raise ValueError("image must be a string or xarray.Dataset.")

    if band is not None:
        da = da[dict(band=band)]

    da = da.rio.reproject(proj)
    mesh_kwargs["factor"] = factor
    kwargs["cmap"] = cmap

    coords = list(da.coords)

    if x is None:
        if "x" in coords:
            x = "x"
        elif "lon" in coords:
            x = "lon"
    if y is None:
        if "y" in coords:
            y = "y"
        elif "lat" in coords:
            y = "lat"
    if z is None:
        if "z" in coords:
            z = "z"
        elif "elevation" in coords:
            z = "elevation"
        elif "band" in coords:
            z = "band"

    # Grab the mesh object for use with PyVista
    mesh = da.pyvista.mesh(x=x, y=y, z=z, order=order, component=component)

    # Warp top and plot in 3D
    mesh.warp_by_scalar(**mesh_kwargs).plot(**kwargs)

pmtiles_metadata(input_file)

Fetch the metadata from a local or remote .pmtiles file.

This function retrieves metadata from a PMTiles file, whether it's local or hosted remotely. If it's remote, the function fetches the header to determine the range of bytes to download for obtaining the metadata. It then reads the metadata and extracts the layer names.

Parameters:

Name Type Description Default
input_file str

Path to the .pmtiles file, or its URL if the file is hosted remotely.

required

Returns:

Name Type Description
dict Dict[str, Union[str, int, List[str]]]

A dictionary containing the metadata information, including layer names.

Raises:

Type Description
ImportError

If the pmtiles library is not installed.

ValueError

If the input file is not a .pmtiles file or if it does not exist.

Example

metadata = pmtiles_metadata("https://example.com/path/to/tiles.pmtiles") print(metadata["layer_names"]) ['buildings', 'roads']

Note

If fetching a remote PMTiles file, this function may perform multiple requests to minimize the amount of data downloaded.

Source code in geemap/common.py
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
def pmtiles_metadata(input_file: str) -> Dict[str, Union[str, int, List[str]]]:
    """
    Fetch the metadata from a local or remote .pmtiles file.

    This function retrieves metadata from a PMTiles file, whether it's local or hosted remotely.
    If it's remote, the function fetches the header to determine the range of bytes to download
    for obtaining the metadata. It then reads the metadata and extracts the layer names.

    Args:
        input_file (str): Path to the .pmtiles file, or its URL if the file is hosted remotely.

    Returns:
        dict: A dictionary containing the metadata information, including layer names.

    Raises:
        ImportError: If the pmtiles library is not installed.
        ValueError: If the input file is not a .pmtiles file or if it does not exist.

    Example:
        >>> metadata = pmtiles_metadata("https://example.com/path/to/tiles.pmtiles")
        >>> print(metadata["layer_names"])
        ['buildings', 'roads']

    Note:
        If fetching a remote PMTiles file, this function may perform multiple requests to minimize
        the amount of data downloaded.
    """

    import json
    import requests
    from urllib.parse import urlparse

    try:
        from pmtiles.reader import Reader, MmapSource, MemorySource
    except ImportError:
        print(
            "pmtiles is not installed. Please install it using `pip install pmtiles`."
        )
        return

    # ignore uri parameters when checking file suffix
    if not urlparse(input_file).path.endswith(".pmtiles"):
        raise ValueError("Input file must be a .pmtiles file.")

    header = pmtiles_header(input_file)
    metadata_offset = header["metadata_offset"]
    metadata_length = header["metadata_length"]

    if input_file.startswith("http"):
        headers = {"Range": f"bytes=0-{metadata_offset + metadata_length}"}
        response = requests.get(input_file, headers=headers)
        content = MemorySource(response.content)
        metadata = Reader(content).metadata()
    else:
        with open(input_file, "rb") as f:
            reader = Reader(MmapSource(f))
            metadata = reader.metadata()
            if "json" in metadata:
                metadata["vector_layers"] = json.loads(metadata["json"])[
                    "vector_layers"
                ]

    vector_layers = metadata["vector_layers"]
    layer_names = [layer["id"] for layer in vector_layers]

    if "tilestats" in metadata:
        geometries = [layer["geometry"] for layer in metadata["tilestats"]["layers"]]
        metadata["geometries"] = geometries

    metadata["layer_names"] = layer_names
    metadata["center"] = header["center"]
    metadata["bounds"] = header["bounds"]
    return metadata

pmtiles_style(url, layers=None, cmap='Set3', n_class=None, opacity=0.5, circle_radius=5, line_width=1, attribution='PMTiles', **kwargs)

Generates a Mapbox style JSON for rendering PMTiles data.

Parameters:

Name Type Description Default
url str

The URL of the PMTiles file.

required
layers str or list[str]

The layers to include in the style. If None, all layers will be included. Defaults to None.

None
cmap str

The color map to use for styling the layers. Defaults to "Set3".

'Set3'
n_class int

The number of classes to use for styling. If None, the number of classes will be determined automatically based on the color map. Defaults to None.

None
opacity float

The fill opacity for polygon layers. Defaults to 0.5.

0.5
circle_radius int

The circle radius for point layers. Defaults to 5.

5
line_width int

The line width for line layers. Defaults to 1.

1
attribution str

The attribution text for the data source. Defaults to "PMTiles".

'PMTiles'

Returns:

Name Type Description
dict

The Mapbox style JSON.

Raises:

Type Description
ValueError

If the layers argument is not a string or a list.

ValueError

If a layer specified in the layers argument does not exist in the PMTiles file.

Source code in geemap/common.py
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
def pmtiles_style(
    url: str,
    layers: Optional[Union[str, List[str]]] = None,
    cmap: str = "Set3",
    n_class: Optional[int] = None,
    opacity: float = 0.5,
    circle_radius: int = 5,
    line_width: int = 1,
    attribution: str = "PMTiles",
    **kwargs,
):
    """
    Generates a Mapbox style JSON for rendering PMTiles data.

    Args:
        url (str): The URL of the PMTiles file.
        layers (str or list[str], optional): The layers to include in the style. If None, all layers will be included.
            Defaults to None.
        cmap (str, optional): The color map to use for styling the layers. Defaults to "Set3".
        n_class (int, optional): The number of classes to use for styling. If None, the number of classes will be
            determined automatically based on the color map. Defaults to None.
        opacity (float, optional): The fill opacity for polygon layers. Defaults to 0.5.
        circle_radius (int, optional): The circle radius for point layers. Defaults to 5.
        line_width (int, optional): The line width for line layers. Defaults to 1.
        attribution (str, optional): The attribution text for the data source. Defaults to "PMTiles".

    Returns:
        dict: The Mapbox style JSON.

    Raises:
        ValueError: If the layers argument is not a string or a list.
        ValueError: If a layer specified in the layers argument does not exist in the PMTiles file.
    """

    if cmap == "Set3":
        palette = [
            "#8dd3c7",
            "#ffffb3",
            "#bebada",
            "#fb8072",
            "#80b1d3",
            "#fdb462",
            "#b3de69",
            "#fccde5",
            "#d9d9d9",
            "#bc80bd",
            "#ccebc5",
            "#ffed6f",
        ]
    elif isinstance(cmap, list):
        palette = cmap
    else:
        from .colormaps import get_palette

        palette = ["#" + c for c in get_palette(cmap, n_class)]

    n_class = len(palette)

    metadata = pmtiles_metadata(url)
    layer_names = metadata["layer_names"]

    style = {
        "version": 8,
        "sources": {
            "source": {
                "type": "vector",
                "url": "pmtiles://" + url,
                "attribution": attribution,
            }
        },
        "layers": [],
    }

    if layers is None:
        layers = layer_names
    elif isinstance(layers, str):
        layers = [layers]
    elif isinstance(layers, list):
        for layer in layers:
            if layer not in layer_names:
                raise ValueError(f"Layer {layer} does not exist in the PMTiles file.")
    else:
        raise ValueError("The layers argument must be a string or a list.")

    for i, layer_name in enumerate(layers):
        layer_point = {
            "id": f"{layer_name}_point",
            "source": "source",
            "source-layer": layer_name,
            "type": "circle",
            "paint": {
                "circle-color": palette[i % n_class],
                "circle-radius": circle_radius,
            },
            "filter": ["==", ["geometry-type"], "Point"],
        }

        layer_stroke = {
            "id": f"{layer_name}_stroke",
            "source": "source",
            "source-layer": layer_name,
            "type": "line",
            "paint": {
                "line-color": palette[i % n_class],
                "line-width": line_width,
            },
            "filter": ["==", ["geometry-type"], "LineString"],
        }

        layer_fill = {
            "id": f"{layer_name}_fill",
            "source": "source",
            "source-layer": layer_name,
            "type": "fill",
            "paint": {
                "fill-color": palette[i % n_class],
                "fill-opacity": opacity,
            },
            "filter": ["==", ["geometry-type"], "Polygon"],
        }

        style["layers"].extend([layer_point, layer_stroke, layer_fill])

    return style

png_to_gif(in_dir, out_gif, fps=10, loop=0)

Convert a list of png images to gif.

Parameters:

Name Type Description Default
in_dir str

The input directory containing png images.

required
out_gif str

The output file path to the gif.

required
fps int

Frames per second. Defaults to 10.

10
loop bool

controls how many times the animation repeats. 1 means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0

Raises:

Type Description
FileNotFoundError

No png images could be found.

Source code in geemap/common.py
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
def png_to_gif(in_dir, out_gif, fps=10, loop=0):
    """Convert a list of png images to gif.

    Args:
        in_dir (str): The input directory containing png images.
        out_gif (str): The output file path to the gif.
        fps (int, optional): Frames per second. Defaults to 10.
        loop (bool, optional): controls how many times the animation repeats. 1 means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

    Raises:
        FileNotFoundError: No png images could be found.
    """
    import glob

    from PIL import Image

    if not out_gif.endswith(".gif"):
        raise ValueError("The out_gif must be a gif file.")

    out_gif = os.path.abspath(out_gif)

    out_dir = os.path.dirname(out_gif)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    # Create the frames
    frames = []
    imgs = list(glob.glob(os.path.join(in_dir, "*.png")))
    imgs.sort()

    if len(imgs) == 0:
        raise FileNotFoundError(f"No png could be found in {in_dir}.")

    for i in imgs:
        new_frame = Image.open(i)
        frames.append(new_frame)

    # Save into a GIF file that loops forever
    frames[0].save(
        out_gif,
        format="GIF",
        append_images=frames[1:],
        save_all=True,
        duration=1000 / fps,
        loop=loop,
    )

points_from_xy(data, x='longitude', y='latitude', z=None, crs=None, **kwargs)

Create a GeoPandas GeoDataFrame from a csv or Pandas DataFrame containing x, y, z values.

Parameters:

Name Type Description Default
data str | DataFrame

A csv or Pandas DataFrame containing x, y, z values.

required
x str

The column name for the x values. Defaults to "longitude".

'longitude'
y str

The column name for the y values. Defaults to "latitude".

'latitude'
z str

The column name for the z values. Defaults to None.

None
crs str | int

The coordinate reference system for the GeoDataFrame. Defaults to None.

None

Returns:

Type Description

geopandas.GeoDataFrame: A GeoPandas GeoDataFrame containing x, y, z values.

Source code in geemap/common.py
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
def points_from_xy(data, x="longitude", y="latitude", z=None, crs=None, **kwargs):
    """Create a GeoPandas GeoDataFrame from a csv or Pandas DataFrame containing x, y, z values.

    Args:
        data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
        x (str, optional): The column name for the x values. Defaults to "longitude".
        y (str, optional): The column name for the y values. Defaults to "latitude".
        z (str, optional): The column name for the z values. Defaults to None.
        crs (str | int, optional): The coordinate reference system for the GeoDataFrame. Defaults to None.

    Returns:
        geopandas.GeoDataFrame: A GeoPandas GeoDataFrame containing x, y, z values.
    """
    check_package(name="geopandas", URL="https://geopandas.org")
    import geopandas as gpd
    import pandas as pd

    if crs is None:
        crs = "epsg:4326"

    data = github_raw_url(data)

    if isinstance(data, pd.DataFrame):
        df = data
    elif isinstance(data, str):
        if not data.startswith("http") and (not os.path.exists(data)):
            raise FileNotFoundError("The specified input csv does not exist.")
        else:
            df = pd.read_csv(data, **kwargs)
    else:
        raise TypeError("The data must be a pandas DataFrame or a csv file path.")

    gdf = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df[x], df[y], z=z, crs=crs))

    return gdf

postgis_to_ee(sql, con, geom_col='geom', crs=None, geodestic=False, **kwargs)

Reads data from a PostGIS database and returns a GeoDataFrame.

Parameters:

Name Type Description Default
sql str

SQL query to execute in selecting entries from database, or name of the table to read from the database.

required
con Engine

Active connection to the database to query.

required
geom_col str

Column name to convert to shapely geometries. Defaults to "geom".

'geom'
crs str | dict

CRS to use for the returned GeoDataFrame; if not set, tries to determine CRS from the SRID associated with the first geometry in the database, and assigns that to all geometries. Defaults to None.

None
geodestic bool

Whether to use geodestic coordinates. Defaults to False.

False

Returns:

Type Description
Source code in geemap/common.py
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
def postgis_to_ee(sql, con, geom_col="geom", crs=None, geodestic=False, **kwargs):
    """Reads data from a PostGIS database and returns a GeoDataFrame.

    Args:
        sql (str): SQL query to execute in selecting entries from database, or name of the table to read from the database.
        con (sqlalchemy.engine.Engine): Active connection to the database to query.
        geom_col (str, optional): Column name to convert to shapely geometries. Defaults to "geom".
        crs (str | dict, optional): CRS to use for the returned GeoDataFrame; if not set, tries to determine CRS from the SRID associated with the first geometry in the database, and assigns that to all geometries. Defaults to None.
        geodestic (bool, optional): Whether to use geodestic coordinates. Defaults to False.

    Returns:
        [type]: [description]
    """
    check_package(name="geopandas", URL="https://geopandas.org")

    gdf = read_postgis(sql, con, geom_col, crs=crs, **kwargs)
    fc = gdf_to_ee(gdf, geodesic=geodestic)
    return fc

py_to_ipynb(in_file, template_file=None, out_file=None, github_username=None, github_repo=None, Map='m')

Converts Earth Engine Python script to Jupyter notebook.

Parameters:

Name Type Description Default
in_file str

Input Earth Engine Python script.

required
template_file str

Input Jupyter notebook template.

None
out_file str

Output Jupyter notebook.

None
github_username str

GitHub username. Defaults to None.

None
github_repo str

GitHub repo name. Defaults to None.

None
Map str

The name of the map variable. Defaults to "m".

'm'
Source code in geemap/conversion.py
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
def py_to_ipynb(
    in_file,
    template_file=None,
    out_file=None,
    github_username=None,
    github_repo=None,
    Map="m",
):
    """Converts Earth Engine Python script to Jupyter notebook.

    Args:
        in_file (str): Input Earth Engine Python script.
        template_file (str): Input Jupyter notebook template.
        out_file (str, optional)): Output Jupyter notebook.
        github_username (str, optional): GitHub username. Defaults to None.
        github_repo (str, optional): GitHub repo name. Defaults to None.
        Map (str, optional): The name of the map variable. Defaults to "m".
    """
    in_file = os.path.abspath(in_file)

    if template_file is None:
        template_file = get_nb_template()

    if out_file is None:
        out_file = os.path.splitext(in_file)[0] + ".ipynb"

    out_py_file = os.path.splitext(out_file)[0] + "_tmp.py"

    out_dir = os.path.dirname(out_file)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    if out_dir == os.path.dirname(in_file):
        out_py_file = os.path.splitext(out_file)[0] + "_tmp.py"

    content = remove_qgis_import(in_file, Map=Map)
    if content[-1].strip() == "Map":
        content = content[:-1]
    header = template_header(template_file)
    footer = template_footer(template_file)

    if (github_username is not None) and (github_repo is not None):
        out_py_path = str(out_file).split("/")
        index = out_py_path.index(github_repo)
        out_py_relative_path = "/".join(out_py_path[index + 1 :])
        out_ipynb_relative_path = out_py_relative_path.replace(".py", ".ipynb")

        new_header = []
        for index, line in enumerate(header):
            if index < 9:  # Change Google Colab and binder URLs
                line = line.replace("giswqs", github_username)
                line = line.replace("geemap", github_repo)
                line = line.replace(
                    "examples/template/template.ipynb", out_ipynb_relative_path
                )
            new_header.append(line)
        header = new_header

    if content is not None:
        out_text = header + content + footer
    else:
        out_text = header + footer

    out_text = out_text[:-1] + [out_text[-1].strip()]

    if not os.path.exists(os.path.dirname(out_py_file)):
        os.makedirs(os.path.dirname(out_py_file))

    with open(out_py_file, "w", encoding="utf-8") as f:
        f.writelines(out_text)

    try:
        # command = 'ipynb-py-convert ' + out_py_file + ' ' + out_file
        command = 'ipynb-py-convert "{}" "{}"'.format(out_py_file, out_file)
        print(os.popen(command).read().rstrip())
        # os.popen(command)
    except Exception as e:
        print("Please install ipynb-py-convert using the following command:\n")
        print("pip install ipynb-py-convert")
        raise Exception(e)

    try:
        os.remove(out_py_file)
    except Exception as e:
        print(e)

py_to_ipynb_dir(in_dir, template_file=None, out_dir=None, github_username=None, github_repo=None, Map='m')

Converts Earth Engine Python scripts in a folder recursively to Jupyter notebooks.

Parameters:

Name Type Description Default
in_dir str

Input folder containing Earth Engine Python scripts.

required
out_dir str

Output folder. Defaults to None.

None
template_file str

Input jupyter notebook template file.

None
github_username str

GitHub username. Defaults to None.

None
github_repo str

GitHub repo name. Defaults to None.

None
Map str

The name of the map variable. Defaults to "m".

'm'
Source code in geemap/conversion.py
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
def py_to_ipynb_dir(
    in_dir,
    template_file=None,
    out_dir=None,
    github_username=None,
    github_repo=None,
    Map="m",
):
    """Converts Earth Engine Python scripts in a folder recursively to Jupyter notebooks.

    Args:
        in_dir (str): Input folder containing Earth Engine Python scripts.
        out_dir str, optional): Output folder. Defaults to None.
        template_file (str): Input jupyter notebook template file.
        github_username (str, optional): GitHub username. Defaults to None.
        github_repo (str, optional): GitHub repo name. Defaults to None.
        Map (str, optional): The name of the map variable. Defaults to "m".
    """
    print("Converting Earth Engine Python scripts to Jupyter notebooks ...\n")

    in_dir = os.path.abspath(in_dir)
    files = []
    qgis_files = list(Path(in_dir).rglob("*_geemap.py"))
    py_files = list(Path(in_dir).rglob("*.py"))

    files = qgis_files

    # if len(qgis_files) == len(py_files) / 2:
    #     files = qgis_files
    # else:
    #     files = py_files

    if out_dir is None:
        out_dir = in_dir
    elif not os.path.exists(out_dir):
        out_dir = os.path.abspath(out_dir)
        os.makedirs(out_dir)
    else:
        out_dir = os.path.abspath(out_dir)

    for index, file in enumerate(files):
        in_file = str(file)
        out_file = (
            in_file.replace(in_dir, out_dir)
            .replace("_qgis", "")
            .replace(".py", ".ipynb")
        )
        print(f"Processing {index + 1}/{len(files)}: {in_file}")
        py_to_ipynb(in_file, template_file, out_file, github_username, github_repo, Map)

random_sampling(image, region=None, scale=None, projection=None, factor=None, numPixels=None, seed=0, dropNulls=True, tileScale=1.0, geometries=True, to_pandas=False)

Samples the pixels of an image, returning them as a FeatureCollection. Each feature will have 1 property per band in the input image. Note that the default behavior is to drop features that intersect masked pixels, which result in null-valued properties (see dropNulls argument).

Parameters:

Name Type Description Default
image Image

The image to sample.

required
region Geometry

The region to sample from. If unspecified, uses the image's whole footprint. Defaults to None.

None
scale float

A nominal scale in meters of the projection to sample in.. Defaults to None.

None
projection Projection

The projection in which to sample. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale.. Defaults to None.

None
factor float

A subsampling factor, within (0, 1]. If specified, 'numPixels' must not be specified. Defaults to no subsampling. Defaults to None.

None
numPixels int

The approximate number of pixels to sample. If specified, 'factor' must not be specified. Defaults to None.

None
seed int

A randomization seed to use for subsampling. Defaults to True. Defaults to 0.

0
dropNulls bool

Post filter the result to drop features that have null-valued properties. Defaults to True.

True
tileScale float

Post filter the result to drop features that have null-valued properties. Defaults to 1.

1.0
geometries bool

If true, adds the center of the sampled pixel as the geometry property of the output feature. Otherwise, geometries will be omitted (saving memory). Defaults to True.

True
to_pandas bool

Whether to return the result as a pandas dataframe. Defaults to False.

False

Raises:

Type Description
TypeError

If the input image is not an ee.Image.

Returns:

Type Description

ee.FeatureCollection: Random sampled points.

Source code in geemap/common.py
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
def random_sampling(
    image,
    region=None,
    scale=None,
    projection=None,
    factor=None,
    numPixels=None,
    seed=0,
    dropNulls=True,
    tileScale=1.0,
    geometries=True,
    to_pandas=False,
):
    """Samples the pixels of an image, returning them as a FeatureCollection. Each feature will have 1 property per band in the input image. Note that the default behavior is to drop features that intersect masked pixels, which result in null-valued properties (see dropNulls argument).

    Args:
        image (ee.Image): The image to sample.
        region (ee.Geometry, optional): The region to sample from. If unspecified, uses the image's whole footprint. Defaults to None.
        scale (float, optional): A nominal scale in meters of the projection to sample in.. Defaults to None.
        projection (ee.Projection, optional): The projection in which to sample. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale.. Defaults to None.
        factor (float, optional): A subsampling factor, within (0, 1]. If specified, 'numPixels' must not be specified. Defaults to no subsampling. Defaults to None.
        numPixels (int, optional): The approximate number of pixels to sample. If specified, 'factor' must not be specified. Defaults to None.
        seed (int, optional): A randomization seed to use for subsampling. Defaults to True. Defaults to 0.
        dropNulls (bool, optional): Post filter the result to drop features that have null-valued properties. Defaults to True.
        tileScale (float, optional): Post filter the result to drop features that have null-valued properties. Defaults to 1.
        geometries (bool, optional): If true, adds the center of the sampled pixel as the geometry property of the output feature. Otherwise, geometries will be omitted (saving memory). Defaults to True.
        to_pandas (bool, optional): Whether to return the result as a pandas dataframe. Defaults to False.

    Raises:
        TypeError: If the input image is not an ee.Image.

    Returns:
        ee.FeatureCollection: Random sampled points.
    """
    if not isinstance(image, ee.Image):
        raise TypeError("The image must be ee.Image")

    points = image.sample(
        **{
            "region": region,
            "scale": scale,
            "projection": projection,
            "factor": factor,
            "numPixels": numPixels,
            "seed": seed,
            "dropNulls": dropNulls,
            "tileScale": tileScale,
            "geometries": geometries,
        }
    )

    if to_pandas:
        return ee_to_df(points)
    else:
        return points

random_string(string_length=3)

Generates a random string of fixed length.

Parameters:

Name Type Description Default
string_length int

Fixed length. Defaults to 3.

3

Returns:

Name Type Description
str str

A random string.

Source code in geemap/coreutils.py
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
def random_string(string_length: int = 3) -> str:
    """Generates a random string of fixed length.

    Args:
        string_length (int, optional): Fixed length. Defaults to 3.

    Returns:
        str: A random string.
    """
    import random
    import string

    # random.seed(1001)
    letters = string.ascii_lowercase
    return "".join(random.choice(letters) for i in range(string_length))

read_api_csv()

Extracts Earth Engine API from a csv file and returns a dictionary containing information about each function.

Returns:

Name Type Description
dict

The dictionary containing information about each function, including name, description, function form, return type, arguments, html.

Source code in geemap/common.py
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
def read_api_csv():
    """Extracts Earth Engine API from a csv file and returns a dictionary containing information about each function.

    Returns:
        dict: The dictionary containing information about each function, including name, description, function form, return type, arguments, html.
    """
    import copy

    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)
    data_dir = os.path.join(pkg_dir, "data")
    template_dir = os.path.join(data_dir, "template")
    csv_file = os.path.join(template_dir, "ee_api_docs.csv")
    html_file = os.path.join(template_dir, "ee_api_docs.html")

    with open(html_file) as f:
        in_html_lines = f.readlines()

    api_dict = {}

    with open(csv_file, "r", encoding="utf-8") as f:
        csv_reader = csv.DictReader(f, delimiter="\t")

        for line in csv_reader:
            out_html_lines = copy.copy(in_html_lines)
            out_html_lines[65] = in_html_lines[65].replace(
                "function_name", line["name"]
            )
            out_html_lines[66] = in_html_lines[66].replace(
                "function_description", line.get("description")
            )
            out_html_lines[74] = in_html_lines[74].replace(
                "function_usage", line.get("function")
            )
            out_html_lines[75] = in_html_lines[75].replace(
                "function_returns", line.get("returns")
            )

            arguments = line.get("argument")
            types = line.get("type")
            details = line.get("details")

            if "|" in arguments:
                argument_items = arguments.split("|")
            else:
                argument_items = [arguments]

            if "|" in types:
                types_items = types.split("|")
            else:
                types_items = [types]

            if "|" in details:
                details_items = details.split("|")
            else:
                details_items = [details]

            out_argument_lines = []

            for index in range(len(argument_items)):
                in_argument_lines = in_html_lines[87:92]
                in_argument_lines[1] = in_argument_lines[1].replace(
                    "function_argument", argument_items[index]
                )
                in_argument_lines[2] = in_argument_lines[2].replace(
                    "function_type", types_items[index]
                )
                in_argument_lines[3] = in_argument_lines[3].replace(
                    "function_details", details_items[index]
                )
                out_argument_lines.append("".join(in_argument_lines))

            out_html_lines = (
                out_html_lines[:87] + out_argument_lines + out_html_lines[92:]
            )

            contents = "".join(out_html_lines)

            api_dict[line["name"]] = {
                "description": line.get("description"),
                "function": line.get("function"),
                "returns": line.get("returns"),
                "argument": line.get("argument"),
                "type": line.get("type"),
                "details": line.get("details"),
                "html": contents,
            }

    return api_dict

read_file_from_url(url, return_type='list', encoding='utf-8')

Reads a file from a URL.

Parameters:

Name Type Description Default
url str

The URL of the file.

required
return_type str

The return type, can either be string or list. Defaults to "list".

'list'
encoding str

The encoding of the file. Defaults to "utf-8".

'utf-8'

Raises:

Type Description
ValueError

The return type must be either list or string.

Returns:

Type Description

str | list: The contents of the file.

Source code in geemap/common.py
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
def read_file_from_url(url, return_type="list", encoding="utf-8"):
    """Reads a file from a URL.

    Args:
        url (str): The URL of the file.
        return_type (str, optional): The return type, can either be string or list. Defaults to "list".
        encoding (str, optional): The encoding of the file. Defaults to "utf-8".

    Raises:
        ValueError: The return type must be either list or string.

    Returns:
        str | list: The contents of the file.
    """
    from urllib.request import urlopen

    if return_type == "list":
        return [line.decode(encoding).rstrip() for line in urlopen(url).readlines()]
    elif return_type == "string":
        return urlopen(url).read().decode(encoding)
    else:
        raise ValueError("The return type must be either list or string.")

read_lidar(filename, **kwargs)

Read a LAS file.

Parameters:

Name Type Description Default
filename str

A local file path or HTTP URL to a LAS file.

required

Returns:

Name Type Description
LasData

The LasData object return by laspy.read.

Source code in geemap/common.py
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
def read_lidar(filename, **kwargs):
    """Read a LAS file.

    Args:
        filename (str): A local file path or HTTP URL to a LAS file.

    Returns:
        LasData: The LasData object return by laspy.read.
    """
    try:
        import laspy
    except ImportError:
        print(
            "The laspy package is required for this function. Use `pip install laspy[lazrs,laszip]` to install it."
        )
        return

    if (
        isinstance(filename, str)
        and filename.startswith("http")
        and (filename.endswith(".las") or filename.endswith(".laz"))
    ):
        filename = github_raw_url(filename)
        filename = download_file(filename)

    return laspy.read(filename, **kwargs)

read_netcdf(filename, **kwargs)

Read a netcdf file.

Parameters:

Name Type Description Default
filename str

File path or HTTP URL to the netcdf file.

required

Raises:

Type Description
ImportError

If the xarray or rioxarray package is not installed.

FileNotFoundError

If the netcdf file is not found.

Returns:

Type Description

xarray.Dataset: The netcdf file as an xarray dataset.

Source code in geemap/common.py
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
def read_netcdf(filename, **kwargs):
    """Read a netcdf file.

    Args:
        filename (str): File path or HTTP URL to the netcdf file.

    Raises:
        ImportError: If the xarray or rioxarray package is not installed.
        FileNotFoundError: If the netcdf file is not found.

    Returns:
        xarray.Dataset: The netcdf file as an xarray dataset.
    """
    try:
        import xarray as xr
    except ImportError as e:
        raise ImportError(e)

    if filename.startswith("http"):
        filename = download_file(filename)

    if not os.path.exists(filename):
        raise FileNotFoundError(f"{filename} does not exist.")

    xds = xr.open_dataset(filename, **kwargs)
    return xds

read_postgis(sql, con, geom_col='geom', crs=None, **kwargs)

Reads data from a PostGIS database and returns a GeoDataFrame.

Parameters:

Name Type Description Default
sql str

SQL query to execute in selecting entries from database, or name of the table to read from the database.

required
con Engine

Active connection to the database to query.

required
geom_col str

Column name to convert to shapely geometries. Defaults to "geom".

'geom'
crs str | dict

CRS to use for the returned GeoDataFrame; if not set, tries to determine CRS from the SRID associated with the first geometry in the database, and assigns that to all geometries. Defaults to None.

None

Returns:

Type Description
Source code in geemap/common.py
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
def read_postgis(sql, con, geom_col="geom", crs=None, **kwargs):
    """Reads data from a PostGIS database and returns a GeoDataFrame.

    Args:
        sql (str): SQL query to execute in selecting entries from database, or name of the table to read from the database.
        con (sqlalchemy.engine.Engine): Active connection to the database to query.
        geom_col (str, optional): Column name to convert to shapely geometries. Defaults to "geom".
        crs (str | dict, optional): CRS to use for the returned GeoDataFrame; if not set, tries to determine CRS from the SRID associated with the first geometry in the database, and assigns that to all geometries. Defaults to None.

    Returns:
        [type]: [description]
    """
    check_package(name="geopandas", URL="https://geopandas.org")

    import geopandas as gpd

    gdf = gpd.read_postgis(sql, con, geom_col, crs, **kwargs)
    return gdf

reduce_gif_size(in_gif, out_gif=None)

Reduces a GIF image using ffmpeg.

Parameters:

Name Type Description Default
in_gif str

The input file path to the GIF image.

required
out_gif str

The output file path to the GIF image. Defaults to None.

None
Source code in geemap/timelapse.py
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
def reduce_gif_size(in_gif, out_gif=None):
    """Reduces a GIF image using ffmpeg.

    Args:
        in_gif (str): The input file path to the GIF image.
        out_gif (str, optional): The output file path to the GIF image. Defaults to None.
    """
    import ffmpeg
    import warnings

    warnings.filterwarnings("ignore")

    if not is_tool("ffmpeg"):
        print("ffmpeg is not installed on your computer.")
        return

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if out_gif is None:
        out_gif = in_gif
    elif not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    if in_gif == out_gif:
        tmp_gif = in_gif.replace(".gif", "_tmp.gif")
        shutil.copyfile(in_gif, tmp_gif)
        stream = ffmpeg.input(tmp_gif)
        stream = ffmpeg.output(stream, in_gif, loglevel="quiet").overwrite_output()
        ffmpeg.run(stream)
        os.remove(tmp_gif)

    else:
        stream = ffmpeg.input(in_gif)
        stream = ffmpeg.output(stream, out_gif, loglevel="quiet").overwrite_output()
        ffmpeg.run(stream)

remove_all_indentation(input_lines)

Removes all indentation for reformatting according to python's indentation rules

Parameters:

Name Type Description Default
input_lines list

List of Earth Engine JavaScrips

required

Returns:

Name Type Description
list

Output JavaScript with indentation removed

Source code in geemap/conversion.py
221
222
223
224
225
226
227
228
229
230
231
232
233
def remove_all_indentation(input_lines):
    """Removes all indentation for reformatting according to python's indentation rules

    Args:
        input_lines (list): List of Earth Engine JavaScrips

    Returns:
        list: Output JavaScript with indentation removed
    """
    output_lines = []
    for _, line in enumerate(input_lines):
        output_lines.append(line.lstrip())
    return output_lines

remove_geometry(fc)

Remove .geo coordinate field from a FeatureCollection

Parameters:

Name Type Description Default
fc object

The input FeatureCollection.

required

Returns:

Name Type Description
object

The output FeatureCollection without the geometry field.

Source code in geemap/common.py
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
def remove_geometry(fc):
    """Remove .geo coordinate field from a FeatureCollection

    Args:
        fc (object): The input FeatureCollection.

    Returns:
        object: The output FeatureCollection without the geometry field.
    """
    return fc.select([".*"], None, False)

remove_port_from_string(data)

Removes the port number from all URLs in the given string.

Args:: data (str): The input string containing URLs.

Returns:

Name Type Description
str str

The string with port numbers removed from all URLs.

Source code in geemap/common.py
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
def remove_port_from_string(data: str) -> str:
    """
    Removes the port number from all URLs in the given string.

    Args::
        data (str): The input string containing URLs.

    Returns:
        str: The string with port numbers removed from all URLs.
    """
    import re

    # Regular expression to match URLs with port numbers
    url_with_port_pattern = re.compile(r"(http://[\d\w.]+):\d+")

    # Function to remove the port from the matched URLs
    def remove_port(match):
        return match.group(1)

    # Substitute the URLs with ports removed
    result = url_with_port_pattern.sub(remove_port, data)

    return result

remove_qgis_import(in_file, Map='m')

Removes 'from ee_plugin import Map' from an Earth Engine Python script.

Parameters:

Name Type Description Default
in_file str

Input file path of the Python script.

required
Map str

The name of the map variable. Defaults to "m".

'm'

Returns:

Name Type Description
list

List of lines 'from ee_plugin import Map' removed.

Source code in geemap/conversion.py
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
def remove_qgis_import(in_file, Map="m"):
    """Removes 'from ee_plugin import Map' from an Earth Engine Python script.

    Args:
        in_file (str): Input file path of the Python script.
        Map (str, optional): The name of the map variable. Defaults to "m".

    Returns:
        list: List of lines  'from ee_plugin import Map' removed.
    """
    in_file = os.path.abspath(in_file)
    start_index = 0
    with open(in_file, encoding="utf-8") as f:
        lines = f.readlines()
        for index, line in enumerate(lines):
            if "from ee_plugin import Map" in line:
                start_index = index

                i = 1
                while True:
                    line_tmp = lines[start_index + i].strip()
                    if line_tmp != "":
                        return lines[start_index + i :]
                    else:
                        i = i + 1
            elif f"{Map} = geemap.Map()" in line:
                return lines[index + 1 :]

rename_bands(img, in_band_names, out_band_names)

Renames image bands.

Parameters:

Name Type Description Default
img object

The image to be renamed.

required
in_band_names list

The list of input band names.

required
out_band_names list

The list of output band names.

required

Returns:

Name Type Description
object

The output image with the renamed bands.

Source code in geemap/common.py
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
def rename_bands(img, in_band_names, out_band_names):
    """Renames image bands.

    Args:
        img (object): The image to be renamed.
        in_band_names (list): The list of input band names.
        out_band_names (list): The list of output band names.

    Returns:
        object: The output image with the renamed bands.
    """
    return img.select(in_band_names, out_band_names)

replace_hyphens_in_keys(d)

Recursively replaces hyphens with underscores in dictionary keys.

Parameters:

Name Type Description Default
d Union[Dict, List, Any]

The input dictionary, list or any other data type.

required

Returns:

Type Description
Union[Dict, List, Any]

Union[Dict, List, Any]: The modified dictionary or list with keys having hyphens replaced with underscores,

Union[Dict, List, Any]

or the original input if it's not a dictionary or list.

Source code in geemap/common.py
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
def replace_hyphens_in_keys(d: Union[Dict, List, Any]) -> Union[Dict, List, Any]:
    """
    Recursively replaces hyphens with underscores in dictionary keys.

    Args:
        d (Union[Dict, List, Any]): The input dictionary, list or any other data type.

    Returns:
        Union[Dict, List, Any]: The modified dictionary or list with keys having hyphens replaced with underscores,
        or the original input if it's not a dictionary or list.
    """
    if isinstance(d, dict):
        return {k.replace("-", "_"): replace_hyphens_in_keys(v) for k, v in d.items()}
    elif isinstance(d, list):
        return [replace_hyphens_in_keys(i) for i in d]
    else:
        return d

replace_top_level_hyphens(d)

Replaces hyphens with underscores in top-level dictionary keys.

Parameters:

Name Type Description Default
d Union[Dict, Any]

The input dictionary or any other data type.

required

Returns:

Type Description
Union[Dict, Any]

Union[Dict, Any]: The modified dictionary with top-level keys having hyphens replaced with underscores,

Union[Dict, Any]

or the original input if it's not a dictionary.

Source code in geemap/common.py
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
def replace_top_level_hyphens(d: Union[Dict, Any]) -> Union[Dict, Any]:
    """
    Replaces hyphens with underscores in top-level dictionary keys.

    Args:
        d (Union[Dict, Any]): The input dictionary or any other data type.

    Returns:
        Union[Dict, Any]: The modified dictionary with top-level keys having hyphens replaced with underscores,
        or the original input if it's not a dictionary.
    """
    if isinstance(d, dict):
        return {k.replace("-", "_"): v for k, v in d.items()}
    return d

reproject(image, output, dst_crs='EPSG:4326', resampling='nearest', **kwargs)

Reprojects an image.

Parameters:

Name Type Description Default
image str

The input image filepath.

required
output str

The output image filepath.

required
dst_crs str

The destination CRS. Defaults to "EPSG:4326".

'EPSG:4326'
resampling Resampling

The resampling method. Defaults to "nearest".

'nearest'
**kwargs

Additional keyword arguments to pass to rasterio.open.

{}
Source code in geemap/common.py
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
def reproject(image, output, dst_crs="EPSG:4326", resampling="nearest", **kwargs):
    """Reprojects an image.

    Args:
        image (str): The input image filepath.
        output (str): The output image filepath.
        dst_crs (str, optional): The destination CRS. Defaults to "EPSG:4326".
        resampling (Resampling, optional): The resampling method. Defaults to "nearest".
        **kwargs: Additional keyword arguments to pass to rasterio.open.

    """
    import rasterio as rio
    from rasterio.warp import calculate_default_transform, reproject, Resampling

    if isinstance(resampling, str):
        resampling = getattr(Resampling, resampling)

    image = os.path.abspath(image)
    output = os.path.abspath(output)

    if not os.path.exists(os.path.dirname(output)):
        os.makedirs(os.path.dirname(output))

    with rio.open(image, **kwargs) as src:
        transform, width, height = calculate_default_transform(
            src.crs, dst_crs, src.width, src.height, *src.bounds
        )
        kwargs = src.meta.copy()
        kwargs.update(
            {
                "crs": dst_crs,
                "transform": transform,
                "width": width,
                "height": height,
            }
        )

        with rio.open(output, "w", **kwargs) as dst:
            for i in range(1, src.count + 1):
                reproject(
                    source=rio.band(src, i),
                    destination=rio.band(dst, i),
                    src_transform=src.transform,
                    src_crs=src.crs,
                    dst_transform=transform,
                    dst_crs=dst_crs,
                    resampling=resampling,
                    **kwargs,
                )

requireJS(lib_path=None, Map=None)

Import Earth Engine JavaScript libraries. Based on the Open Earth Engine Library (OEEL). For more info, visit https://www.open-geocomputing.org/OpenEarthEngineLibrary.

Parameters:

Name Type Description Default
lib_path str

A local file path or HTTP URL to a JavaScript library. It can also be in a format like 'users/gena/packages:grid'. Defaults to None.

None
Map Map

An geemap.Map object. Defaults to None.

None

Returns:

Name Type Description
object

oeel object.

Source code in geemap/common.py
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
def requireJS(lib_path=None, Map=None):
    """Import Earth Engine JavaScript libraries. Based on the Open Earth Engine Library (OEEL).
        For more info, visit https://www.open-geocomputing.org/OpenEarthEngineLibrary.

    Args:
        lib_path (str, optional): A local file path or HTTP URL to a JavaScript library. It can also be in a format like 'users/gena/packages:grid'. Defaults to None.
        Map (geemap.Map, optional): An geemap.Map object. Defaults to None.

    Returns:
        object: oeel object.
    """
    try:
        from oeel import oeel
    except ImportError:
        raise ImportError(
            "oeel is required for requireJS. Please install it using 'pip install oeel'."
        )

    ee_initialize()

    if lib_path is None:
        if Map is not None:
            oeel.setMap(Map)
        return oeel
    elif isinstance(lib_path, str):
        if lib_path.startswith("http"):
            lib_path = get_direct_url(lib_path)

        lib_path = change_require(lib_path)

        if Map is not None:
            oeel.setMap(Map)
        return oeel.requireJS(lib_path)

    else:
        raise ValueError("lib_path must be a string.")

rgb_to_hex(rgb=(255, 255, 255))

Converts RGB to hex color. In RGB color, R stands for Red, G stands for Green, and B stands for Blue, and it ranges from the decimal value of 0 – 255.

Parameters:

Name Type Description Default
rgb Tuple[int, int, int]

RGB color code as a tuple of (red, green, blue). Defaults to (255, 255, 255).

(255, 255, 255)

Returns:

Name Type Description
str str

Hex color code.

Source code in geemap/coreutils.py
457
458
459
460
461
462
463
464
465
466
467
468
def rgb_to_hex(rgb: Tuple[int, int, int] = (255, 255, 255)) -> str:
    """Converts RGB to hex color. In RGB color, R stands for Red, G stands for
        Green, and B stands for Blue, and it ranges from the decimal value of 0 – 255.

    Args:
        rgb (Tuple[int, int, int], optional): RGB color code as a tuple of
            (red, green, blue). Defaults to (255, 255, 255).

    Returns:
        str: Hex color code.
    """
    return "%02x%02x%02x" % rgb

save_colorbar(out_fig=None, width=4.0, height=0.3, vmin=0, vmax=1.0, palette=None, vis_params=None, cmap='gray', discrete=False, label=None, label_size=10, label_weight='normal', tick_size=8, bg_color='white', orientation='horizontal', dpi='figure', transparent=False, show_colorbar=True, **kwargs)

Create a standalone colorbar and save it as an image.

Parameters:

Name Type Description Default
out_fig str

Path to the output image.

None
width float

Width of the colorbar in inches. Default is 4.0.

4.0
height float

Height of the colorbar in inches. Default is 0.3.

0.3
vmin float

Minimum value of the colorbar. Default is 0.

0
vmax float

Maximum value of the colorbar. Default is 1.0.

1.0
palette list

List of colors to use for the colorbar. It can also be a cmap name, such as ndvi, ndwi, dem, coolwarm. Default is None.

None
vis_params dict

Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.

None
cmap str

Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.

'gray'
discrete bool

Whether to create a discrete colorbar. Defaults to False.

False
label str

Label for the colorbar. Defaults to None.

None
label_size int

Font size for the colorbar label. Defaults to 12.

10
label_weight str

Font weight for the colorbar label, can be "normal", "bold", etc. Defaults to "normal".

'normal'
tick_size int

Font size for the colorbar tick labels. Defaults to 10.

8
bg_color str

Background color for the colorbar. Defaults to "white".

'white'
orientation str

Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".

'horizontal'
dpi float | str

The resolution in dots per inch. If 'figure', use the figure's dpi value. Defaults to "figure".

'figure'
transparent bool

Whether to make the background transparent. Defaults to False.

False
show_colorbar bool

Whether to show the colorbar. Defaults to True.

True
**kwargs

Other keyword arguments to pass to matplotlib.pyplot.savefig().

{}

Returns:

Name Type Description
str

Path to the output image.

Source code in geemap/common.py
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
def save_colorbar(
    out_fig=None,
    width=4.0,
    height=0.3,
    vmin=0,
    vmax=1.0,
    palette=None,
    vis_params=None,
    cmap="gray",
    discrete=False,
    label=None,
    label_size=10,
    label_weight="normal",
    tick_size=8,
    bg_color="white",
    orientation="horizontal",
    dpi="figure",
    transparent=False,
    show_colorbar=True,
    **kwargs,
):
    """Create a standalone colorbar and save it as an image.

    Args:
        out_fig (str): Path to the output image.
        width (float): Width of the colorbar in inches. Default is 4.0.
        height (float): Height of the colorbar in inches. Default is 0.3.
        vmin (float): Minimum value of the colorbar. Default is 0.
        vmax (float): Maximum value of the colorbar. Default is 1.0.
        palette (list): List of colors to use for the colorbar. It can also be a cmap name, such as ndvi, ndwi, dem, coolwarm. Default is None.
        vis_params (dict): Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
        cmap (str, optional): Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.
        discrete (bool, optional): Whether to create a discrete colorbar. Defaults to False.
        label (str, optional): Label for the colorbar. Defaults to None.
        label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        label_weight (str, optional): Font weight for the colorbar label, can be "normal", "bold", etc. Defaults to "normal".
        tick_size (int, optional): Font size for the colorbar tick labels. Defaults to 10.
        bg_color (str, optional): Background color for the colorbar. Defaults to "white".
        orientation (str, optional): Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".
        dpi (float | str, optional): The resolution in dots per inch.  If 'figure', use the figure's dpi value. Defaults to "figure".
        transparent (bool, optional): Whether to make the background transparent. Defaults to False.
        show_colorbar (bool, optional): Whether to show the colorbar. Defaults to True.
        **kwargs: Other keyword arguments to pass to matplotlib.pyplot.savefig().

    Returns:
        str: Path to the output image.
    """
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import numpy as np
    from .colormaps import palettes, get_palette

    if out_fig is None:
        out_fig = temp_file_path("png")
    else:
        out_fig = check_file_path(out_fig)

    if vis_params is None:
        vis_params = {}
    elif not isinstance(vis_params, dict):
        raise TypeError("The vis_params must be a dictionary.")

    if palette is not None:
        if palette in ["ndvi", "ndwi", "dem"]:
            palette = palettes[palette]
        elif palette in list(palettes.keys()):
            palette = get_palette(palette)
        vis_params["palette"] = palette

    orientation = orientation.lower()
    if orientation not in ["horizontal", "vertical"]:
        raise ValueError("The orientation must be either horizontal or vertical.")

    if "opacity" in vis_params:
        alpha = vis_params["opacity"]
        if type(alpha) not in (int, float):
            raise ValueError("The provided opacity value must be type scalar.")
    else:
        alpha = 1

    if cmap is not None:
        cmap = mpl.pyplot.get_cmap(cmap)
        norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)

    if "palette" in vis_params:
        hexcodes = to_hex_colors(vis_params["palette"])
        if discrete:
            cmap = mpl.colors.ListedColormap(hexcodes)
            vals = np.linspace(vmin, vmax, cmap.N + 1)
            norm = mpl.colors.BoundaryNorm(vals, cmap.N)

        else:
            cmap = mpl.colors.LinearSegmentedColormap.from_list(
                "custom", hexcodes, N=256
            )
            norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)

    elif cmap is not None:
        cmap = mpl.pyplot.get_cmap(cmap)
        norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)

    else:
        raise ValueError(
            'cmap keyword or "palette" key in vis_params must be provided.'
        )

    fig, ax = plt.subplots(figsize=(width, height))
    cb = mpl.colorbar.ColorbarBase(
        ax, norm=norm, alpha=alpha, cmap=cmap, orientation=orientation, **kwargs
    )
    if label is not None:
        cb.set_label(label=label, size=label_size, weight=label_weight)
    cb.ax.tick_params(labelsize=tick_size)

    if transparent:
        bg_color = None

    if bg_color is not None:
        kwargs["facecolor"] = bg_color
    if "bbox_inches" not in kwargs:
        kwargs["bbox_inches"] = "tight"

    fig.savefig(out_fig, dpi=dpi, transparent=transparent, **kwargs)
    if not show_colorbar:
        plt.close(fig)
    return out_fig

screen_capture(filename, monitor=1)

Takes a full screenshot of the selected monitor.

Parameters:

Name Type Description Default
filename str

The output file path to the screenshot.

required
monitor int

The monitor to take the screenshot. Defaults to 1.

1
Source code in geemap/common.py
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
def screen_capture(filename, monitor=1):
    """Takes a full screenshot of the selected monitor.

    Args:
        filename (str): The output file path to the screenshot.
        monitor (int, optional): The monitor to take the screenshot. Defaults to 1.
    """
    try:
        from mss import mss
    except ImportError:
        raise ImportError("Please install mss package using 'pip install mss'")

    out_dir = os.path.dirname(filename)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if not isinstance(monitor, int):
        print("The monitor number must be an integer.")
        return

    try:
        with mss() as sct:
            sct.shot(output=filename, mon=monitor)
            return filename

    except Exception as e:
        print(e)

search_api_tree(keywords, api_tree)

Search Earth Engine API and return functions containing the specified keywords

Parameters:

Name Type Description Default
keywords str

The keywords to search for.

required
api_tree dict

The dictionary containing the Earth Engine API tree.

required

Returns:

Name Type Description
object

An ipytree object/widget.

Source code in geemap/common.py
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
def search_api_tree(keywords, api_tree):
    """Search Earth Engine API and return functions containing the specified keywords

    Args:
        keywords (str): The keywords to search for.
        api_tree (dict): The dictionary containing the Earth Engine API tree.

    Returns:
        object: An ipytree object/widget.
    """

    warnings.filterwarnings("ignore")

    sub_tree = Tree()

    for key in api_tree.keys():
        if keywords.lower() in key.lower():
            sub_tree.add_node(api_tree[key])

    return sub_tree

search_ee_data(keywords, regex=False, source='ee', types=None, keys=['id', 'provider', 'tags', 'title'])

Searches Earth Engine data catalog.

Parameters:

Name Type Description Default
keywords str | list

Keywords to search for can be id, provider, tag and so on. Split by space if string, e.g. "1 2" becomes ['1','2'].

required
regex bool

Allow searching for regular expressions. Defaults to false.

False
source str

Can be 'ee', 'community' or 'all'. Defaults to 'ee'. For more details, see https://github.com/samapriya/awesome-gee-community-datasets/blob/master/community_datasets.json

'ee'
types list

List of valid collection types. Defaults to None so no filter is applied. A possible filter ['image_collection']

None
keys list

List of metadata fields to search from. Defaults to ['id','provider','tags','title']

['id', 'provider', 'tags', 'title']

Returns:

Name Type Description
list

Returns a list of assets.

Source code in geemap/common.py
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
def search_ee_data(
    keywords,
    regex=False,
    source="ee",
    types=None,
    keys=["id", "provider", "tags", "title"],
):
    """Searches Earth Engine data catalog.

    Args:
        keywords (str | list): Keywords to search for can be id, provider, tag and so on. Split by space if string, e.g. "1 2" becomes ['1','2'].
        regex (bool, optional): Allow searching for regular expressions. Defaults to false.
        source (str, optional): Can be 'ee', 'community' or 'all'. Defaults to 'ee'. For more details, see https://github.com/samapriya/awesome-gee-community-datasets/blob/master/community_datasets.json
        types (list, optional): List of valid collection types. Defaults to None so no filter is applied. A possible filter ['image_collection']
        keys (list, optional): List of metadata fields to search from.  Defaults to ['id','provider','tags','title']

    Returns:
        list: Returns a list of assets.
    """
    if isinstance(keywords, str):
        keywords = keywords.split(" ")

    import re
    from functools import reduce

    def search_collection(pattern, dict_):
        if regex:
            if any(re.match(pattern, dict_[key]) for key in keys):
                return dict_
        elif any(pattern in dict_[key] for key in keys):
            return dict_
        return {}

    def search_all(pattern):
        # updated daily
        a = "https://raw.githubusercontent.com/samapriya/Earth-Engine-Datasets-List/master/gee_catalog.json"
        b = "https://raw.githubusercontent.com/samapriya/awesome-gee-community-datasets/master/community_datasets.json"
        sources = {"ee": [a], "community": [b], "all": [a, b]}
        matches = []
        for link in sources[source]:
            r = requests.get(link)
            catalog_list = r.json()
            matches += [search_collection(pattern, x) for x in catalog_list]
        matches = [x for x in matches if x]
        if types:
            return [x for x in matches if x["type"] in types]
        return matches

    try:
        assets = list(
            {json.dumps(match) for match in search_all(pattern=k)} for k in keywords
        )
        assets = sorted(list(reduce(set.intersection, assets)))
        assets = [json.loads(x) for x in assets]

        results = []
        for asset in assets:
            asset_dates = (
                asset.get("start_date", "Unknown")
                + " - "
                + asset.get("end_date", "Unknown")
            )
            asset_snippet = asset["id"]
            if "ee." in asset_snippet:
                start_index = asset_snippet.index("'") + 1
                end_index = asset_snippet.index("'", start_index)
                asset_id = asset_snippet[start_index:end_index]
            else:
                asset_id = asset_snippet

            asset["dates"] = asset_dates
            asset["id"] = asset_id
            asset["uid"] = asset_id.replace("/", "_")

            results.append(asset)

        return results

    except Exception as e:
        print(e)

search_qms(keyword, limit=10, list_only=True, add_prefix=True, timeout=300)

Search for QMS tile providers from Quick Map Services.

Parameters:

Name Type Description Default
keyword str

The keyword to search for.

required
limit int

The maximum number of results to return. Defaults to 10.

10
list_only bool

If True, only the list of services will be returned. Defaults to True.

True
add_prefix bool

If True, the prefix "qms." will be added to the service name. Defaults to True.

True
timeout int

The timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A list of QMS tile providers.

Source code in geemap/common.py
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
def search_qms(keyword, limit=10, list_only=True, add_prefix=True, timeout=300):
    """Search for QMS tile providers from Quick Map Services.

    Args:
        keyword (str): The keyword to search for.
        limit (int, optional): The maximum number of results to return. Defaults to 10.
        list_only (bool, optional): If True, only the list of services will be returned. Defaults to True.
        add_prefix (bool, optional): If True, the prefix "qms." will be added to the service name. Defaults to True.
        timeout (int, optional): The timeout in seconds. Defaults to 300.

    Returns:
        list: A list of QMS tile providers.
    """

    QMS_API = "https://qms.nextgis.com/api/v1/geoservices"
    services = requests.get(
        f"{QMS_API}/?search={keyword}&type=tms&epsg=3857&limit={limit}", timeout=timeout
    )
    services = services.json()
    if services["results"]:
        providers = services["results"]
        if list_only:
            if add_prefix:
                return ["qms." + provider["name"] for provider in providers]
            else:
                return [provider["name"] for provider in providers]
        else:
            return providers
    else:
        return None

search_xyz_services(keyword, name=None, list_only=True, add_prefix=True)

Search for XYZ tile providers from xyzservices.

Parameters:

Name Type Description Default
keyword str

The keyword to search for.

required
name str

The name of the xyz tile. Defaults to None.

None
list_only bool

If True, only the list of services will be returned. Defaults to True.

True
add_prefix bool

If True, the prefix "xyz." will be added to the service name. Defaults to True.

True

Returns:

Name Type Description
list

A list of XYZ tile providers.

Source code in geemap/common.py
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
def search_xyz_services(keyword, name=None, list_only=True, add_prefix=True):
    """Search for XYZ tile providers from xyzservices.

    Args:
        keyword (str): The keyword to search for.
        name (str, optional): The name of the xyz tile. Defaults to None.
        list_only (bool, optional): If True, only the list of services will be returned. Defaults to True.
        add_prefix (bool, optional): If True, the prefix "xyz." will be added to the service name. Defaults to True.

    Returns:
        list: A list of XYZ tile providers.
    """

    import xyzservices.providers as xyz

    if name is None:
        providers = xyz.filter(keyword=keyword).flatten()
    else:
        providers = xyz.filter(name=name).flatten()

    if list_only:
        if add_prefix:
            return ["xyz." + provider for provider in providers]
        else:
            return [provider for provider in providers]
    else:
        return providers

sentinel1_filtering(collection, band='VV', instrumentMode=None, orbitProperties_pass=None, transmitterReceiverPolarisation=None, remove_outliers=True, **kwargs)

Sentinel-1 data is collected with several different instrument configurations, resolutions, band combinations during both ascending and descending orbits. Because of this heterogeneity, it's usually necessary to filter the data down to a homogeneous subset before starting processing.

For more details, see https://developers.google.com/earth-engine/guides/sentinel1

Parameters:

Name Type Description Default
collection

A Sentinel1 ImageCollection to filter.

required
band str

Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.

'VV'
instrumentMode str

Collection property. Can be one of ['IW','EW','SM']. Defaults to band default availability (IW for ['VV','VH'], EW for ['HH','HV']). IW is typically available for land. EW for icy regions.

None
orbitProperties_pass str | None

Collection property. Can be one of ['ASCENDING', 'DESCENDING', None]. Default to 'ASCENDING'. Will return mixed property if set to None, which dampen elevation, and increase surface roughness/fractality visibility.

None
transmitterReceiverPolarisation

Collection property List contains this value. Can be one of ['HH','HV','VV','VH']. Defaults to band.

None
remove_outliers bool

Remove pixels with extreme values (< -30). These can occur near the edge of an image. Default to True.

True
**kwargs dict

All other arguments will be applied as filters to collection properties. F.e. {'resolution_meters':10} Full list properties: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#image-properties

{}

Returns:

Name Type Description
object

Returns a homogeneous ImageCollection of Sentinel 1 images.

Source code in geemap/timelapse.py
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
def sentinel1_filtering(
    collection,
    band="VV",
    instrumentMode=None,
    orbitProperties_pass=None,
    transmitterReceiverPolarisation=None,
    remove_outliers=True,
    **kwargs,
):
    """
    Sentinel-1 data is collected with several different instrument configurations, resolutions,
    band combinations during both ascending and descending orbits. Because of this heterogeneity,
    it's usually necessary to filter the data down to a homogeneous subset before starting processing.

    For more details, see https://developers.google.com/earth-engine/guides/sentinel1

    Args:
        collection: A Sentinel1 ImageCollection to filter.
        band (str): Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.
        instrumentMode (str, optional): Collection property. Can be one of ['IW','EW','SM']. Defaults to band default availability (IW for ['VV','VH'], EW for ['HH','HV']). IW is typically available for land. EW for icy regions.
        orbitProperties_pass (str|None, optional): Collection property. Can be one of ['ASCENDING', 'DESCENDING', None]. Default to 'ASCENDING'.
            Will return mixed property if set to None, which dampen elevation, and increase surface roughness/fractality visibility.
        transmitterReceiverPolarisation: Collection property List contains this value. Can be one of ['HH','HV','VV','VH']. Defaults to band.
        remove_outliers (bool, optional): Remove pixels with extreme values (< -30). These can occur near the edge of an image. Default to True.
        **kwargs (dict, optional): All other arguments will be applied as filters to collection properties. F.e. {'resolution_meters':10}
            Full list properties: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#image-properties

    Returns:
        object: Returns a homogeneous ImageCollection of Sentinel 1 images.
    """

    transmitterReceiverPolarisation = transmitterReceiverPolarisation or band
    instrumentMode = (
        instrumentMode or {"VV": "IW", "VH": "IW", "HH": "EW", "HV": "EW"}[band]
    )

    def remove_outliers_func(image):
        if not remove_outliers:
            return image
        edge = image.select(band).lt(-30.0)
        maskedimage = image.mask().And(edge.Not())
        return image.updateMask(maskedimage)

    col = collection.filter(ee.Filter.eq("instrumentMode", instrumentMode)).filter(
        ee.Filter.listContains(
            "transmitterReceiverPolarisation", transmitterReceiverPolarisation
        )
    )

    if remove_outliers:
        col = col.map(remove_outliers_func)

    for k, v in kwargs.items():
        col = col.filter(ee.Filter.eq(k, v))
    if orbitProperties_pass:
        col = col.filter(ee.Filter.eq("orbitProperties_pass", orbitProperties_pass))

    return col

sentinel1_timelapse(roi, out_gif=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', bands=['VV'], frequency='year', reducer='median', date_format=None, palette='Greys', vis_params=None, dimensions=768, frames_per_second=10, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=False, colorbar_width=6.0, colorbar_height=0.4, colorbar_label=None, colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color=None, colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False, **kwargs)

Create a timelapse from any ee.ImageCollection.

Parameters:

Name Type Description Default
roi Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

required
out_gif str

The output gif file path. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
bands list

A list of band names to use in the timelapse. Can be one of ['VV'],['HV'],['VH'],['HH'],['VV','VH'] or ['HH','HV']

['VV']
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

'Greys'
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

10
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
add_colorbar bool

Whether to add a colorbar to the timelapse. Defaults to False.

False
colorbar_width float

Width of the colorbar. Defaults to 6.0.

6.0
colorbar_height float

Height of the colorbar. Defaults to 0.4.

0.4
colorbar_label str

Label for the colorbar. Defaults to None.

None
colorbar_label_size int

Font size for the colorbar label. Defaults to 12.

12
colorbar_label_weight str

Font weight for the colorbar label. Defaults to 'normal'.

'normal'
colorbar_tick_size int

Font size for the colorbar ticks. Defaults to 10.

10
colorbar_bg_color str

Background color for the colorbar, can be color like "white", "black". Defaults to None.

None
colorbar_orientation str

Orientation of the colorbar. Defaults to 'horizontal'.

'horizontal'
colorbar_dpi str

DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.

'figure'
colorbar_xy tuple

Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
colorbar_size tuple

Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).

(300, 300)
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
**kwargs

Arguments for sentinel1_filtering(). Same filters will be applied to all bands.

{}

Returns:

Name Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
def sentinel1_timelapse(
    roi,
    out_gif=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    bands=["VV"],
    frequency="year",
    reducer="median",
    date_format=None,
    palette="Greys",
    vis_params=None,
    dimensions=768,
    frames_per_second=10,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    add_colorbar=False,
    colorbar_width=6.0,
    colorbar_height=0.4,
    colorbar_label=None,
    colorbar_label_size=12,
    colorbar_label_weight="normal",
    colorbar_tick_size=10,
    colorbar_bg_color=None,
    colorbar_orientation="horizontal",
    colorbar_dpi="figure",
    colorbar_xy=None,
    colorbar_size=(300, 300),
    loop=0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create a timelapse from any ee.ImageCollection.

    Args:
        roi (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        out_gif (str): The output gif file path. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        bands (list, optional): A list of band names to use in the timelapse. Can be one of ['VV'],['HV'],['VH'],['HH'],['VV','VH'] or ['HH','HV']
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
        colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
        colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
        colorbar_label (str, optional): Label for the colorbar. Defaults to None.
        colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
        colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
        colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
        colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
        colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
        colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        **kwargs: Arguments for sentinel1_filtering(). Same filters will be applied to all bands.

    Returns:
        str: File path to the timelapse gif.
    """
    from datetime import date

    assert bands in (
        ["VV"],
        ["VH"],
        ["HH"],
        ["HV"],
        ["VV", "VH"],
        ["HH", "HV"],
        ["VH", "VV"],
        ["HV", "HH"],
    ), "Not all Sentinel1 bands are available together."
    if bands in (["VH", "VV"], ["HV", "HH"]):
        bands[0], bands[1] = bands[1], bands[0]
    band = bands[0]

    if end_year is None:
        end_year = date.today().year

    start = f"{start_year}-{start_date}"
    end = f"{end_year}-{end_date}"

    if vis_params is None:
        vis_params = {"min": -30, "max": 0}

    collection = (
        ee.ImageCollection("COPERNICUS/S1_GRD").filterDate(start, end).filterBounds(roi)
    )
    collection = sentinel1_filtering(collection, band, **kwargs)

    return create_timelapse(
        collection,
        start,
        end,
        roi,
        bands,
        frequency,
        reducer,
        date_format,
        out_gif,
        palette,
        vis_params,
        dimensions,
        frames_per_second,
        crs,
        overlay_data,
        overlay_color,
        overlay_width,
        overlay_opacity,
        title,
        title_xy,
        add_text,
        text_xy,
        text_sequence,
        font_type,
        font_size,
        font_color,
        add_progress_bar,
        progress_bar_color,
        progress_bar_height,
        add_colorbar,
        colorbar_width,
        colorbar_height,
        colorbar_label,
        colorbar_label_size,
        colorbar_label_weight,
        colorbar_tick_size,
        colorbar_bg_color,
        colorbar_orientation,
        colorbar_dpi,
        colorbar_xy,
        colorbar_size,
        loop,
        mp4,
        fading,
    )

sentinel1_timelapse_legacy(roi=None, out_gif=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False)

Generates a Sentinel-1 timelapse animated GIF or MP4.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to LV & Lake Mead.

None
out_gif str

File path to the output animated GIF. Defaults to the Downloads folder s1_ts_*.gif.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
vis_params dict

Visualization parameters. Defaults to {'min':-18, 'max': -4}.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 5.

5
crs str

Coordinate reference system. Defaults to 'EPSG:3857'.

'EPSG:3857'
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'. Can be year, quarter or month.

'year'
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to image start dates.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to 'white'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Returns:

Name Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
def sentinel1_timelapse_legacy(
    roi=None,
    out_gif=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
):
    """Generates a Sentinel-1 timelapse animated GIF or MP4.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to LV & Lake Mead.
        out_gif (str, optional): File path to the output animated GIF. Defaults to the Downloads folder s1_ts_*.gif.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        vis_params (dict, optional): Visualization parameters. Defaults to {'min':-18, 'max': -4}.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 5.
        crs (str, optional): Coordinate reference system. Defaults to 'EPSG:3857'.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'. Can be year, quarter or month.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to image start dates.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to 'white'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Returns:
        str: File path to the output GIF image.
    """

    CURRENT_YEAR, ROI_DEFAULT = sentinel1_defaults()
    roi = roi or ROI_DEFAULT
    end_year = end_year or CURRENT_YEAR

    col = sentinel1_timeseries(
        roi=roi,
        start_year=start_year,
        end_year=end_year,
        start_date=start_date,
        end_date=end_date,
        frequency=frequency,
        clip=True,
    )

    vis_params = vis_params or {"min": -25, "max": 5}

    if out_gif is None:
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        filename = "s1_ts_" + random_string() + ".gif"
        out_gif = os.path.join(out_dir, filename)
    elif not out_gif.endswith(".gif"):
        print("The output file must end with .gif")
        return
    else:
        out_gif = os.path.abspath(out_gif)
        out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if overlay_data is not None:
        col = add_overlay(
            col, overlay_data, overlay_color, overlay_width, overlay_opacity
        )

    if (
        isinstance(dimensions, int)
        and dimensions > 768
        or isinstance(dimensions, str)
        and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
    ):
        count = col.size().getInfo()
        basename = os.path.basename(out_gif)[:-4]
        names = [
            os.path.join(
                out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
            )
            for i in range(count)
        ]
        get_image_collection_thumbnails(
            col,
            out_dir,
            vis_params=vis_params,
            dimensions=dimensions,
            names=names,
        )
        make_gif(
            names,
            out_gif,
            fps=frames_per_second,
            loop=loop,
            mp4=False,
            clean_up=True,
        )
    else:
        video_args = vis_params.copy()
        video_args["dimensions"] = dimensions
        video_args["region"] = roi
        video_args["framesPerSecond"] = frames_per_second
        video_args["crs"] = crs
        video_args["min"] = vis_params["min"]
        video_args["max"] = vis_params["max"]

        download_ee_video(col, video_args, out_gif)

    if os.path.exists(out_gif):
        if title is not None and isinstance(title, str):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy=title_xy,
                text_sequence=title,
                font_type=font_type,
                font_size=font_size,
                font_color=font_color,
                add_progress_bar=add_progress_bar,
                progress_bar_color=progress_bar_color,
                progress_bar_height=progress_bar_height,
                duration=1000 / frames_per_second,
                loop=loop,
            )
        if add_text:
            if text_sequence is None:
                text_sequence = col.aggregate_array("system:date").getInfo()
            add_text_to_gif(
                out_gif,
                out_gif,
                xy=text_xy,
                text_sequence=text_sequence,
                font_type=font_type,
                font_size=font_size,
                font_color=font_color,
                add_progress_bar=add_progress_bar,
                progress_bar_color=progress_bar_color,
                progress_bar_height=progress_bar_height,
                duration=1000 / frames_per_second,
                loop=loop,
            )
        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)
        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)
        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

    return out_gif

sentinel1_timeseries(roi=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', frequency='year', clip=False, band='VV', **kwargs)

1
2
Generates a Sentinel 1 ImageCollection,
based on mean composites following a steady frequency (f.e. 1 image per month)

Adapted from https://code.earthengine.google.com/?scriptPath=Examples:Datasets/COPERNICUS_S1_GRD

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to a polygon partially covering Las Vegas and Lake Mead.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
frequency str

Frequency of the timelapse. Defaults to 'year'. Can be 'year', 'quarter' or 'month'.

'year'
band str

Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.

'VV'
**kwargs

Arguments for sentinel1_filtering().

{}

Returns:

Name Type Description
object

Returns an ImageCollection of Sentinel 1 images.

Source code in geemap/timelapse.py
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
def sentinel1_timeseries(
    roi=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    frequency="year",
    clip=False,
    band="VV",
    **kwargs,
):
    """
        Generates a Sentinel 1 ImageCollection,
        based on mean composites following a steady frequency (f.e. 1 image per month)
    Adapted from https://code.earthengine.google.com/?scriptPath=Examples:Datasets/COPERNICUS_S1_GRD

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to a polygon partially covering Las Vegas and Lake Mead.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.  Can be 'year', 'quarter' or 'month'.
        band (str): Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.
        **kwargs: Arguments for sentinel1_filtering().

    Returns:
        object: Returns an ImageCollection of Sentinel 1 images.
    """

    CURRENT_YEAR, ROI_DEFAULT = sentinel1_defaults()
    roi = roi or ROI_DEFAULT
    end_year = end_year or CURRENT_YEAR
    roi = valid_roi(roi)

    start = f"{start_year}-{start_date}"
    end = f"{end_year}-{end_date}"

    dates = date_sequence(start, end, frequency)
    col = ee.ImageCollection("COPERNICUS/S1_GRD").filterBounds(roi)
    col = sentinel1_filtering(col, band=band, **kwargs).select(band)

    n = 1
    if frequency == "quarter":
        n = 3
        frequency = "month"

    def transform(date):  # coll, frequency
        start = date
        end = ee.Date(date).advance(n, frequency).advance(-1, "day")
        return (
            col.filterDate(start, end)
            .mean()
            .set(
                {
                    "system:time_start": ee.Date(start).millis(),
                    "system:time_end": ee.Date(end).millis(),
                    "system:date": start,
                }
            )
        )

    imgList = dates.map(lambda date: transform(date))
    imgColl = ee.ImageCollection.fromImages(imgList)
    if clip:
        imgColl = imgColl.map(lambda img: img.clip(roi))
    return imgColl

sentinel2_timelapse(roi=None, out_gif=None, start_year=2015, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, cloud_pct=30, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1, **kwargs)

Generates a Sentinel-2 timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
out_gif str

File path to the output animated GIF. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to None, which means the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
bands list

Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'Red Edge 1', 'Red Edge 2', 'Red Edge 3', 'Red Edge 4']. Defaults to ['NIR', 'Red', 'Green'].

['NIR', 'Red', 'Green']
vis_params dict

Visualization parameters. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

5
crs str

Coordinate reference system. Defaults to 'EPSG:3857'.

'EPSG:3857'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
cloud_pct int

Maximum percentage of cloud coverage allowed. Defaults to 30.

30
overlay_data (int, str, list)

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Date format for the timelapse. Defaults to None.

None
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence (int, str, list)

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
step int

Step size for selecting images. Defaults to 1.

1
kwargs optional

Additional arguments to pass the geemap.create_timeseries() function.

{}

Returns:

Name Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
def sentinel2_timelapse(
    roi=None,
    out_gif=None,
    start_year=2015,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    bands=["NIR", "Red", "Green"],
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    apply_fmask=True,
    cloud_pct=30,
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    date_format=None,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
    step=1,
    **kwargs,
):
    """Generates a Sentinel-2 timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'Red Edge 1', 'Red Edge 2', 'Red Edge 3', 'Red Edge 4']. Defaults to ['NIR', 'Red', 'Green'].
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): Coordinate reference system. Defaults to 'EPSG:3857'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        cloud_pct (int, optional): Maximum percentage of cloud coverage allowed. Defaults to 30.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Date format for the timelapse. Defaults to None.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        step (int, optional): Step size for selecting images. Defaults to 1.
        kwargs (optional): Additional arguments to pass the geemap.create_timeseries() function.

    Returns:
        str: File path to the output GIF image.
    """

    if end_year is None:
        end_year = datetime.datetime.now().year

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )
    elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
        roi = roi.geometry()
    elif isinstance(roi, ee.Geometry):
        pass
    else:
        print("The provided roi is invalid. It must be an ee.Geometry")
        return

    if out_gif is None:
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        filename = "s2_ts_" + random_string() + ".gif"
        out_gif = os.path.join(out_dir, filename)
    elif not out_gif.endswith(".gif"):
        print("The output file must end with .gif")
        return
    else:
        out_gif = os.path.abspath(out_gif)
        out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    allowed_bands = {
        "Blue": "B2",
        "Green": "B3",
        "Red": "B4",
        "Red Edge 1": "B5",
        "Red Edge 2": "B6",
        "Red Edge 3": "B7",
        "NIR": "B8",
        "Red Edge 4": "B8A",
        "SWIR1": "B11",
        "SWIR2": "B12",
        "QA60": "QA60",
    }

    if bands is None:
        bands = ["SWIR1", "NIR", "Red"]

    for index, band in enumerate(bands):
        if band in allowed_bands:
            bands[index] = allowed_bands[band]

    if len(bands) == 3:
        pass
    else:
        raise Exception(
            "You can only select 3 bands from the following: {}".format(
                ", ".join(allowed_bands)
            )
        )

    try:
        if vis_params is None:
            vis_params = {}
            vis_params["bands"] = bands
            vis_params["min"] = 0
            vis_params["max"] = 0.4
            vis_params["gamma"] = [1, 1, 1]

        if "reducer" not in kwargs:
            kwargs["reducer"] = "median"
        if "drop_empty" not in kwargs:
            kwargs["drop_empty"] = True
        if "parallel_scale" not in kwargs:
            kwargs["parallel_scale"] = 1
        kwargs["date_format"] = date_format
        col = sentinel2_timeseries(
            roi,
            start_year,
            end_year,
            start_date,
            end_date,
            bands,
            apply_fmask,
            cloud_pct,
            frequency,
            step=step,
            **kwargs,
        )
        col = col.select(bands).map(
            lambda img: img.visualize(**vis_params).set(
                {
                    "system:time_start": img.get("system:time_start"),
                    "system:date": img.get("system:date"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if (
            isinstance(dimensions, int)
            and dimensions > 768
            or isinstance(dimensions, str)
            and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
        ):
            count = col.size().getInfo()
            basename = os.path.basename(out_gif)[:-4]
            names = [
                os.path.join(
                    out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
                )
                for i in range(count)
            ]
            get_image_collection_thumbnails(
                col,
                out_dir,
                vis_params={
                    "min": 0,
                    "max": 255,
                    "bands": ["vis-red", "vis-green", "vis-blue"],
                },
                dimensions=dimensions,
                names=names,
            )
            make_gif(
                names,
                out_gif,
                fps=frames_per_second,
                loop=loop,
                mp4=False,
                clean_up=True,
            )
        else:
            video_args = vis_params.copy()
            video_args["dimensions"] = dimensions
            video_args["region"] = roi
            video_args["framesPerSecond"] = frames_per_second
            video_args["crs"] = crs
            video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
            video_args["min"] = 0
            video_args["max"] = 255

            download_ee_video(col, video_args, out_gif)

        if os.path.exists(out_gif):
            if title is not None and isinstance(title, str):
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=title_xy,
                    text_sequence=title,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )
            if add_text:
                if text_sequence is None:
                    text_sequence = col.aggregate_array("system:date").getInfo()
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=text_xy,
                    text_sequence=text_sequence,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )

        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)

        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        print(e)

sentinel2_timeseries(roi, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', bands=None, mask_cloud=True, cloud_pct=30, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1, step=1)

Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Images include both level 1C and level 2A imagery. Args:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
mask_cloud (bool, optional): Whether to mask clouds. Defaults to True.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
cloud_pct (int, optional): Maximum cloud percentage to include in the timelapse. Defaults to 30.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): Format of the date. Defaults to None.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

Returns:

Name Type Description
object

Returns an ImageCollection containing annual Sentinel 2 images.

Source code in geemap/timelapse.py
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
def sentinel2_timeseries(
    roi,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    bands=None,
    mask_cloud=True,
    cloud_pct=30,
    frequency="year",
    reducer="median",
    drop_empty=True,
    date_format=None,
    parallel_scale=1,
    step=1,
):
    """Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
       Images include both level 1C and level 2A imagery.
    Args:

        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        mask_cloud (bool, optional): Whether to mask clouds. Defaults to True.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
        cloud_pct (int, optional): Maximum cloud percentage to include in the timelapse. Defaults to 30.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): Format of the date. Defaults to None.
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        object: Returns an ImageCollection containing annual Sentinel 2 images.
    """
    if end_year is None:
        end_year = datetime.date.today().year

    def maskS2clouds(image):
        qa = image.select("QA60")

        # Bits 10 and 11 are clouds and cirrus, respectively.
        cloudBitMask = 1 << 10
        cirrusBitMask = 1 << 11

        # Both flags should be set to zero, indicating clear conditions.
        mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0))

        return (
            image.updateMask(mask)
            .divide(10000)
            .set(image.toDictionary(image.propertyNames()))
        )

    start = f"{start_year}-{start_date}"
    end = f"{end_year}-{end_date}"
    doy_start = ee.Number.parse(ee.Date(start).format("D"))
    doy_end = ee.Number.parse(ee.Date(end).format("D"))
    collection = (
        ee.ImageCollection("COPERNICUS/S2_HARMONIZED")
        .filterDate(start, end)
        .filter(ee.Filter.calendarRange(doy_start, doy_end, "day_of_year"))
        .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", cloud_pct))
        .filterBounds(roi)
    )

    if mask_cloud:
        collection = collection.map(maskS2clouds)
    else:
        collection = collection.map(
            lambda img: img.divide(10000).set(img.toDictionary(img.propertyNames()))
        )

    if bands is not None:
        allowed_bands = {
            "Blue": "B2",
            "Green": "B3",
            "Red": "B4",
            "Red Edge 1": "B5",
            "Red Edge 2": "B6",
            "Red Edge 3": "B7",
            "NIR": "B8",
            "Red Edge 4": "B8A",
            "SWIR1": "B11",
            "SWIR2": "B12",
            "QA60": "QA60",
        }

        for index, band in enumerate(bands):
            if band in allowed_bands:
                bands[index] = allowed_bands[band]

        collection = collection.select(bands)

    ts = create_timeseries(
        collection,
        start,
        end,
        roi,
        bands,
        frequency,
        reducer,
        drop_empty,
        date_format,
        parallel_scale,
        step,
    )
    return ts

sentinel2_timeseries_legacy(roi=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', apply_fmask=True, frequency='year', date_format=None)

Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Images include both level 1C and level 2A imagery. Args:

1
2
3
4
5
6
7
8
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Format of the date. Defaults to None.

Returns:

Name Type Description
object

Returns an ImageCollection containing annual Sentinel 2 images.

Source code in geemap/timelapse.py
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
def sentinel2_timeseries_legacy(
    roi=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    apply_fmask=True,
    frequency="year",
    date_format=None,
):
    """Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
       Images include both level 1C and level 2A imagery.
    Args:

        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Format of the date. Defaults to None.

    Returns:
        object: Returns an ImageCollection containing annual Sentinel 2 images.
    """
    ################################################################################

    ################################################################################
    # Input and output parameters.

    import re

    # import datetime

    if end_year is None:
        end_year = datetime.date.today().year

    if roi is None:
        # roi = ee.Geometry.Polygon(
        #     [[[-180, -80],
        #       [-180, 80],
        #         [180, 80],
        #         [180, -80],
        #         [-180, -80]]], None, False)
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )

    if not isinstance(roi, ee.Geometry):
        try:
            roi = roi.geometry()
        except Exception as e:
            print("Could not convert the provided roi to ee.Geometry")
            print(e)
            return

    # Adjusts longitudes less than -180 degrees or greater than 180 degrees.
    geojson = ee_to_geojson(roi)
    geojson = adjust_longitude(geojson)
    roi = ee.Geometry(geojson)

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    if frequency not in feq_dict:
        raise ValueError("frequency must be year, quarter, or month.")

    ################################################################################
    # Setup vars to get dates.
    if (
        isinstance(start_year, int)
        and (start_year >= 2015)
        and (start_year <= get_current_year())
    ):
        pass
    else:
        print("The start year must be an integer >= 2015.")
        return

    if (
        isinstance(end_year, int)
        and (end_year >= 2015)
        and (end_year <= get_current_year())
    ):
        pass
    else:
        print(f"The end year must be an integer <= {get_current_year()}.")
        return

    if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
        r"[0-9]{2}-[0-9]{2}", end_date
    ):
        pass
    else:
        print("The start data and end date must be month-day, such as 06-10, 09-20")
        return

    try:
        datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
        datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
    except Exception as e:
        raise ValueError("The input dates are invalid.")

    try:
        start_test = datetime.datetime(
            int(start_year), int(start_date[:2]), int(start_date[3:5])
        )
        end_test = datetime.datetime(
            int(end_year), int(end_date[:2]), int(end_date[3:5])
        )
        if start_test > end_test:
            raise ValueError("Start date must be prior to end date")
    except Exception as e:
        raise Exception(e)

    def days_between(d1, d2):
        d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
        d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
        return abs((d2 - d1).days)

    n_days = days_between(
        str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
    )
    start_month = int(start_date[:2])
    start_day = int(start_date[3:5])
    # start_date = str(start_year) + "-" + start_date
    # end_date = str(end_year) + "-" + end_date

    # # Define a collection filter by date, bounds, and quality.
    # def colFilter(col, aoi):  # , startDate, endDate):
    #     return(col.filterBounds(aoi))

    # Get Sentinel 2 collections, both Level-1C (top of atmophere) and Level-2A (surface reflectance)
    MSILCcol = ee.ImageCollection("COPERNICUS/S2")
    MSI2Acol = ee.ImageCollection("COPERNICUS/S2_SR")

    # Define a collection filter by date, bounds, and quality.
    def colFilter(col, roi, start_date, end_date):
        return col.filterBounds(roi).filterDate(start_date, end_date)
        # .filter('CLOUD_COVER < 5')
        # .filter('GEOMETRIC_RMSE_MODEL < 15')
        # .filter('IMAGE_QUALITY == 9 || IMAGE_QUALITY_OLI == 9'))

    # Function to get and rename bands of interest from MSI
    def renameMSI(img):
        return img.select(
            ["B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12", "QA60"],
            [
                "Blue",
                "Green",
                "Red",
                "Red Edge 1",
                "Red Edge 2",
                "Red Edge 3",
                "NIR",
                "Red Edge 4",
                "SWIR1",
                "SWIR2",
                "QA60",
            ],
        )

    # Add NBR for LandTrendr segmentation.

    def calcNbr(img):
        return img.addBands(
            img.normalizedDifference(["NIR", "SWIR2"]).multiply(-10000).rename("NBR")
        ).int16()

    # Define function to mask out clouds and cloud shadows in images.
    # Use CFmask band included in USGS Landsat SR image product.

    def fmask(img):
        cloudOpaqueBitMask = 1 << 10
        cloudCirrusBitMask = 1 << 11
        qa = img.select("QA60")
        mask = (
            qa.bitwiseAnd(cloudOpaqueBitMask)
            .eq(0)
            .And(qa.bitwiseAnd(cloudCirrusBitMask).eq(0))
        )
        return img.updateMask(mask)

    # Define function to prepare MSI images.
    def prepMSI(img):
        orig = img
        img = renameMSI(img)
        if apply_fmask:
            img = fmask(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Get annual median collection.
    def getAnnualComp(y):
        startDate = ee.Date.fromYMD(
            ee.Number(y), ee.Number(start_month), ee.Number(start_day)
        )
        endDate = startDate.advance(ee.Number(n_days), "day")

        # Filter collections and prepare them for merging.
        MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
        MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)

        # Merge the collections.
        col = MSILCcoly.merge(MSI2Acoly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "year": y,
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get quarterly median collection.
    def getQuarterlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(3, "month")

        # Filter collections and prepare them for merging.
        MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
        MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)

        # Merge the collections.
        col = MSILCcoly.merge(MSI2Acoly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get monthly median collection.
    def getMonthlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(1, "month")

        # Filter collections and prepare them for merging.
        MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
        MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)

        # Merge the collections.
        col = MSILCcoly.merge(MSI2Acoly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    ################################################################################

    # Make a dummy image for missing years.
    bandNames = ee.List(
        [
            "Blue",
            "Green",
            "Red",
            "Red Edge 1",
            "Red Edge 2",
            "Red Edge 3",
            "NIR",
            "Red Edge 4",
            "SWIR1",
            "SWIR2",
            "QA60",
        ]
    )
    fillerValues = ee.List.repeat(0, bandNames.size())
    dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()

    # ################################################################################
    # # Get a list of years
    # years = ee.List.sequence(start_year, end_year)

    # ################################################################################
    # # Make list of annual image composites.
    # imgList = years.map(getAnnualComp)

    if frequency == "year":
        years = ee.List.sequence(start_year, end_year)
        imgList = years.map(getAnnualComp)
    elif frequency == "quarter":
        quarters = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "quarter", date_format
        )
        imgList = quarters.map(getQuarterlyComp)
    elif frequency == "month":
        months = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "month", date_format
        )
        imgList = months.map(getMonthlyComp)

    # Convert image composite list to collection
    imgCol = ee.ImageCollection.fromImages(imgList)

    imgCol = imgCol.map(lambda img: img.clip(roi))

    return imgCol

set_proxy(port=1080, ip='http://127.0.0.1', timeout=300)

Sets proxy if needed. This is only needed for countries where Google services are not available.

Parameters:

Name Type Description Default
port int

The proxy port number. Defaults to 1080.

1080
ip str

The IP address. Defaults to 'http://127.0.0.1'.

'http://127.0.0.1'
timeout int

The timeout in seconds. Defaults to 300.

300
Source code in geemap/common.py
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
def set_proxy(port=1080, ip="http://127.0.0.1", timeout=300):
    """Sets proxy if needed. This is only needed for countries where Google services are not available.

    Args:
        port (int, optional): The proxy port number. Defaults to 1080.
        ip (str, optional): The IP address. Defaults to 'http://127.0.0.1'.
        timeout (int, optional): The timeout in seconds. Defaults to 300.
    """
    try:
        if not ip.startswith("http"):
            ip = "http://" + ip
        proxy = "{}:{}".format(ip, port)

        os.environ["HTTP_PROXY"] = proxy
        os.environ["HTTPS_PROXY"] = proxy

        a = requests.get("https://earthengine.google.com/", timeout=timeout)

        if a.status_code != 200:
            print(
                "Failed to connect to Earth Engine. Please double check the port number and ip address."
            )

    except Exception as e:
        print(e)

setupJS()

Install npm packages for Earth Engine JavaScript libraries. Based on the Open Earth Engine Library (OEEL).

Source code in geemap/common.py
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
def setupJS():
    """Install npm packages for Earth Engine JavaScript libraries. Based on the Open Earth Engine Library (OEEL)."""
    try:
        os.system("npm install @google/earthengine")
        os.system("npm install zeromq@6.0.0-beta.6")
        os.system("npm install request")
    except Exception as e:
        raise Exception(
            f"Error installing npm packages: {e}. Make sure that you have installed nodejs. See https://nodejs.org/"
        )

show_html(html)

Shows HTML within Jupyter notebook.

Parameters:

Name Type Description Default
html str

File path or HTML string.

required

Raises:

Type Description
FileNotFoundError

If the file does not exist.

Returns:

Type Description

ipywidgets.HTML: HTML widget.

Source code in geemap/common.py
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
def show_html(html):
    """Shows HTML within Jupyter notebook.

    Args:
        html (str): File path or HTML string.

    Raises:
        FileNotFoundError: If the file does not exist.

    Returns:
        ipywidgets.HTML: HTML widget.
    """
    if os.path.exists(html):
        with open(html, "r") as f:
            content = f.read()

        widget = widgets.HTML(value=content)
        return widget
    else:
        try:
            widget = widgets.HTML(value=html)
            return widget
        except Exception as e:
            raise Exception(e)

show_image(img_path, width=None, height=None)

Shows an image within Jupyter notebook.

Parameters:

Name Type Description Default
img_path str

The image file path.

required
width int

Width of the image in pixels. Defaults to None.

None
height int

Height of the image in pixels. Defaults to None.

None
Source code in geemap/common.py
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
def show_image(img_path, width=None, height=None):
    """Shows an image within Jupyter notebook.

    Args:
        img_path (str): The image file path.
        width (int, optional): Width of the image in pixels. Defaults to None.
        height (int, optional): Height of the image in pixels. Defaults to None.

    """
    from IPython.display import display

    try:
        out = widgets.Output()
        # layout={'border': '1px solid black'})
        # layout={'border': '1px solid black', 'width': str(width + 20) + 'px', 'height': str(height + 10) + 'px'},)
        out.outputs = ()
        display(out)
        with out:
            if isinstance(img_path, str) and img_path.startswith("http"):
                file_path = download_file(img_path)
            else:
                file_path = img_path
            file = open(file_path, "rb")
            image = file.read()
            if (width is None) and (height is None):
                display(widgets.Image(value=image))
            elif (width is not None) and (height is not None):
                display(widgets.Image(value=image, width=width, height=height))
            else:
                print("You need set both width and height.")
                return
    except Exception as e:
        print(e)

show_youtube(id='h0pz3S6Tvx0')

Displays a YouTube video within Jupyter notebooks.

Parameters:

Name Type Description Default
id str

Unique ID of the video. Defaults to 'h0pz3S6Tvx0'.

'h0pz3S6Tvx0'
Source code in geemap/common.py
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
def show_youtube(id="h0pz3S6Tvx0"):
    """Displays a YouTube video within Jupyter notebooks.

    Args:
        id (str, optional): Unique ID of the video. Defaults to 'h0pz3S6Tvx0'.

    """
    from IPython.display import YouTubeVideo, display

    if "/" in id:
        id = id.split("/")[-1]

    try:
        out = widgets.Output(layout={"width": "815px"})
        # layout={'border': '1px solid black', 'width': '815px'})
        out.outputs = ()
        display(out)
        with out:
            display(YouTubeVideo(id, width=800, height=450))
    except Exception as e:
        print(e)

shp_to_ee(in_shp, **kwargs)

Converts a shapefile to Earth Engine objects. Note that the CRS of the shapefile must be EPSG:4326

Parameters:

Name Type Description Default
in_shp str

File path to a shapefile.

required

Returns:

Name Type Description
object

Earth Engine objects representing the shapefile.

Source code in geemap/common.py
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
def shp_to_ee(in_shp, **kwargs):
    """Converts a shapefile to Earth Engine objects. Note that the CRS of the shapefile must be EPSG:4326

    Args:
        in_shp (str): File path to a shapefile.

    Returns:
        object: Earth Engine objects representing the shapefile.
    """
    # ee_initialize()
    try:
        if "encoding" in kwargs:
            json_data = shp_to_geojson(in_shp, encoding=kwargs.pop("encoding"))
        else:
            json_data = shp_to_geojson(in_shp)
        ee_object = geojson_to_ee(json_data)
        return ee_object
    except Exception as e:
        print(e)

shp_to_gdf(in_shp, **kwargs)

Converts a shapefile to Geopandas dataframe.

Parameters:

Name Type Description Default
in_shp str

File path to the input shapefile.

required

Raises:

Type Description
FileNotFoundError

The provided shp could not be found.

Returns:

Type Description

gpd.GeoDataFrame: geopandas.GeoDataFrame

Source code in geemap/common.py
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
def shp_to_gdf(in_shp, **kwargs):
    """Converts a shapefile to Geopandas dataframe.

    Args:
        in_shp (str): File path to the input shapefile.

    Raises:
        FileNotFoundError: The provided shp could not be found.

    Returns:
        gpd.GeoDataFrame: geopandas.GeoDataFrame
    """

    warnings.filterwarnings("ignore")

    in_shp = os.path.abspath(in_shp)
    if not os.path.exists(in_shp):
        raise FileNotFoundError("The provided shp could not be found.")

    check_package(name="geopandas", URL="https://geopandas.org")

    import geopandas as gpd

    try:
        return gpd.read_file(in_shp, **kwargs)
    except Exception as e:
        raise Exception(e)

shp_to_geojson(in_shp, filename=None, **kwargs)

Converts a shapefile to GeoJSON.

Parameters:

Name Type Description Default
in_shp str

File path of the input shapefile.

required
filename str

File path of the output GeoJSON. Defaults to None.

None

Returns:

Name Type Description
object

The json object representing the shapefile.

Source code in geemap/common.py
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
def shp_to_geojson(in_shp, filename=None, **kwargs):
    """Converts a shapefile to GeoJSON.

    Args:
        in_shp (str): File path of the input shapefile.
        filename (str, optional): File path of the output GeoJSON. Defaults to None.

    Returns:
        object: The json object representing the shapefile.
    """
    try:
        import shapefile

        # from datetime import date

        in_shp = os.path.abspath(in_shp)

        if filename is not None:
            ext = os.path.splitext(filename)[1]
            print(ext)
            if ext.lower() not in [".json", ".geojson"]:
                raise TypeError("The output file extension must the .json or .geojson.")

            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))

        if not is_GCS(in_shp):
            try:
                import geopandas as gpd

            except Exception:
                raise ImportError(
                    "GeoPandas is required to perform reprojection of the data. See https://geopandas.org/install.html"
                )

            try:
                in_gdf = gpd.read_file(in_shp)
                out_gdf = in_gdf.to_crs(epsg="4326")
                out_shp = in_shp.replace(".shp", "_gcs.shp")
                out_gdf.to_file(out_shp)
                in_shp = out_shp
            except Exception as e:
                raise Exception(e)

        if "encoding" in kwargs:
            reader = shapefile.Reader(in_shp, encoding=kwargs.pop("encoding"))
        else:
            reader = shapefile.Reader(in_shp)
        out_dict = reader.__geo_interface__
        # fields = reader.fields[1:]
        # field_names = [field[0] for field in fields]
        # # pyShp returns dates as `datetime.date` or as `bytes` when they are empty
        # # This is not JSON compatible, so we keep track of them to convert them to str
        # date_fields_names = [field[0] for field in fields if field[1] == "D"]
        # buffer = []
        # for sr in reader.shapeRecords():
        #     atr = dict(zip(field_names, sr.record))
        #     for date_field in date_fields_names:
        #         value = atr[date_field]
        #         # convert date to string, similar to pyShp writing
        #         # https://github.com/GeospatialPython/pyshp/blob/69c60f6d07c329f7d3ac2cba79bc03643bd424d8/shapefile.py#L1814
        #         if isinstance(value, date):
        #             value = "{:04d}{:02d}{:02d}".format(
        #                 value.year, value.month, value.day
        #             )
        #         elif not value:  # empty bytes string
        #             value = "0" * 8  # QGIS NULL for date type
        #         atr[date_field] = value
        #     geom = sr.shape.__geo_interface__
        #     buffer.append(dict(type="Feature", geometry=geom, properties=atr))

        # out_dict = {"type": "FeatureCollection", "features": buffer}

        if filename is not None:
            # from json import dumps

            with open(filename, "w") as geojson:
                geojson.write(json.dumps(out_dict, indent=2) + "\n")
        else:
            return out_dict

    except Exception as e:
        raise Exception(e)

st_map_center(lat, lon)

Returns the map center coordinates for a given latitude and longitude. If the system variable 'map_center' exists, it is used. Otherwise, the default is returned.

Parameters:

Name Type Description Default
lat float

Latitude.

required
lon float

Longitude.

required

Raises:

Type Description
Exception

If streamlit is not installed.

Returns:

Name Type Description
list

The map center coordinates.

Source code in geemap/foliumap.py
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
def st_map_center(lat, lon):
    """Returns the map center coordinates for a given latitude and longitude. If the system variable 'map_center' exists, it is used. Otherwise, the default is returned.

    Args:
        lat (float): Latitude.
        lon (float): Longitude.

    Raises:
        Exception: If streamlit is not installed.

    Returns:
        list: The map center coordinates.
    """
    try:
        import streamlit as st

        if "map_center" in st.session_state:
            return st.session_state["map_center"]
        else:
            return [lat, lon]

    except Exception as e:
        raise Exception(e)

st_save_bounds(st_component)

Saves the map bounds to the session state.

Parameters:

Name Type Description Default
map Map

The map to save the bounds from.

required
Source code in geemap/foliumap.py
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
def st_save_bounds(st_component):
    """Saves the map bounds to the session state.

    Args:
        map (folium.folium.Map): The map to save the bounds from.
    """
    try:
        import streamlit as st

        if st_component is not None:
            bounds = st_component["bounds"]
            south = bounds["_southWest"]["lat"]
            west = bounds["_southWest"]["lng"]
            north = bounds["_northEast"]["lat"]
            east = bounds["_northEast"]["lng"]

            bounds = [[south, west], [north, east]]
            center = [south + (north - south) / 2, west + (east - west) / 2]

            st.session_state["map_bounds"] = bounds
            st.session_state["map_center"] = center
    except Exception as e:
        raise Exception(e)

stac_assets(url=None, collection=None, item=None, titiler_endpoint=None, timeout=300, **kwargs)

Get all assets of a STAC item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A list of assets.

Source code in geemap/common.py
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
def stac_assets(
    url=None, collection=None, item=None, titiler_endpoint=None, timeout=300, **kwargs
):
    """Get all assets of a STAC item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A list of assets.
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/assets", params=kwargs, timeout=timeout
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_assets(), params=kwargs, timeout=timeout
        ).json()

    return r

stac_bands(url=None, collection=None, item=None, titiler_endpoint=None, timeout=300, **kwargs)

Get band names of a single SpatialTemporal Asset Catalog (STAC) item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A list of band names

Source code in geemap/common.py
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
def stac_bands(
    url=None, collection=None, item=None, titiler_endpoint=None, timeout=300, **kwargs
):
    """Get band names of a single SpatialTemporal Asset Catalog (STAC) item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A list of band names
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/assets", params=kwargs, timeout=timeout
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_assets(), params=kwargs, timeout=timeout
        ).json()

    return r

stac_bounds(url=None, collection=None, item=None, titiler_endpoint=None, timeout=300, **kwargs)

Get the bounding box of a single SpatialTemporal Asset Catalog (STAC) item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A list of values representing [left, bottom, right, top]

Source code in geemap/common.py
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
def stac_bounds(
    url=None, collection=None, item=None, titiler_endpoint=None, timeout=300, **kwargs
):
    """Get the bounding box of a single SpatialTemporal Asset Catalog (STAC) item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A list of values representing [left, bottom, right, top]
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/bounds", params=kwargs, timeout=timeout
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_bounds(), params=kwargs, timeout=timeout
        ).json()

    bounds = r["bounds"]
    return bounds

stac_center(url=None, collection=None, item=None, titiler_endpoint=None, **kwargs)

Get the centroid of a single SpatialTemporal Asset Catalog (STAC) item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None

Returns:

Name Type Description
tuple

A tuple representing (longitude, latitude)

Source code in geemap/common.py
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
def stac_center(url=None, collection=None, item=None, titiler_endpoint=None, **kwargs):
    """Get the centroid of a single SpatialTemporal Asset Catalog (STAC) item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

    Returns:
        tuple: A tuple representing (longitude, latitude)
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if isinstance(url, str):
        url = get_direct_url(url)
    bounds = stac_bounds(url, collection, item, titiler_endpoint, **kwargs)
    center = ((bounds[0] + bounds[2]) / 2, (bounds[1] + bounds[3]) / 2)  # (lon, lat)
    return center

stac_info(url=None, collection=None, item=None, assets=None, titiler_endpoint=None, timeout=300, **kwargs)

Get band info of a STAC item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
assets str | list

The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A dictionary of band info.

Source code in geemap/common.py
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
def stac_info(
    url=None,
    collection=None,
    item=None,
    assets=None,
    titiler_endpoint=None,
    timeout=300,
    **kwargs,
):
    """Get band info of a STAC item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A dictionary of band info.
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item
    if assets is not None:
        kwargs["assets"] = assets

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/info", params=kwargs, timeout=timeout
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_info(), params=kwargs, timeout=timeout
        ).json()

    return r

stac_info_geojson(url=None, collection=None, item=None, assets=None, titiler_endpoint=None, timeout=300, **kwargs)

Get band info of a STAC item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
assets str | list

The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A dictionary of band info.

Source code in geemap/common.py
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
def stac_info_geojson(
    url=None,
    collection=None,
    item=None,
    assets=None,
    titiler_endpoint=None,
    timeout=300,
    **kwargs,
):
    """Get band info of a STAC item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A dictionary of band info.
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item
    if assets is not None:
        kwargs["assets"] = assets

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/info.geojson", params=kwargs, timeout=timeout
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_info_geojson(), params=kwargs, timeout=timeout
        ).json()

    return r

stac_pixel_value(lon, lat, url=None, collection=None, item=None, assets=None, titiler_endpoint=None, verbose=True, timeout=300, **kwargs)

Get pixel value from STAC assets.

Parameters:

Name Type Description Default
lon float

Longitude of the pixel.

required
lat float

Latitude of the pixel.

required
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
assets str | list

The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
verbose bool

Print out the error message. Defaults to True.

True
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A dictionary of pixel values for each asset.

Source code in geemap/common.py
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
def stac_pixel_value(
    lon,
    lat,
    url=None,
    collection=None,
    item=None,
    assets=None,
    titiler_endpoint=None,
    verbose=True,
    timeout=300,
    **kwargs,
):
    """Get pixel value from STAC assets.

    Args:
        lon (float): Longitude of the pixel.
        lat (float): Latitude of the pixel.
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        verbose (bool, optional): Print out the error message. Defaults to True.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A dictionary of pixel values for each asset.
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item

    if assets is None:
        assets = stac_assets(
            url=url,
            collection=collection,
            item=item,
            titiler_endpoint=titiler_endpoint,
        )
        assets = ",".join(assets)
    kwargs["assets"] = assets

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/{lon},{lat}", params=kwargs, timeout=timeout
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_pixel_value(lon, lat),
            params=kwargs,
            timeout=timeout,
        ).json()

    if "detail" in r:
        if verbose:
            print(r["detail"])
        return None
    else:
        values = [v[0] for v in r["values"]]
        result = dict(zip(assets.split(","), values))
        return result

stac_stats(url=None, collection=None, item=None, assets=None, titiler_endpoint=None, timeout=300, **kwargs)

Get band statistics of a STAC item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
assets str | list

The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
list

A dictionary of band statistics.

Source code in geemap/common.py
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
def stac_stats(
    url=None,
    collection=None,
    item=None,
    assets=None,
    titiler_endpoint=None,
    timeout=300,
    **kwargs,
):
    """Get band statistics of a STAC item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        list: A dictionary of band statistics.
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item
    if assets is not None:
        kwargs["assets"] = assets

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)
    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/statistics", params=kwargs, timeout=timeout
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_statistics(), params=kwargs, timeout=timeout
        ).json()

    return r

stac_tile(url=None, collection=None, item=None, assets=None, bands=None, titiler_endpoint=None, timeout=300, **kwargs)

Get a tile layer from a single SpatialTemporal Asset Catalog (STAC) item.

Parameters:

Name Type Description Default
url str

HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json

None
collection str

The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.

None
item str

The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.

None
assets str | list

The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].

None
bands list

A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"]

None
titiler_endpoint str

Titiler endpoint, e.g., "https://titiler.xyz", "https://planetarycomputer.microsoft.com/api/data/v1", "planetary-computer", "pc". Defaults to None.

None
timeout int

Timeout in seconds. Defaults to 300.

300

Returns:

Name Type Description
str

Returns the STAC Tile layer URL.

Source code in geemap/common.py
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
def stac_tile(
    url=None,
    collection=None,
    item=None,
    assets=None,
    bands=None,
    titiler_endpoint=None,
    timeout=300,
    **kwargs,
):
    """Get a tile layer from a single SpatialTemporal Asset Catalog (STAC) item.

    Args:
        url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
        collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
        item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
        assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
        bands (list): A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"]
        titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "https://planetarycomputer.microsoft.com/api/data/v1", "planetary-computer", "pc". Defaults to None.
        timeout (int, optional): Timeout in seconds. Defaults to 300.

    Returns:
        str: Returns the STAC Tile layer URL.
    """

    if url is None and collection is None:
        raise ValueError("Either url or collection must be specified.")

    if collection is not None and titiler_endpoint is None:
        titiler_endpoint = "planetary-computer"

    if url is not None:
        url = get_direct_url(url)
        kwargs["url"] = url
    if collection is not None:
        kwargs["collection"] = collection
    if item is not None:
        kwargs["item"] = item

    if "palette" in kwargs:
        kwargs["colormap_name"] = kwargs["palette"]
        del kwargs["palette"]

    if isinstance(bands, list) and len(set(bands)) == 1:
        bands = bands[0]

    if isinstance(assets, list) and len(set(assets)) == 1:
        assets = assets[0]

    titiler_endpoint = check_titiler_endpoint(titiler_endpoint)

    if "expression" in kwargs and ("asset_as_band" not in kwargs):
        kwargs["asset_as_band"] = True

    if isinstance(titiler_endpoint, PlanetaryComputerEndpoint):
        if isinstance(bands, str):
            bands = bands.split(",")
        if isinstance(assets, str):
            assets = assets.split(",")
        if assets is None and (bands is not None):
            assets = bands
        else:
            kwargs["bidx"] = bands

        kwargs["assets"] = assets

        # if ("expression" in kwargs) and ("rescale" not in kwargs):
        #     stats = stac_stats(
        #         collection=collection,
        #         item=item,
        #         expression=kwargs["expression"],
        #         titiler_endpoint=titiler_endpoint,
        #     )
        #     kwargs[
        #         "rescale"
        #     ] = f"{stats[0]['percentile_2']},{stats[0]['percentile_98']}"

        # if ("asset_expression" in kwargs) and ("rescale" not in kwargs):
        #     stats = stac_stats(
        #         collection=collection,
        #         item=item,
        #         expression=kwargs["asset_expression"],
        #         titiler_endpoint=titiler_endpoint,
        #     )
        #     kwargs[
        #         "rescale"
        #     ] = f"{stats[0]['percentile_2']},{stats[0]['percentile_98']}"

        if (
            (assets is not None)
            and ("asset_expression" not in kwargs)
            and ("expression" not in kwargs)
            and ("rescale" not in kwargs)
        ):
            stats = stac_stats(
                collection=collection,
                item=item,
                assets=assets,
                titiler_endpoint=titiler_endpoint,
            )
            if "detail" not in stats:
                try:
                    percentile_2 = min([stats[s]["percentile_2"] for s in stats])
                    percentile_98 = max([stats[s]["percentile_98"] for s in stats])
                except:
                    percentile_2 = min(
                        [
                            stats[s][list(stats[s].keys())[0]]["percentile_2"]
                            for s in stats
                        ]
                    )
                    percentile_98 = max(
                        [
                            stats[s][list(stats[s].keys())[0]]["percentile_98"]
                            for s in stats
                        ]
                    )
                kwargs["rescale"] = f"{percentile_2},{percentile_98}"
            else:
                print(stats["detail"])  # When operation times out.

    else:
        if isinstance(bands, str):
            bands = bands.split(",")
        if isinstance(assets, str):
            assets = assets.split(",")

        if assets is None and (bands is not None):
            assets = bands
        else:
            kwargs["asset_bidx"] = bands
        kwargs["assets"] = assets

    TileMatrixSetId = "WebMercatorQuad"
    if "TileMatrixSetId" in kwargs.keys():
        TileMatrixSetId = kwargs["TileMatrixSetId"]
        kwargs.pop("TileMatrixSetId")

    if isinstance(titiler_endpoint, str):
        r = requests.get(
            f"{titiler_endpoint}/stac/{TileMatrixSetId}/tilejson.json",
            params=kwargs,
            timeout=timeout,
        ).json()
    else:
        r = requests.get(
            titiler_endpoint.url_for_stac_item(), params=kwargs, timeout=timeout
        ).json()

    return r["tiles"][0]

str_to_num(in_str)

Converts a string to an ee.Number.

Parameters:

Name Type Description Default
in_str str

The string to convert to a number.

required

Returns:

Name Type Description
object

ee.Number

Source code in geemap/common.py
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
def str_to_num(in_str):
    """Converts a string to an ee.Number.

    Args:
        in_str (str): The string to convert to a number.

    Returns:
        object: ee.Number
    """
    return ee.Number.parse(str)

summarize_by_group(collection, column, group, group_name, stats_type, return_dict=True)

Calculates summary statistics by group.

Parameters:

Name Type Description Default
collection object

The input feature collection

required
column str

The value column to calculate summary statistics.

required
group str

The name of the group column.

required
group_name str

The new group name to use.

required
stats_type str

The type of summary statistics.

required
return_dict bool

Whether to return the result as a dictionary.

True

Returns:

Name Type Description
object

ee.Dictionary or ee.List

Source code in geemap/common.py
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
def summarize_by_group(
    collection, column, group, group_name, stats_type, return_dict=True
):
    """Calculates summary statistics by group.

    Args:
        collection (object): The input feature collection
        column (str): The value column to calculate summary statistics.
        group (str): The name of the group column.
        group_name (str): The new group name to use.
        stats_type (str): The type of summary statistics.
        return_dict (bool): Whether to return the result as a dictionary.

    Returns:
        object: ee.Dictionary or ee.List
    """
    stats_type = stats_type.lower()
    allowed_stats = ["min", "max", "mean", "median", "sum", "stdDev", "variance"]
    if stats_type not in allowed_stats:
        print(
            "The stats type must be one of the following: {}".format(
                ",".join(allowed_stats)
            )
        )
        return

    stats_dict = {
        "min": ee.Reducer.min(),
        "max": ee.Reducer.max(),
        "mean": ee.Reducer.mean(),
        "median": ee.Reducer.median(),
        "sum": ee.Reducer.sum(),
        "stdDev": ee.Reducer.stdDev(),
        "variance": ee.Reducer.variance(),
    }

    selectors = [column, group]
    stats = collection.reduceColumns(
        **{
            "selectors": selectors,
            "reducer": stats_dict[stats_type].group(
                **{"groupField": 1, "groupName": group_name}
            ),
        }
    )
    results = ee.List(ee.Dictionary(stats).get("groups"))
    if return_dict:
        keys = results.map(lambda k: ee.Dictionary(k).get(group_name))
        values = results.map(lambda v: ee.Dictionary(v).get(stats_type))
        results = ee.Dictionary.fromLists(keys, values)

    return results

summary_stats(collection, column)

Aggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.

Parameters:

Name Type Description Default
collection FeatureCollection

The input feature collection to calculate summary statistics.

required
column str

The name of the column to calculate summary statistics.

required

Returns:

Name Type Description
dict

The dictionary containing information about the summary statistics.

Source code in geemap/common.py
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
def summary_stats(collection, column):
    """Aggregates over a given property of the objects in a collection, calculating the sum, min, max, mean,
    sample standard deviation, sample variance, total standard deviation and total variance of the selected property.

    Args:
        collection (FeatureCollection): The input feature collection to calculate summary statistics.
        column (str): The name of the column to calculate summary statistics.

    Returns:
        dict: The dictionary containing information about the summary statistics.
    """
    stats = collection.aggregate_stats(column).getInfo()
    return eval(str(stats))

system_fonts(show_full_path=False)

Gets a list of system fonts

1
2
3
4
# Common font locations:
# Linux: /usr/share/fonts/TTF/
# Windows: C:/Windows/Fonts
# macOS:  System > Library > Fonts

Parameters:

Name Type Description Default
show_full_path bool

Whether to show the full path of each system font. Defaults to False.

False

Returns:

Name Type Description
list

A list of system fonts.

Source code in geemap/common.py
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
def system_fonts(show_full_path=False):
    """Gets a list of system fonts

        # Common font locations:
        # Linux: /usr/share/fonts/TTF/
        # Windows: C:/Windows/Fonts
        # macOS:  System > Library > Fonts

    Args:
        show_full_path (bool, optional): Whether to show the full path of each system font. Defaults to False.

    Returns:
        list: A list of system fonts.
    """
    try:
        import matplotlib.font_manager

        font_list = matplotlib.font_manager.findSystemFonts(
            fontpaths=None, fontext="ttf"
        )
        font_list.sort()

        font_names = [os.path.basename(f) for f in font_list]
        font_names.sort()

        if show_full_path:
            return font_list
        else:
            return font_names

    except Exception as e:
        print(e)

temp_file_path(extension)

Returns a temporary file path.

Parameters:

Name Type Description Default
extension str

The file extension.

required

Returns:

Name Type Description
str str

The temporary file path.

Source code in geemap/coreutils.py
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
def temp_file_path(extension: str) -> str:
    """Returns a temporary file path.

    Args:
        extension (str): The file extension.

    Returns:
        str: The temporary file path.
    """

    import tempfile
    import uuid

    if not extension.startswith("."):
        extension = "." + extension
    file_id = str(uuid.uuid4())
    file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{extension}")

    return file_path

Extracts footer from the notebook template.

Parameters:

Name Type Description Default
in_template str

Input notebook template file path.

required

Returns:

Name Type Description
list

List of lines.

Source code in geemap/conversion.py
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
def template_footer(in_template):
    """Extracts footer from the notebook template.

    Args:
        in_template (str): Input notebook template file path.

    Returns:
        list: List of lines.
    """
    footer = []
    template_lines = []
    footer_start_index = 0

    with open(in_template, encoding="utf-8") as f:
        template_lines = f.readlines()
        for index, line in enumerate(template_lines):
            if "## Display the interactive map" in line:
                footer_start_index = index - 2

    footer = ["\n"] + template_lines[footer_start_index:]

    return footer

template_header(in_template)

Extracts header from the notebook template.

Parameters:

Name Type Description Default
in_template str

Input notebook template file path.

required

Returns:

Name Type Description
list

List of lines.

Source code in geemap/conversion.py
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
def template_header(in_template):
    """Extracts header from the notebook template.

    Args:
        in_template (str): Input notebook template file path.

    Returns:
        list: List of lines.
    """
    header = []
    template_lines = []
    header_end_index = 0

    with open(in_template, encoding="utf-8") as f:
        template_lines = f.readlines()
        for index, line in enumerate(template_lines):
            if "## Add Earth Engine Python script" in line:
                header_end_index = index + 6

    header = template_lines[:header_end_index]

    return header

tif_to_jp2(filename, output, creationOptions=None)

Converts a GeoTIFF to JPEG2000.

Parameters:

Name Type Description Default
filename str

The path to the GeoTIFF file.

required
output str

The path to the output JPEG2000 file.

required
creationOptions list

A list of creation options for the JPEG2000 file. See https://gdal.org/drivers/raster/jp2openjpeg.html. For example, to specify the compression ratio, use ["QUALITY=20"]. A value of 20 means the file will be 20% of the size in comparison to uncompressed data.

None
Source code in geemap/common.py
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
def tif_to_jp2(filename, output, creationOptions=None):
    """Converts a GeoTIFF to JPEG2000.

    Args:
        filename (str): The path to the GeoTIFF file.
        output (str): The path to the output JPEG2000 file.
        creationOptions (list): A list of creation options for the JPEG2000 file. See
            https://gdal.org/drivers/raster/jp2openjpeg.html. For example, to specify the compression
            ratio, use ``["QUALITY=20"]``. A value of 20 means the file will be 20% of the size in comparison
            to uncompressed data.

    """

    from osgeo import gdal

    gdal.UseExceptions()

    if not os.path.exists(filename):
        raise Exception(f"File {filename} does not exist")

    if not output.endswith(".jp2"):
        output += ".jp2"

    in_ds = gdal.Open(filename)
    gdal.Translate(output, in_ds, format="JP2OpenJPEG", creationOptions=creationOptions)
    in_ds = None

tms_to_geotiff(output, bbox, zoom=None, resolution=None, source='OpenStreetMap', crs='EPSG:3857', to_cog=False, quiet=False, **kwargs)

Download TMS tiles and convert them to a GeoTIFF. The source is adapted from https://github.com/gumblex/tms2geotiff. Credits to the GitHub user @gumblex.

Parameters:

Name Type Description Default
output str

The output GeoTIFF file.

required
bbox list

The bounding box [minx, miny, maxx, maxy], e.g., [-122.5216, 37.733, -122.3661, 37.8095]

required
zoom int

The map zoom level. Defaults to None.

None
resolution float

The resolution in meters. Defaults to None.

None
source str

The tile source. It can be one of the following: "OPENSTREETMAP", "ROADMAP", "SATELLITE", "TERRAIN", "HYBRID", or an HTTP URL. Defaults to "OpenStreetMap".

'OpenStreetMap'
crs str

The coordinate reference system. Defaults to "EPSG:3857".

'EPSG:3857'
to_cog bool

Convert to Cloud Optimized GeoTIFF. Defaults to False.

False
quiet bool

Suppress output. Defaults to False.

False
**kwargs

Additional arguments to pass to gdal.GetDriverByName("GTiff").Create().

{}
Source code in geemap/common.py
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
def tms_to_geotiff(
    output,
    bbox,
    zoom=None,
    resolution=None,
    source="OpenStreetMap",
    crs="EPSG:3857",
    to_cog=False,
    quiet=False,
    **kwargs,
):
    """Download TMS tiles and convert them to a GeoTIFF. The source is adapted from https://github.com/gumblex/tms2geotiff.
        Credits to the GitHub user @gumblex.

    Args:
        output (str): The output GeoTIFF file.
        bbox (list): The bounding box [minx, miny, maxx, maxy], e.g., [-122.5216, 37.733, -122.3661, 37.8095]
        zoom (int, optional): The map zoom level. Defaults to None.
        resolution (float, optional): The resolution in meters. Defaults to None.
        source (str, optional): The tile source. It can be one of the following: "OPENSTREETMAP", "ROADMAP",
            "SATELLITE", "TERRAIN", "HYBRID", or an HTTP URL. Defaults to "OpenStreetMap".
        crs (str, optional): The coordinate reference system. Defaults to "EPSG:3857".
        to_cog (bool, optional): Convert to Cloud Optimized GeoTIFF. Defaults to False.
        quiet (bool, optional): Suppress output. Defaults to False.
        **kwargs: Additional arguments to pass to gdal.GetDriverByName("GTiff").Create().

    """

    import io
    import math
    import itertools
    import concurrent.futures

    import numpy
    from PIL import Image

    from osgeo import gdal, osr

    gdal.UseExceptions()

    try:
        import httpx

        SESSION = httpx.Client()
    except ImportError:
        import requests

        SESSION = requests.Session()

    xyz_tiles = {
        "OpenStreetMap": {
            "url": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",
            "attribution": "OpenStreetMap",
            "name": "OpenStreetMap",
        },
        "ROADMAP": {
            "url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer/tile/{z}/{y}/{x}",
            "attribution": "Esri",
            "name": "Esri.WorldStreetMap",
        },
        "SATELLITE": {
            "url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}",
            "attribution": "Esri",
            "name": "Esri.WorldImagery",
        },
        "TERRAIN": {
            "url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}",
            "attribution": "Esri",
            "name": "Esri.WorldTopoMap",
        },
        "HYBRID": {
            "url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}",
            "attribution": "Esri",
            "name": "Esri.WorldImagery",
        },
    }

    if isinstance(source, str) and source.upper() in xyz_tiles:
        source = xyz_tiles[source.upper()]["url"]
    elif isinstance(source, str) and source.startswith("http"):
        pass
    else:
        raise ValueError(
            'source must be one of "OpenStreetMap", "ROADMAP", "SATELLITE", "TERRAIN", "HYBRID", or a URL'
        )

    def resolution_to_zoom_level(resolution):
        """
        Convert map resolution in meters to zoom level for Web Mercator (EPSG:3857) tiles.
        """
        # Web Mercator tile size in meters at zoom level 0
        initial_resolution = 156543.03392804097

        # Calculate the zoom level
        zoom_level = math.log2(initial_resolution / resolution)

        return int(zoom_level)

    if isinstance(bbox, list) and len(bbox) == 4:
        west, south, east, north = bbox
    else:
        raise ValueError(
            "bbox must be a list of 4 coordinates in the format of [xmin, ymin, xmax, ymax]"
        )

    if zoom is None and resolution is None:
        raise ValueError("Either zoom or resolution must be provided")
    elif zoom is not None and resolution is not None:
        raise ValueError("Only one of zoom or resolution can be provided")

    if resolution is not None:
        zoom = resolution_to_zoom_level(resolution)

    EARTH_EQUATORIAL_RADIUS = 6378137.0

    Image.MAX_IMAGE_PIXELS = None

    web_mercator = osr.SpatialReference()
    web_mercator.ImportFromEPSG(3857)

    WKT_3857 = web_mercator.ExportToWkt()

    def from4326_to3857(lat, lon):
        xtile = math.radians(lon) * EARTH_EQUATORIAL_RADIUS
        ytile = (
            math.log(math.tan(math.radians(45 + lat / 2.0))) * EARTH_EQUATORIAL_RADIUS
        )
        return (xtile, ytile)

    def deg2num(lat, lon, zoom):
        lat_r = math.radians(lat)
        n = 2**zoom
        xtile = (lon + 180) / 360 * n
        ytile = (1 - math.log(math.tan(lat_r) + 1 / math.cos(lat_r)) / math.pi) / 2 * n
        return (xtile, ytile)

    def is_empty(im):
        extrema = im.getextrema()
        if len(extrema) >= 3:
            if len(extrema) > 3 and extrema[-1] == (0, 0):
                return True
            for ext in extrema[:3]:
                if ext != (0, 0):
                    return False
            return True
        else:
            return extrema[0] == (0, 0)

    def paste_tile(bigim, base_size, tile, corner_xy, bbox):
        if tile is None:
            return bigim
        im = Image.open(io.BytesIO(tile))
        mode = "RGB" if im.mode == "RGB" else "RGBA"
        size = im.size
        if bigim is None:
            base_size[0] = size[0]
            base_size[1] = size[1]
            newim = Image.new(
                mode, (size[0] * (bbox[2] - bbox[0]), size[1] * (bbox[3] - bbox[1]))
            )
        else:
            newim = bigim

        dx = abs(corner_xy[0] - bbox[0])
        dy = abs(corner_xy[1] - bbox[1])
        xy0 = (size[0] * dx, size[1] * dy)
        if mode == "RGB":
            newim.paste(im, xy0)
        else:
            if im.mode != mode:
                im = im.convert(mode)
            if not is_empty(im):
                newim.paste(im, xy0)
        im.close()
        return newim

    def finish_picture(bigim, base_size, bbox, x0, y0, x1, y1):
        xfrac = x0 - bbox[0]
        yfrac = y0 - bbox[1]
        x2 = round(base_size[0] * xfrac)
        y2 = round(base_size[1] * yfrac)
        imgw = round(base_size[0] * (x1 - x0))
        imgh = round(base_size[1] * (y1 - y0))
        retim = bigim.crop((x2, y2, x2 + imgw, y2 + imgh))
        if retim.mode == "RGBA" and retim.getextrema()[3] == (255, 255):
            retim = retim.convert("RGB")
        bigim.close()
        return retim

    def get_tile(url):
        retry = 3
        while 1:
            try:
                r = SESSION.get(url, timeout=60)
                break
            except Exception:
                retry -= 1
                if not retry:
                    raise
        if r.status_code == 404:
            return None
        elif not r.content:
            return None
        r.raise_for_status()
        return r.content

    def draw_tile(
        source, lat0, lon0, lat1, lon1, zoom, filename, quiet=False, **kwargs
    ):
        x0, y0 = deg2num(lat0, lon0, zoom)
        x1, y1 = deg2num(lat1, lon1, zoom)
        x0, x1 = sorted([x0, x1])
        y0, y1 = sorted([y0, y1])
        corners = tuple(
            itertools.product(
                range(math.floor(x0), math.ceil(x1)),
                range(math.floor(y0), math.ceil(y1)),
            )
        )
        totalnum = len(corners)
        futures = []
        with concurrent.futures.ThreadPoolExecutor(5) as executor:
            for x, y in corners:
                futures.append(
                    executor.submit(get_tile, source.format(z=zoom, x=x, y=y))
                )
            bbox = (math.floor(x0), math.floor(y0), math.ceil(x1), math.ceil(y1))
            bigim = None
            base_size = [256, 256]
            for k, (fut, corner_xy) in enumerate(zip(futures, corners), 1):
                bigim = paste_tile(bigim, base_size, fut.result(), corner_xy, bbox)
                if not quiet:
                    print("Downloaded image %d/%d" % (k, totalnum))

        if not quiet:
            print("Saving GeoTIFF. Please wait...")
        img = finish_picture(bigim, base_size, bbox, x0, y0, x1, y1)
        imgbands = len(img.getbands())
        driver = gdal.GetDriverByName("GTiff")

        if "options" not in kwargs:
            kwargs["options"] = [
                "COMPRESS=DEFLATE",
                "PREDICTOR=2",
                "ZLEVEL=9",
                "TILED=YES",
            ]

        gtiff = driver.Create(
            filename,
            img.size[0],
            img.size[1],
            imgbands,
            gdal.GDT_Byte,
            **kwargs,
        )
        xp0, yp0 = from4326_to3857(lat0, lon0)
        xp1, yp1 = from4326_to3857(lat1, lon1)
        pwidth = abs(xp1 - xp0) / img.size[0]
        pheight = abs(yp1 - yp0) / img.size[1]
        gtiff.SetGeoTransform((min(xp0, xp1), pwidth, 0, max(yp0, yp1), 0, -pheight))
        gtiff.SetProjection(WKT_3857)
        for band in range(imgbands):
            array = numpy.array(img.getdata(band), dtype="u8")
            array = array.reshape((img.size[1], img.size[0]))
            band = gtiff.GetRasterBand(band + 1)
            band.WriteArray(array)
        gtiff.FlushCache()

        if not quiet:
            print(f"Image saved to {filename}")
        return img

    try:
        draw_tile(source, south, west, north, east, zoom, output, quiet, **kwargs)
        if crs.upper() != "EPSG:3857":
            reproject(output, output, crs, to_cog=to_cog)
        elif to_cog:
            image_to_cog(output, output)
    except Exception as e:
        raise Exception(e)

to_hex_colors(colors)

Convert a GEE color palette into hexadecimal color codes. Can handle mixed formats.

Parameters:

Name Type Description Default
colors List[Union[str, Tuple[int, int, int]]]

A list of colors in hex or RGB format.

required

Returns:

Type Description
List[str]

List[str]: A list of hex color codes prefixed with #.

Source code in geemap/coreutils.py
444
445
446
447
448
449
450
451
452
453
454
def to_hex_colors(colors: List[Union[str, Tuple[int, int, int]]]) -> List[str]:
    """Convert a GEE color palette into hexadecimal color codes. Can handle mixed formats.

    Args:
        colors (List[Union[str, Tuple[int, int, int]]]): A list of colors in hex or RGB format.

    Returns:
        List[str]: A list of hex color codes prefixed with #.
    """

    return [check_color(c) for c in colors]

update_nb_header(in_file, github_username=None, github_repo=None)

Updates notebook header (binder and Google Colab URLs).

Parameters:

Name Type Description Default
in_file str

The input Jupyter notebook.

required
github_username str

GitHub username. Defaults to None.

None
github_repo str

GitHub repo name. Defaults to None.

None
Source code in geemap/conversion.py
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
def update_nb_header(in_file, github_username=None, github_repo=None):
    """Updates notebook header (binder and Google Colab URLs).

    Args:
        in_file (str): The input Jupyter notebook.
        github_username (str, optional): GitHub username. Defaults to None.
        github_repo (str, optional): GitHub repo name. Defaults to None.
    """
    if github_username is None:
        github_username = "giswqs"
    if github_repo is None:
        github_repo = "geemap"

    index = in_file.index(github_repo)
    file_relative_path = in_file[index + len(github_repo) + 1 :]

    output_lines = []

    with open(in_file, encoding="utf-8") as f:
        lines = f.readlines()
        start_line_index = 2
        start_char_index = lines[start_line_index].index("{")
        matching_line_index, _ = find_matching_bracket(
            lines, start_line_index, start_char_index
        )

        header = lines[:matching_line_index]
        content = lines[matching_line_index:]

        new_header = []
        search_string = ""
        for line in header:
            line = line.replace("giswqs", github_username)
            line = line.replace("geemap", github_repo)
            if "master?filepath=" in line:
                search_string = "master?filepath="
                start_index = line.index(search_string) + len(search_string)
                end_index = line.index(".ipynb") + 6
                relative_path = line[start_index:end_index]
                line = line.replace(relative_path, file_relative_path)
            elif "/master/" in line:
                search_string = "/master/"
                start_index = line.index(search_string) + len(search_string)
                end_index = line.index(".ipynb") + 6
                relative_path = line[start_index:end_index]
                line = line.replace(relative_path, file_relative_path)
            new_header.append(line)

        output_lines = new_header + content

        with open(in_file, "w") as f:
            f.writelines(output_lines)

update_nb_header_dir(in_dir, github_username=None, github_repo=None)

Updates header (binder and Google Colab URLs) of all notebooks in a folder .

Parameters:

Name Type Description Default
in_dir str

The input directory containing Jupyter notebooks.

required
github_username str

GitHub username. Defaults to None.

None
github_repo str

GitHub repo name. Defaults to None.

None
Source code in geemap/conversion.py
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
def update_nb_header_dir(in_dir, github_username=None, github_repo=None):
    """Updates header (binder and Google Colab URLs) of all notebooks in a folder .

    Args:
        in_dir (str): The input directory containing Jupyter notebooks.
        github_username (str, optional): GitHub username. Defaults to None.
        github_repo (str, optional): GitHub repo name. Defaults to None.
    """
    files = list(Path(in_dir).rglob("*.ipynb"))
    for index, file in enumerate(files):
        file = str(file)
        if ".ipynb_checkpoints" in file:
            del files[index]
    count = len(files)
    if files is not None:
        for index, file in enumerate(files):
            in_file = str(file)
            print(f"Processing {index + 1}/{count}: {file} ...")
            update_nb_header(in_file, github_username, github_repo)

update_package()

Updates the geemap package from the geemap GitHub repository without the need to use pip or conda. In this way, I don't have to keep updating pypi and conda-forge with every minor update of the package.

Source code in geemap/common.py
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
def update_package():
    """Updates the geemap package from the geemap GitHub repository without the need to use pip or conda.
    In this way, I don't have to keep updating pypi and conda-forge with every minor update of the package.

    """

    try:
        download_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        if not os.path.exists(download_dir):
            os.makedirs(download_dir)
        clone_repo(out_dir=download_dir)

        pkg_dir = os.path.join(download_dir, "geemap-master")
        work_dir = os.getcwd()
        os.chdir(pkg_dir)

        if shutil.which("pip") is None:
            cmd = "pip3 install ."
        else:
            cmd = "pip install ."

        os.system(cmd)
        os.chdir(work_dir)

        print(
            "\nPlease comment out 'geemap.update_package()' and restart the kernel to take effect:\nJupyter menu -> Kernel -> Restart & Clear Output"
        )

    except Exception as e:
        raise Exception(e)

upload_to_imgur(in_gif)

Uploads an image to imgur.com

Parameters:

Name Type Description Default
in_gif str

The file path to the image.

required
Source code in geemap/common.py
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
def upload_to_imgur(in_gif):
    """Uploads an image to imgur.com

    Args:
        in_gif (str): The file path to the image.
    """
    import subprocess

    pkg_name = "imgur-uploader"
    if not is_tool(pkg_name):
        check_install(pkg_name)

    try:
        IMGUR_API_ID = os.environ.get("IMGUR_API_ID", None)
        IMGUR_API_SECRET = os.environ.get("IMGUR_API_SECRET", None)
        credentials_path = os.path.join(
            os.path.expanduser("~"), ".config/imgur_uploader/uploader.cfg"
        )

        if (
            (IMGUR_API_ID is not None) and (IMGUR_API_SECRET is not None)
        ) or os.path.exists(credentials_path):
            proc = subprocess.Popen(["imgur-uploader", in_gif], stdout=subprocess.PIPE)
            for _ in range(0, 2):
                line = proc.stdout.readline()
                print(line.rstrip().decode("utf-8"))
            # while True:
            #     line = proc.stdout.readline()
            #     if not line:
            #         break
            #     print(line.rstrip().decode("utf-8"))
        else:
            print(
                "Imgur API credentials could not be found. Please check https://pypi.org/project/imgur-uploader/ for instructions on how to get Imgur API credentials"
            )
            return

    except Exception as e:
        print(e)

use_math(lines)

Checks if an Earth Engine uses Math library

Parameters:

Name Type Description Default
lines list

An Earth Engine JavaScript.

required

Returns:

Type Description

[bool]: Returns True if the script contains 'Math.'. For example 'Math.PI', 'Math.pow'

Source code in geemap/conversion.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def use_math(lines):
    """Checks if an Earth Engine uses Math library

    Args:
        lines (list): An Earth Engine JavaScript.

    Returns:
        [bool]: Returns True if the script contains 'Math.'. For example 'Math.PI', 'Math.pow'
    """
    math_import = False
    for line in lines:
        if "Math." in line:
            math_import = True

    return math_import

use_mkdocs()

Test if the current notebook is running in mkdocs.

Returns:

Name Type Description
bool

True if the notebook is running in mkdocs.

Source code in geemap/common.py
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
def use_mkdocs():
    """Test if the current notebook is running in mkdocs.

    Returns:
        bool: True if the notebook is running in mkdocs.
    """
    if os.environ.get("USE_MKDOCS") is not None:
        return True
    else:
        return False

vec_area(fc)

Calculate the area (m2) of each each feature in a feature collection.

Parameters:

Name Type Description Default
fc object

The feature collection to compute the area.

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
def vec_area(fc):
    """Calculate the area (m2) of each each feature in a feature collection.

    Args:
        fc (object): The feature collection to compute the area.

    Returns:
        object: ee.FeatureCollection
    """
    return fc.map(lambda f: f.set({"area_m2": f.area(1).round()}))

vec_area_ha(fc)

Calculate the area (hectare) of each each feature in a feature collection.

Parameters:

Name Type Description Default
fc object

The feature collection to compute the area.

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
def vec_area_ha(fc):
    """Calculate the area (hectare) of each each feature in a feature collection.

    Args:
        fc (object): The feature collection to compute the area.

    Returns:
        object: ee.FeatureCollection
    """
    return fc.map(lambda f: f.set({"area_ha": f.area(1).divide(1e4).round()}))

vec_area_km2(fc)

Calculate the area (km2) of each each feature in a feature collection.

Parameters:

Name Type Description Default
fc object

The feature collection to compute the area.

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
def vec_area_km2(fc):
    """Calculate the area (km2) of each each feature in a feature collection.

    Args:
        fc (object): The feature collection to compute the area.

    Returns:
        object: ee.FeatureCollection
    """
    return fc.map(lambda f: f.set({"area_km2": f.area(1).divide(1e6).round()}))

vec_area_mi2(fc)

Calculate the area (square mile) of each each feature in a feature collection.

Parameters:

Name Type Description Default
fc object

The feature collection to compute the area.

required

Returns:

Name Type Description
object

ee.FeatureCollection

Source code in geemap/common.py
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
def vec_area_mi2(fc):
    """Calculate the area (square mile) of each each feature in a feature collection.

    Args:
        fc (object): The feature collection to compute the area.

    Returns:
        object: ee.FeatureCollection
    """
    return fc.map(lambda f: f.set({"area_mi2": f.area(1).divide(2.59e6).round()}))

vector_centroids(ee_object)

Returns the centroids of an ee.FeatureCollection.

Parameters:

Name Type Description Default
ee_object FeatureCollection

The ee.FeatureCollection to get the centroids of.

required

Raises:

Type Description
TypeError

If the ee_object is not an ee.FeatureCollection.

Returns:

Type Description

ee.FeatureCollection: The centroids of the ee_object.

Source code in geemap/common.py
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
def vector_centroids(ee_object):
    """Returns the centroids of an ee.FeatureCollection.

    Args:
        ee_object (ee.FeatureCollection): The ee.FeatureCollection to get the centroids of.

    Raises:
        TypeError: If the ee_object is not an ee.FeatureCollection.

    Returns:
        ee.FeatureCollection: The centroids of the ee_object.
    """
    if not isinstance(ee_object, ee.FeatureCollection):
        raise TypeError("The input must be an Earth Engine FeatureCollection.")

    centroids = ee_object.map(
        lambda f: ee.Feature(f.geometry().centroid(0.001), f.toDictionary())
    )

    centroids = centroids.map(
        lambda f: f.set(
            {
                "longitude": f.geometry().coordinates().get(0),
                "latitude": f.geometry().coordinates().get(1),
            }
        )
    )

    return centroids

vector_styling(ee_object, column, palette, color='000000', colorOpacity=1.0, pointSize=3, pointShape='circle', width=1, lineType='solid', fillColorOpacity=0.66)

Add a new property to each feature containing a stylying dictionary.

Parameters:

Name Type Description Default
ee_object object

An ee.FeatureCollection.

required
column str

The column name to use for styling.

required
palette list | dict

The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling.

required
color str

A default color (CSS 3.0 color value e.g. 'FF0000' or 'red') to use for drawing the features. Defaults to "black".

'000000'
colorOpacity float

Opacity between 0-1 of the features. Defaults to 1

1.0
pointSize int

The default size in pixels of the point markers. Defaults to 3.

3
pointShape str

The default shape of the marker to draw at each point location. One of: circle, square, diamond, cross, plus, pentagram, hexagram, triangle, triangle_up, triangle_down, triangle_left, triangle_right, pentagon, hexagon, star5, star6. This argument also supports the following Matlab marker abbreviations: o, s, d, x, +, p, h, ^, v, <, >. Defaults to "circle".

'circle'
width int

The default line width for lines and outlines for polygons and point shapes. Defaults to 1.

1
lineType str

The default line style for lines and outlines of polygons and point shapes. Defaults to 'solid'. One of: solid, dotted, dashed. Defaults to "solid".

'solid'
fillColorOpacity float

Opacity between 0-1 of the fill. Defaults to 0.66. Color of the fill is based on the column name or index in the palette.

0.66

Returns:

Name Type Description
object

An ee.FeatureCollection containing the styling attribute.

Source code in geemap/common.py
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
def vector_styling(
    ee_object,
    column,
    palette,
    color="000000",
    colorOpacity=1.0,
    pointSize=3,
    pointShape="circle",
    width=1,
    lineType="solid",
    fillColorOpacity=0.66,
):
    """Add a new property to each feature containing a stylying dictionary.

    Args:
        ee_object (object): An ee.FeatureCollection.
        column (str): The column name to use for styling.
        palette (list | dict): The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling.
        color (str, optional): A default color (CSS 3.0 color value e.g. 'FF0000' or 'red') to use for drawing the features. Defaults to "black".
        colorOpacity (float, optional): Opacity between 0-1 of the features. Defaults to 1
        pointSize (int, optional): The default size in pixels of the point markers. Defaults to 3.
        pointShape (str, optional): The default shape of the marker to draw at each point location. One of: circle, square, diamond, cross, plus, pentagram, hexagram, triangle, triangle_up, triangle_down, triangle_left, triangle_right, pentagon, hexagon, star5, star6. This argument also supports the following Matlab marker abbreviations: o, s, d, x, +, p, h, ^, v, <, >. Defaults to "circle".
        width (int, optional): The default line width for lines and outlines for polygons and point shapes. Defaults to 1.
        lineType (str, optional): The default line style for lines and outlines of polygons and point shapes. Defaults to 'solid'. One of: solid, dotted, dashed. Defaults to "solid".
        fillColorOpacity (float, optional): Opacity between 0-1 of the fill. Defaults to 0.66. Color of the fill is based on the column name or index in the palette.
    Raises:
        ValueError: The provided column name is invalid.
        TypeError: The provided palette is invalid.
        TypeError: The provided ee_object is not an ee.FeatureCollection.

    Returns:
        object: An ee.FeatureCollection containing the styling attribute.
    """
    from box import Box

    if isinstance(ee_object, ee.FeatureCollection):
        prop_names = ee.Feature(ee_object.first()).propertyNames().getInfo()
        arr = ee_object.aggregate_array(column).distinct().sort()

        if column not in prop_names:
            raise ValueError(f"The column name must of one of {', '.join(prop_names)}")

        if isinstance(palette, Box):
            try:
                palette = list(palette["default"])
            except Exception as e:
                print("The provided palette is invalid.")
                raise Exception(e)
        elif isinstance(palette, tuple):
            palette = list(palette)
        elif isinstance(palette, dict):
            values = list(arr.getInfo())
            labels = list(palette.keys())
            if not all(elem in values for elem in labels):
                raise ValueError(
                    f"The keys of the palette must contain the following elements: {', '.join(values)}"
                )
            else:
                colors = [palette[value] for value in values]
                palette = colors

        if not isinstance(palette, list):
            raise TypeError("The palette must be a list.")

        colors = ee.List(
            [
                color.strip() + str(hex(int(fillColorOpacity * 255)))[2:].zfill(2)
                for color in palette
            ]
        )
        fc = ee_object.map(lambda f: f.set({"styleIndex": arr.indexOf(f.get(column))}))
        step = arr.size().divide(colors.size()).ceil()
        fc = fc.map(
            lambda f: f.set(
                {
                    "style": {
                        "color": color + str(hex(int(colorOpacity * 255)))[2:].zfill(2),
                        "pointSize": pointSize,
                        "pointShape": pointShape,
                        "width": width,
                        "lineType": lineType,
                        "fillColor": colors.get(
                            ee.Number(
                                ee.Number(f.get("styleIndex")).divide(step)
                            ).floor()
                        ),
                    }
                }
            )
        )

        return fc

    else:
        raise TypeError("The ee_object must be an ee.FeatureCollection.")

vector_to_ee(filename, bbox=None, mask=None, rows=None, geodesic=True, **kwargs)

Converts any geopandas-supported vector dataset to ee.FeatureCollection.

Parameters:

Name Type Description Default
filename str

Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO).

required
bbox tuple | GeoDataFrame or GeoSeries | shapely Geometry

Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with mask. Defaults to None.

None
mask dict | GeoDataFrame or GeoSeries | shapely Geometry

Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. Defaults to None.

None
rows int or slice

Load in specific rows by passing an integer (first n rows) or a slice() object.. Defaults to None.

None
geodesic bool

Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

True

Returns:

Type Description

ee.FeatureCollection: Earth Engine FeatureCollection.

Source code in geemap/common.py
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
def vector_to_ee(
    filename,
    bbox=None,
    mask=None,
    rows=None,
    geodesic=True,
    **kwargs,
):
    """Converts any geopandas-supported vector dataset to ee.FeatureCollection.

    Args:
        filename (str): Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO).
        bbox (tuple | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with mask. Defaults to None.
        mask (dict | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. Defaults to None.
        rows (int or slice, optional): Load in specific rows by passing an integer (first n rows) or a slice() object.. Defaults to None.
        geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.

    Returns:
        ee.FeatureCollection: Earth Engine FeatureCollection.
    """
    geojson = vector_to_geojson(
        filename, bbox=bbox, mask=mask, rows=rows, epsg="4326", **kwargs
    )

    return geojson_to_ee(geojson, geodesic=geodesic)

vector_to_geojson(filename, out_geojson=None, bbox=None, mask=None, rows=None, epsg='4326', **kwargs)

Converts any geopandas-supported vector dataset to GeoJSON.

Parameters:

Name Type Description Default
filename str

Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO).

required
out_geojson str

The file path to the output GeoJSON. Defaults to None.

None
bbox tuple | GeoDataFrame or GeoSeries | shapely Geometry

Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with mask. Defaults to None.

None
mask dict | GeoDataFrame or GeoSeries | shapely Geometry

Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. Defaults to None.

None
rows int or slice

Load in specific rows by passing an integer (first n rows) or a slice() object.. Defaults to None.

None
epsg str

The EPSG number to convert to. Defaults to "4326".

'4326'

Raises:

Type Description
ValueError

When the output file path is invalid.

Returns:

Name Type Description
dict

A dictionary containing the GeoJSON.

Source code in geemap/common.py
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
def vector_to_geojson(
    filename, out_geojson=None, bbox=None, mask=None, rows=None, epsg="4326", **kwargs
):
    """Converts any geopandas-supported vector dataset to GeoJSON.

    Args:
        filename (str): Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO).
        out_geojson (str, optional): The file path to the output GeoJSON. Defaults to None.
        bbox (tuple | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with mask. Defaults to None.
        mask (dict | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. Defaults to None.
        rows (int or slice, optional): Load in specific rows by passing an integer (first n rows) or a slice() object.. Defaults to None.
        epsg (str, optional): The EPSG number to convert to. Defaults to "4326".

    Raises:
        ValueError: When the output file path is invalid.

    Returns:
        dict: A dictionary containing the GeoJSON.
    """

    warnings.filterwarnings("ignore")
    check_package(name="geopandas", URL="https://geopandas.org")
    import geopandas as gpd
    import fiona

    if not filename.startswith("http"):
        filename = os.path.abspath(filename)
    else:
        filename = download_file(github_raw_url(filename))
    ext = os.path.splitext(filename)[1].lower()
    if ext == ".kml":
        fiona.drvsupport.supported_drivers["KML"] = "rw"
        df = gpd.read_file(
            filename, bbox=bbox, mask=mask, rows=rows, driver="KML", **kwargs
        )
    else:
        df = gpd.read_file(filename, bbox=bbox, mask=mask, rows=rows, **kwargs)
    gdf = df.to_crs(epsg=epsg)

    if out_geojson is not None:
        if not out_geojson.lower().endswith(".geojson"):
            raise ValueError("The output file must have a geojson file extension.")

        out_geojson = os.path.abspath(out_geojson)
        out_dir = os.path.dirname(out_geojson)
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

        gdf.to_file(out_geojson, driver="GeoJSON")

    else:
        return gdf.__geo_interface__

vector_to_gif(filename, out_gif, colname, vmin=None, vmax=None, step=1, facecolor='black', figsize=(10, 8), padding=3, title=None, add_text=True, xy=('1%', '1%'), fontsize=20, add_progress_bar=True, progress_bar_color='blue', progress_bar_height=5, dpi=300, fps=10, loop=0, mp4=False, keep_png=False, verbose=True, open_args={}, plot_args={})

Convert a vector to a gif. This function was inspired by by Johannes Uhl's shapefile2gif repo at https://github.com/johannesuhl/shapefile2gif. Credits to Johannes Uhl.

Parameters:

Name Type Description Default
filename str

The input vector file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"

required
out_gif str

The output gif file.

required
colname str

The column name of the vector that contains numerical values.

required
vmin float

The minimum value to filter the data. Defaults to None.

None
vmax float

The maximum value to filter the data. Defaults to None.

None
step float

The step to filter the data. Defaults to 1.

1
facecolor str

The color to visualize the data. Defaults to "black".

'black'
figsize tuple

The figure size. Defaults to (10, 8).

(10, 8)
padding int

The padding of the figure tight_layout. Defaults to 3.

3
title str

The title of the figure. Defaults to None.

None
add_text bool

Whether to add text to the figure. Defaults to True.

True
xy tuple

The position of the text from the lower-left corner. Defaults to ("1%", "1%").

('1%', '1%')
fontsize int

The font size of the text. Defaults to 20.

20
add_progress_bar bool

Whether to add a progress bar to the figure. Defaults to True.

True
progress_bar_color str

The color of the progress bar. Defaults to "blue".

'blue'
progress_bar_height int

The height of the progress bar. Defaults to 5.

5
dpi int

The dpi of the figure. Defaults to 300.

300
fps int

The frames per second (fps) of the gif. Defaults to 10.

10
loop int

The number of loops of the gif. Defaults to 0, infinite loop.

0
mp4 bool

Whether to convert the gif to mp4. Defaults to False.

False
keep_png bool

Whether to keep the png files. Defaults to False.

False
verbose bool

Whether to print the progress. Defaults to True.

True
open_args dict

The arguments for the geopandas.read_file() function. Defaults to {}.

{}
plot_args dict

The arguments for the geopandas.GeoDataFrame.plot() function. Defaults to {}.

{}
Source code in geemap/timelapse.py
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
def vector_to_gif(
    filename,
    out_gif,
    colname,
    vmin=None,
    vmax=None,
    step=1,
    facecolor="black",
    figsize=(10, 8),
    padding=3,
    title=None,
    add_text=True,
    xy=("1%", "1%"),
    fontsize=20,
    add_progress_bar=True,
    progress_bar_color="blue",
    progress_bar_height=5,
    dpi=300,
    fps=10,
    loop=0,
    mp4=False,
    keep_png=False,
    verbose=True,
    open_args={},
    plot_args={},
):
    """Convert a vector to a gif. This function was inspired by by Johannes Uhl's shapefile2gif repo at
            https://github.com/johannesuhl/shapefile2gif. Credits to Johannes Uhl.

    Args:
        filename (str): The input vector file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"
        out_gif (str): The output gif file.
        colname (str): The column name of the vector that contains numerical values.
        vmin (float, optional): The minimum value to filter the data. Defaults to None.
        vmax (float, optional): The maximum value to filter the data. Defaults to None.
        step (float, optional): The step to filter the data. Defaults to 1.
        facecolor (str, optional): The color to visualize the data. Defaults to "black".
        figsize (tuple, optional): The figure size. Defaults to (10, 8).
        padding (int, optional): The padding of the figure tight_layout. Defaults to 3.
        title (str, optional): The title of the figure. Defaults to None.
        add_text (bool, optional): Whether to add text to the figure. Defaults to True.
        xy (tuple, optional): The position of the text from the lower-left corner. Defaults to ("1%", "1%").
        fontsize (int, optional): The font size of the text. Defaults to 20.
        add_progress_bar (bool, optional): Whether to add a progress bar to the figure. Defaults to True.
        progress_bar_color (str, optional): The color of the progress bar. Defaults to "blue".
        progress_bar_height (int, optional): The height of the progress bar. Defaults to 5.
        dpi (int, optional): The dpi of the figure. Defaults to 300.
        fps (int, optional): The frames per second (fps) of the gif. Defaults to 10.
        loop (int, optional): The number of loops of the gif. Defaults to 0, infinite loop.
        mp4 (bool, optional): Whether to convert the gif to mp4. Defaults to False.
        keep_png (bool, optional): Whether to keep the png files. Defaults to False.
        verbose (bool, optional): Whether to print the progress. Defaults to True.
        open_args (dict, optional): The arguments for the geopandas.read_file() function. Defaults to {}.
        plot_args (dict, optional): The arguments for the geopandas.GeoDataFrame.plot() function. Defaults to {}.

    """
    import geopandas as gpd
    import matplotlib.pyplot as plt

    out_dir = os.path.dirname(out_gif)
    tmp_dir = os.path.join(out_dir, "tmp_png")
    if not os.path.exists(tmp_dir):
        os.makedirs(tmp_dir)

    if isinstance(filename, str):
        gdf = gpd.read_file(filename, **open_args)
    elif isinstance(filename, gpd.GeoDataFrame):
        gdf = filename
    else:
        raise ValueError(
            "filename must be a string or a geopandas.GeoDataFrame object."
        )

    bbox = gdf.total_bounds

    if colname not in gdf.columns:
        raise Exception(
            f"{colname} is not in the columns of the GeoDataFrame. It must be one of {gdf.columns}"
        )

    values = gdf[colname].unique().tolist()
    values.sort()

    if vmin is None:
        vmin = values[0]
    if vmax is None:
        vmax = values[-1]

    options = range(vmin, vmax + step, step)

    W = bbox[2] - bbox[0]
    H = bbox[3] - bbox[1]

    if xy is None:
        # default text location is 5% width and 5% height of the image.
        xy = (int(0.05 * W), int(0.05 * H))
    elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
        raise Exception("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")

    elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
        x, y = xy
        if (x > 0) and (x < W) and (y > 0) and (y < H):
            pass
        else:
            print(
                f"xy is out of bounds. x must be within [0, {W}], and y must be within [0, {H}]"
            )
            return
    elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
        x, y = xy
        if ("%" in x) and ("%" in y):
            try:
                x = float(x.replace("%", "")) / 100.0 * W
                y = float(y.replace("%", "")) / 100.0 * H
            except Exception:
                raise Exception(
                    "The specified xy is invalid. It must be formatted like this ('10%', '10%')"
                )
    else:
        raise Exception(
            "The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
        )

    x = bbox[0] + x
    y = bbox[1] + y

    for index, v in enumerate(options):
        if verbose:
            print(f"Processing {index+1}/{len(options)}: {v}...")
        yrdf = gdf[gdf[colname] <= v]
        fig, ax = plt.subplots()
        ax = yrdf.plot(facecolor=facecolor, figsize=figsize, **plot_args)
        ax.set_title(title, fontsize=fontsize)
        ax.set_axis_off()
        ax.set_xlim([bbox[0], bbox[2]])
        ax.set_ylim([bbox[1], bbox[3]])
        if add_text:
            ax.text(x, y, v, fontsize=fontsize)
        fig = ax.get_figure()
        plt.tight_layout(pad=padding)
        fig.savefig(tmp_dir + os.sep + "%s.png" % v, dpi=dpi)
        plt.clf()
        plt.close("all")

    png_to_gif(tmp_dir, out_gif, fps=fps, loop=loop)

    if add_progress_bar:
        add_progress_bar_to_gif(
            out_gif,
            out_gif,
            progress_bar_color,
            progress_bar_height,
            duration=1000 / fps,
            loop=loop,
        )

    if mp4:
        gif_to_mp4(out_gif, out_gif.replace(".gif", ".mp4"))

    if not keep_png:
        shutil.rmtree(tmp_dir)

    if verbose:
        print(f"Done. The GIF is saved to {out_gif}.")

view_lidar(filename, cmap='terrain', backend='pyvista', background=None, **kwargs)

View LiDAR data in 3D.

Parameters:

Name Type Description Default
filename str

The filepath to the LiDAR data.

required
cmap str

The colormap to use. Defaults to "terrain". cmap currently does not work for the open3d backend.

'terrain'
backend str

The plotting backend to use, can be pyvista, ipygany, panel, and open3d. Defaults to "pyvista".

'pyvista'
background str

The background color to use. Defaults to None.

None

Raises:

Type Description
FileNotFoundError

If the file does not exist.

ValueError

If the backend is not supported.

Source code in geemap/common.py
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
def view_lidar(filename, cmap="terrain", backend="pyvista", background=None, **kwargs):
    """View LiDAR data in 3D.

    Args:
        filename (str): The filepath to the LiDAR data.
        cmap (str, optional): The colormap to use. Defaults to "terrain". cmap currently does not work for the open3d backend.
        backend (str, optional): The plotting backend to use, can be pyvista, ipygany, panel, and open3d. Defaults to "pyvista".
        background (str, optional): The background color to use. Defaults to None.

    Raises:
        FileNotFoundError: If the file does not exist.
        ValueError: If the backend is not supported.
    """

    if in_colab_shell():
        print("The view_lidar() function is not supported in Colab.")
        return

    warnings.filterwarnings("ignore")
    filename = os.path.abspath(filename)
    if not os.path.exists(filename):
        raise FileNotFoundError(f"{filename} does not exist.")

    backend = backend.lower()
    if backend in ["pyvista", "ipygany", "panel"]:
        try:
            import pyntcloud
        except ImportError:
            print(
                "The pyvista and pyntcloud packages are required for this function. Use pip install geemap[lidar] to install them."
            )
            return

        try:
            if backend == "pyvista":
                backend = None
            if backend == "ipygany":
                cmap = None
            data = pyntcloud.PyntCloud.from_file(filename)
            mesh = data.to_instance("pyvista", mesh=False)
            mesh = mesh.elevation()
            mesh.plot(
                scalars="Elevation",
                cmap=cmap,
                jupyter_backend=backend,
                background=background,
                **kwargs,
            )

        except Exception as e:
            print("Something went wrong.")
            print(e)
            return

    elif backend == "open3d":
        try:
            import laspy
            import open3d as o3d
            import numpy as np
        except ImportError:
            print(
                "The laspy and open3d packages are required for this function. Use pip install laspy open3d to install them."
            )
            return

        try:
            las = laspy.read(filename)
            point_data = np.stack([las.X, las.Y, las.Z], axis=0).transpose((1, 0))
            geom = o3d.geometry.PointCloud()
            geom.points = o3d.utility.Vector3dVector(point_data)
            # geom.colors =  o3d.utility.Vector3dVector(colors)  # need to add colors. A list in the form of [[r,g,b], [r,g,b]] with value range 0-1. https://github.com/isl-org/Open3D/issues/614
            o3d.visualization.draw_geometries([geom], **kwargs)

        except Exception as e:
            print("Something went wrong.")
            print(e)
            return

    else:
        raise ValueError(f"{backend} is not a valid backend.")

vis_to_qml(ee_class_table, out_qml)

Create a QGIS Layer Style (.qml) based on an Earth Engine class table from the Earth Engine Data Catalog page such as https://developers.google.com/earth-engine/datasets/catalog/MODIS_051_MCD12Q1

Parameters:

Name Type Description Default
ee_class_table str

An Earth Engine class table with triple quotes.

required
out_qml str

File path to the output QGIS Layer Style (.qml).

required
Source code in geemap/common.py
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
def vis_to_qml(ee_class_table, out_qml):
    """Create a QGIS Layer Style (.qml) based on an Earth Engine class table from the Earth Engine Data Catalog page
    such as https://developers.google.com/earth-engine/datasets/catalog/MODIS_051_MCD12Q1

    Args:
        ee_class_table (str): An Earth Engine class table with triple quotes.
        out_qml (str): File path to the output QGIS Layer Style (.qml).
    """

    pkg_dir = str(importlib.resources.files("geemap").joinpath("geemap.py").parent)
    data_dir = os.path.join(pkg_dir, "data")
    template_dir = os.path.join(data_dir, "template")
    qml_template = os.path.join(template_dir, "NLCD.qml")

    out_dir = os.path.dirname(out_qml)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    with open(qml_template) as f:
        lines = f.readlines()
        header = lines[:31]
        footer = lines[51:]

    entries = []
    try:
        ee_class_table = ee_class_table.strip()
        lines = ee_class_table.split("\n")[1:]

        if lines[0] == "Value\tColor\tDescription":
            lines = lines[1:]

        for line in lines:
            items = line.split("\t")
            items = [item.strip() for item in items]
            value = items[0]
            color = items[1]
            label = items[2]
            entry = '        <paletteEntry alpha="255" color="#{}" value="{}" label="{}"/>\n'.format(
                color, value, label
            )
            entries.append(entry)

        out_lines = header + entries + footer
        with open(out_qml, "w") as f:
            f.writelines(out_lines)

    except Exception as e:
        print(e)

widget_template(widget=None, opened=True, show_close_button=True, widget_icon='gear', close_button_icon='times', widget_args=None, close_button_args=None, display_widget=None, m=None, position='topright')

Create a widget template.

Parameters:

Name Type Description Default
widget Optional[Widget]

The widget to be displayed. Defaults to None.

None
opened bool

Whether to open the toolbar. Defaults to True.

True
show_close_button bool

Whether to show the close button. Defaults to True.

True
widget_icon str

The icon name for the toolbar button. Defaults to 'gear'.

'gear'
close_button_icon str

The icon name for the close button. Defaults to "times".

'times'
widget_args Optional[Dict[str, Any]]

Additional arguments to pass to the toolbar button. Defaults to None.

None
close_button_args Optional[Dict[str, Any]]

Additional arguments to pass to the close button. Defaults to None.

None
display_widget Optional[Widget]

The widget to be displayed when the toolbar is clicked. Defaults to None.

None
m Optional[Map]

The ipyleaflet.Map instance. Defaults to None.

None
position str

The position of the toolbar. Defaults to "topright".

'topright'

Returns:

Type Description
Optional[Widget]

Optional[widgets.Widget]: The created widget template.

Source code in geemap/coreutils.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
def widget_template(
    widget: Optional[widgets.Widget] = None,
    opened: bool = True,
    show_close_button: bool = True,
    widget_icon: str = "gear",
    close_button_icon: str = "times",
    widget_args: Optional[Dict[str, Any]] = None,
    close_button_args: Optional[Dict[str, Any]] = None,
    display_widget: Optional[widgets.Widget] = None,
    m: Optional["ipyleaflet.Map"] = None,
    position: str = "topright",
) -> Optional[widgets.Widget]:
    """Create a widget template.

    Args:
        widget (Optional[widgets.Widget], optional): The widget to be displayed.
            Defaults to None.
        opened (bool, optional): Whether to open the toolbar. Defaults to True.
        show_close_button (bool, optional): Whether to show the close button.
            Defaults to True.
        widget_icon (str, optional): The icon name for the toolbar button.
            Defaults to 'gear'.
        close_button_icon (str, optional): The icon name for the close button.
            Defaults to "times".
        widget_args (Optional[Dict[str, Any]], optional): Additional arguments
            to pass to the toolbar button. Defaults to None.
        close_button_args (Optional[Dict[str, Any]], optional): Additional
            arguments to pass to the close button. Defaults to None.
        display_widget (Optional[widgets.Widget], optional): The widget to be
            displayed when the toolbar is clicked. Defaults to None.
        m (Optional[ipyleaflet.Map], optional): The ipyleaflet.Map instance.
            Defaults to None.
        position (str, optional): The position of the toolbar. Defaults to "topright".

    Returns:
        Optional[widgets.Widget]: The created widget template.
    """

    name = "_" + random_string()  # a random attribute name

    if widget_args is None:
        widget_args = {}

    if close_button_args is None:
        close_button_args = {}

    if "value" not in widget_args:
        widget_args["value"] = False
    if "tooltip" not in widget_args:
        widget_args["tooltip"] = "Toolbar"
    if "layout" not in widget_args:
        widget_args["layout"] = widgets.Layout(
            width="28px", height="28px", padding="0px 0px 0px 4px"
        )
    widget_args["icon"] = widget_icon

    if "value" not in close_button_args:
        close_button_args["value"] = False
    if "tooltip" not in close_button_args:
        close_button_args["tooltip"] = "Close the tool"
    if "button_style" not in close_button_args:
        close_button_args["button_style"] = "primary"
    if "layout" not in close_button_args:
        close_button_args["layout"] = widgets.Layout(
            height="28px", width="28px", padding="0px 0px 0px 4px"
        )
    close_button_args["icon"] = close_button_icon

    try:
        toolbar_button = widgets.ToggleButton(**widget_args)
    except:
        widget_args.pop("layout")
        toolbar_button = widgets.ToggleButton(**widget_args)
        toolbar_button.layout.width = "28px"
        toolbar_button.layout.height = "28px"
        toolbar_button.layout.padding = "0px 0px 0px 4px"

    try:
        close_button = widgets.ToggleButton(**close_button_args)
    except:
        close_button_args.pop("layout")
        close_button = widgets.ToggleButton(**close_button_args)
        close_button.layout.width = "28px"
        close_button.layout.height = "28px"
        close_button.layout.padding = "0px 0px 0px 4px"

    toolbar_widget = widgets.VBox()
    toolbar_widget.children = [toolbar_button]
    toolbar_header = widgets.HBox()
    if show_close_button:
        toolbar_header.children = [close_button, toolbar_button]
    else:
        toolbar_header.children = [toolbar_button]
    toolbar_footer = widgets.VBox()

    if widget is not None:
        toolbar_footer.children = [
            widget,
        ]
    else:
        toolbar_footer.children = []

    def toolbar_btn_click(change):
        if change["new"]:
            close_button.value = False
            toolbar_widget.children = [toolbar_header, toolbar_footer]
            if display_widget is not None:
                widget.outputs = ()
                with widget:
                    display(display_widget)
        else:
            toolbar_widget.children = [toolbar_button]

    toolbar_button.observe(toolbar_btn_click, "value")

    def close_btn_click(change):
        if change["new"]:
            toolbar_button.value = False
            if m is not None:
                control = getattr(m, name)
                if control is not None and control in m.controls:
                    m.remove_control(control)
                    delattr(m, name)
            toolbar_widget.close()

    close_button.observe(close_btn_click, "value")

    toolbar_button.value = opened
    if m is not None:
        import ipyleaflet

        toolbar_control = ipyleaflet.WidgetControl(
            widget=toolbar_widget, position=position
        )

        if toolbar_control not in m.controls:
            m.add_control(toolbar_control)

            setattr(m, name, toolbar_control)

    else:
        return toolbar_widget

write_lidar(source, destination, do_compress=None, laz_backend=None)

Writes to a stream or file.

Parameters:

Name Type Description Default
source str | LasBase

The source data to be written.

required
destination str

The destination filepath.

required
do_compress bool

Flags to indicate if you want to compress the data. Defaults to None.

None
laz_backend str

The laz backend to use. Defaults to None.

None
Source code in geemap/common.py
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
def write_lidar(source, destination, do_compress=None, laz_backend=None):
    """Writes to a stream or file.

    Args:
        source (str | laspy.lasdatas.base.LasBase): The source data to be written.
        destination (str): The destination filepath.
        do_compress (bool, optional): Flags to indicate if you want to compress the data. Defaults to None.
        laz_backend (str, optional): The laz backend to use. Defaults to None.
    """

    try:
        import laspy
    except ImportError:
        print(
            "The laspy package is required for this function. Use `pip install laspy[lazrs,laszip]` to install it."
        )
        return

    if isinstance(source, str):
        source = read_lidar(source)

    source.write(destination, do_compress=do_compress, laz_backend=laz_backend)

xarray_to_raster(dataset, filename, **kwargs)

Convert an xarray Dataset to a raster file.

Parameters:

Name Type Description Default
dataset Dataset

The input xarray Dataset to be converted.

required
filename str

The output filename for the raster file.

required
**kwargs Dict[str, Any]

Additional keyword arguments passed to the rio.to_raster() method. See https://corteva.github.io/rioxarray/stable/examples/convert_to_raster.html for more info.

{}

Returns:

Type Description
None

None

Source code in geemap/common.py
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
def xarray_to_raster(dataset, filename: str, **kwargs: Dict[str, Any]) -> None:
    """Convert an xarray Dataset to a raster file.

    Args:
        dataset (xr.Dataset): The input xarray Dataset to be converted.
        filename (str): The output filename for the raster file.
        **kwargs (Dict[str, Any]): Additional keyword arguments passed to the `rio.to_raster()` method.
            See https://corteva.github.io/rioxarray/stable/examples/convert_to_raster.html for more info.

    Returns:
        None
    """
    import rioxarray

    dims = list(dataset.dims)

    new_names = {}

    if "lat" in dims:
        new_names["lat"] = "y"
        dims.remove("lat")
    if "lon" in dims:
        new_names["lon"] = "x"
        dims.remove("lon")
    if "lng" in dims:
        new_names["lng"] = "x"
        dims.remove("lng")
    if "latitude" in dims:
        new_names["latitude"] = "y"
        dims.remove("latitude")
    if "longitude" in dims:
        new_names["longitude"] = "x"
        dims.remove("longitude")

    dataset = dataset.rename(new_names)
    dataset.transpose(..., "y", "x").rio.to_raster(filename, **kwargs)

xee_to_image(xds, filenames=None, out_dir=None, crs=None, nodata=None, driver='COG', time_unit='D', quiet=False, **kwargs)

Convert xarray Dataset to georeferenced images.

Parameters:

Name Type Description Default
xds Dataset

The xarray Dataset to convert to images.

required
filenames Union[str, List[str]]

Output filenames for the images. If a single string is provided, it will be used as the filename for all images. If a list of strings is provided, the filenames will be used in order. Defaults to None.

None
out_dir str

Output directory for the images. Defaults to current working directory.

None
crs str

Coordinate reference system (CRS) of the output images. If not provided, the CRS is inferred from the Dataset's attributes ('crs' attribute) or set to 'EPSG:4326'.

None
nodata float

The nodata value used for the output images. Defaults to None.

None
driver str

Driver used for writing the output images, such as 'GTiff'. Defaults to "COG".

'COG'
time_unit str

Time unit used for generating default filenames. Defaults to 'D'.

'D'
quiet bool

If True, suppresses progress messages. Defaults to False.

False
**kwargs

Additional keyword arguments passed to rioxarray's rio.to_raster() function.

{}

Returns:

Type Description
None

None

Raises:

Type Description
ValueError

If the number of filenames doesn't match the number of time steps in the Dataset.

Source code in geemap/common.py
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
def xee_to_image(
    xds,
    filenames: Optional[Union[str, List[str]]] = None,
    out_dir: Optional[str] = None,
    crs: Optional[str] = None,
    nodata: Optional[float] = None,
    driver: str = "COG",
    time_unit: str = "D",
    quiet: bool = False,
    **kwargs,
) -> None:
    """
    Convert xarray Dataset to georeferenced images.

    Args:
        xds (xr.Dataset): The xarray Dataset to convert to images.
        filenames (Union[str, List[str]], optional): Output filenames for the images.
            If a single string is provided, it will be used as the filename for all images.
            If a list of strings is provided, the filenames will be used in order. Defaults to None.
        out_dir (str, optional): Output directory for the images. Defaults to current working directory.
        crs (str, optional): Coordinate reference system (CRS) of the output images.
            If not provided, the CRS is inferred from the Dataset's attributes ('crs' attribute) or set to 'EPSG:4326'.
        nodata (float, optional): The nodata value used for the output images. Defaults to None.
        driver (str, optional): Driver used for writing the output images, such as 'GTiff'. Defaults to "COG".
        time_unit (str, optional): Time unit used for generating default filenames. Defaults to 'D'.
        quiet (bool, optional): If True, suppresses progress messages. Defaults to False.
        **kwargs: Additional keyword arguments passed to rioxarray's `rio.to_raster()` function.

    Returns:
        None

    Raises:
        ValueError: If the number of filenames doesn't match the number of time steps in the Dataset.

    """
    import numpy as np

    try:
        import rioxarray
    except ImportError:
        install_package("rioxarray")
        import rioxarray

    if crs is None and "crs" in xds.attrs:
        crs = xds.attrs["crs"]
    if crs is None:
        crs = "EPSG:4326"

    if out_dir is None:
        out_dir = os.getcwd()

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if isinstance(filenames, str):
        filenames = [filenames]
    if isinstance(filenames, list):
        if len(filenames) != len(xds.time):
            raise ValueError(
                "The number of filenames must match the number of time steps"
            )

    coords = [coord for coord in xds.coords]
    x_dim = coords[1]
    y_dim = coords[2]

    for index, time in enumerate(xds.time.values):
        if nodata is not None:
            # Create a Boolean mask where all three variables are zero (nodata)
            mask = (xds == nodata).all(dim="time")
            # Set nodata values based on the mask for all variables
            xds = xds.where(~mask, other=np.nan)

        if not quiet:
            print(f"Processing {index + 1}/{len(xds.time.values)}: {time}")
        image = xds.sel(time=time)
        # transform the image to suit rioxarray format
        image = (
            image.rename({y_dim: "y", x_dim: "x"})
            .transpose("y", "x")
            .rio.write_crs(crs)
        )

        if filenames is None:
            date = np.datetime_as_string(time, unit=time_unit)
            filename = f"{date}.tif"
        else:
            filename = filenames.pop()

        output_path = os.path.join(out_dir, filename)
        image.rio.to_raster(output_path, driver=driver, **kwargs)

xy_to_points(in_csv, latitude='latitude', longitude='longitude', encoding='utf-8')

Converts a csv containing points (latitude and longitude) into an ee.FeatureCollection.

Parameters:

Name Type Description Default
in_csv str

File path or HTTP URL to the input csv file. For example, https://raw.githubusercontent.com/giswqs/data/main/world/world_cities.csv

required
latitude str

Column name for the latitude column. Defaults to 'latitude'.

'latitude'
longitude str

Column name for the longitude column. Defaults to 'longitude'.

'longitude'

Returns:

Type Description

ee.FeatureCollection: The ee.FeatureCollection containing the points converted from the input csv.

Source code in geemap/common.py
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
def xy_to_points(in_csv, latitude="latitude", longitude="longitude", encoding="utf-8"):
    """Converts a csv containing points (latitude and longitude) into an ee.FeatureCollection.

    Args:
        in_csv (str): File path or HTTP URL to the input csv file. For example, https://raw.githubusercontent.com/giswqs/data/main/world/world_cities.csv
        latitude (str, optional): Column name for the latitude column. Defaults to 'latitude'.
        longitude (str, optional): Column name for the longitude column. Defaults to 'longitude'.

    Returns:
        ee.FeatureCollection: The ee.FeatureCollection containing the points converted from the input csv.
    """

    geojson = csv_to_geojson(in_csv, None, latitude, longitude, encoding)
    fc = geojson_to_ee(geojson)
    return fc

zonal_stats(in_value_raster, in_zone_vector, out_file_path=None, stat_type='MEAN', scale=None, crs=None, tile_scale=1.0, return_fc=False, verbose=True, timeout=300, proxies=None, **kwargs)

Summarizes the values of a raster within the zones of another dataset and exports the results as a csv, shp, json, kml, or kmz.

Parameters:

Name Type Description Default
in_value_raster object

An ee.Image or ee.ImageCollection that contains the values on which to calculate a statistic.

required
in_zone_vector object

An ee.FeatureCollection that defines the zones.

required
out_file_path str

Output file path that will contain the summary of the values in each zone. The file type can be: csv, shp, json, kml, kmz

None
stat_type str

Statistical type to be calculated. Defaults to 'MEAN'. For 'HIST', you can provide three parameters: max_buckets, min_bucket_width, and max_raw. For 'FIXED_HIST', you must provide three parameters: hist_min, hist_max, and hist_steps.

'MEAN'
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
crs str

The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.

None
tile_scale float

A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.0.

1.0
verbose bool

Whether to print descriptive text when the programming is running. Default to True.

True
return_fc bool

Whether to return the results as an ee.FeatureCollection. Defaults to False.

False
timeout int

Timeout in seconds. Default to 300.

300
proxies dict

A dictionary of proxy servers to use for the request. Default to None.

None
Source code in geemap/common.py
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
def zonal_stats(
    in_value_raster,
    in_zone_vector,
    out_file_path=None,
    stat_type="MEAN",
    scale=None,
    crs=None,
    tile_scale=1.0,
    return_fc=False,
    verbose=True,
    timeout=300,
    proxies=None,
    **kwargs,
):
    """Summarizes the values of a raster within the zones of another dataset and exports the results as a csv, shp, json, kml, or kmz.

    Args:
        in_value_raster (object): An ee.Image or ee.ImageCollection that contains the values on which to calculate a statistic.
        in_zone_vector (object): An ee.FeatureCollection that defines the zones.
        out_file_path (str): Output file path that will contain the summary of the values in each zone. The file type can be: csv, shp, json, kml, kmz
        stat_type (str, optional): Statistical type to be calculated. Defaults to 'MEAN'. For 'HIST', you can provide three parameters: max_buckets, min_bucket_width, and max_raw. For 'FIXED_HIST', you must provide three parameters: hist_min, hist_max, and hist_steps.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        crs (str, optional): The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.
        tile_scale (float, optional): A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.0.
        verbose (bool, optional): Whether to print descriptive text when the programming is running. Default to True.
        return_fc (bool, optional): Whether to return the results as an ee.FeatureCollection. Defaults to False.
        timeout (int, optional): Timeout in seconds. Default to 300.
        proxies (dict, optional): A dictionary of proxy servers to use for the request. Default to None.
    """

    if isinstance(in_value_raster, ee.ImageCollection):
        in_value_raster = in_value_raster.toBands()

    if not isinstance(in_value_raster, ee.Image):
        print("The input raster must be an ee.Image.")
        return

    if not isinstance(in_zone_vector, ee.FeatureCollection):
        print("The input zone data must be an ee.FeatureCollection.")
        return

    if out_file_path is None:
        out_file_path = os.path.join(os.getcwd(), "zonal_stats.csv")

    if "statistics_type" in kwargs:
        stat_type = kwargs.pop("statistics_type")

    allowed_formats = ["csv", "geojson", "kml", "kmz", "shp"]
    filename = os.path.abspath(out_file_path)
    basename = os.path.basename(filename)
    # name = os.path.splitext(basename)[0]
    filetype = os.path.splitext(basename)[1][1:].lower()

    if not (filetype in allowed_formats):
        print(
            "The file type must be one of the following: {}".format(
                ", ".join(allowed_formats)
            )
        )
        return

    # Parameters for histogram
    # The maximum number of buckets to use when building a histogram; will be rounded up to a power of 2.
    max_buckets = None
    # The minimum histogram bucket width, or null to allow any power of 2.
    min_bucket_width = None
    # The number of values to accumulate before building the initial histogram.
    max_raw = None
    hist_min = 1.0  # The lower (inclusive) bound of the first bucket.
    hist_max = 100.0  # The upper (exclusive) bound of the last bucket.
    hist_steps = 10  # The number of buckets to use.

    if "max_buckets" in kwargs.keys():
        max_buckets = kwargs["max_buckets"]
    if "min_bucket_width" in kwargs.keys():
        min_bucket_width = kwargs["min_bucket"]
    if "max_raw" in kwargs.keys():
        max_raw = kwargs["max_raw"]

    if isinstance(stat_type, str):
        if (
            stat_type.upper() == "FIXED_HIST"
            and ("hist_min" in kwargs.keys())
            and ("hist_max" in kwargs.keys())
            and ("hist_steps" in kwargs.keys())
        ):
            hist_min = kwargs["hist_min"]
            hist_max = kwargs["hist_max"]
            hist_steps = kwargs["hist_steps"]
        elif stat_type.upper() == "FIXED_HIST":
            print(
                "To use fixedHistogram, please provide these three parameters: hist_min, hist_max, and hist_steps."
            )
            return

    allowed_statistics = {
        "COUNT": ee.Reducer.count(),
        "MEAN": ee.Reducer.mean(),
        "MEAN_UNWEIGHTED": ee.Reducer.mean().unweighted(),
        "MAXIMUM": ee.Reducer.max(),
        "MEDIAN": ee.Reducer.median(),
        "MINIMUM": ee.Reducer.min(),
        "MODE": ee.Reducer.mode(),
        "STD": ee.Reducer.stdDev(),
        "MIN_MAX": ee.Reducer.minMax(),
        "SUM": ee.Reducer.sum(),
        "VARIANCE": ee.Reducer.variance(),
        "HIST": ee.Reducer.histogram(
            maxBuckets=max_buckets, minBucketWidth=min_bucket_width, maxRaw=max_raw
        ),
        "FIXED_HIST": ee.Reducer.fixedHistogram(hist_min, hist_max, hist_steps),
        "COMBINED_COUNT_MEAN": ee.Reducer.count().combine(
            ee.Reducer.mean(), sharedInputs=True
        ),
        "COMBINED_COUNT_MEAN_UNWEIGHTED": ee.Reducer.count().combine(
            ee.Reducer.mean().unweighted(), sharedInputs=True
        ),
    }

    if isinstance(stat_type, str):
        if not (stat_type.upper() in allowed_statistics.keys()):
            print(
                "The statistics type must be one of the following: {}".format(
                    ", ".join(list(allowed_statistics.keys()))
                )
            )
            return
        reducer = allowed_statistics[stat_type.upper()]
    elif isinstance(stat_type, ee.Reducer):
        reducer = stat_type
    else:
        raise ValueError("statistics_type must be either a string or ee.Reducer.")

    if scale is None:
        scale = in_value_raster.projection().nominalScale().multiply(10)

    try:
        if verbose:
            print("Computing statistics ...")
        result = in_value_raster.reduceRegions(
            collection=in_zone_vector,
            reducer=reducer,
            scale=scale,
            crs=crs,
            tileScale=tile_scale,
        )
        if return_fc:
            return result
        else:
            ee_export_vector(result, filename, timeout=timeout, proxies=proxies)
    except Exception as e:
        raise Exception(e)

zonal_stats_by_group(in_value_raster, in_zone_vector, out_file_path=None, stat_type='SUM', decimal_places=0, denominator=1.0, scale=None, crs=None, crs_transform=None, best_effort=True, max_pixels=10000000.0, tile_scale=1.0, return_fc=False, verbose=True, timeout=300, proxies=None, **kwargs)

Summarizes the area or percentage of a raster by group within the zones of another dataset and exports the results as a csv, shp, json, kml, or kmz.

Parameters:

Name Type Description Default
in_value_raster object

An integer Image that contains the values on which to calculate area/percentage.

required
in_zone_vector object

An ee.FeatureCollection that defines the zones.

required
out_file_path str

Output file path that will contain the summary of the values in each zone. The file type can be: csv, shp, json, kml, kmz

None
stat_type str

Can be either 'SUM' or 'PERCENTAGE' . Defaults to 'SUM'.

'SUM'
decimal_places int

The number of decimal places to use. Defaults to 0.

0
denominator float

To convert area units (e.g., from square meters to square kilometers). Defaults to 1.0.

1.0
scale float

A nominal scale in meters of the projection to work in. Defaults to None.

None
crs str

The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.

None
crs_transform list

The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and replaces any transform already set on the projection.

None
best_effort bool

If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed.

True
max_pixels int

The maximum number of pixels to reduce. Defaults to 1e7.

10000000.0
tile_scale float

A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.0.

1.0
verbose bool

Whether to print descriptive text when the programming is running. Default to True.

True
return_fc bool

Whether to return the results as an ee.FeatureCollection. Defaults to False.

False
timeout int

Timeout in seconds. Defaults to 300.

300
proxies dict

A dictionary of proxies to use. Defaults to None.

None
Source code in geemap/common.py
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
def zonal_stats_by_group(
    in_value_raster,
    in_zone_vector,
    out_file_path=None,
    stat_type="SUM",
    decimal_places=0,
    denominator=1.0,
    scale=None,
    crs=None,
    crs_transform=None,
    best_effort=True,
    max_pixels=1e7,
    tile_scale=1.0,
    return_fc=False,
    verbose=True,
    timeout=300,
    proxies=None,
    **kwargs,
):
    """Summarizes the area or percentage of a raster by group within the zones of another dataset and exports the results as a csv, shp, json, kml, or kmz.

    Args:
        in_value_raster (object): An integer Image that contains the values on which to calculate area/percentage.
        in_zone_vector (object): An ee.FeatureCollection that defines the zones.
        out_file_path (str): Output file path that will contain the summary of the values in each zone. The file type can be: csv, shp, json, kml, kmz
        stat_type (str, optional): Can be either 'SUM' or 'PERCENTAGE' . Defaults to 'SUM'.
        decimal_places (int, optional): The number of decimal places to use. Defaults to 0.
        denominator (float, optional): To convert area units (e.g., from square meters to square kilometers). Defaults to 1.0.
        scale (float, optional): A nominal scale in meters of the projection to work in. Defaults to None.
        crs (str, optional): The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. Defaults to None.
        crs_transform (list, optional): The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and replaces any transform already set on the projection.
        best_effort (bool, optional): If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed.
        max_pixels (int, optional): The maximum number of pixels to reduce. Defaults to 1e7.
        tile_scale (float, optional): A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.0.
        verbose (bool, optional): Whether to print descriptive text when the programming is running. Default to True.
        return_fc (bool, optional): Whether to return the results as an ee.FeatureCollection. Defaults to False.
        timeout (int, optional): Timeout in seconds. Defaults to 300.
        proxies (dict, optional): A dictionary of proxies to use. Defaults to None.

    """

    if isinstance(in_value_raster, ee.ImageCollection):
        in_value_raster = in_value_raster.toBands()

    if not isinstance(in_value_raster, ee.Image):
        print("The input raster must be an ee.Image.")
        return

    if out_file_path is None:
        out_file_path = os.path.join(os.getcwd(), "zonal_stats_by_group.csv")

    if "statistics_type" in kwargs:
        stat_type = kwargs.pop("statistics_type")

    band_count = in_value_raster.bandNames().size().getInfo()

    band_name = ""
    if band_count == 1:
        band_name = in_value_raster.bandNames().get(0)
    else:
        print("The input image can only have one band.")
        return

    band_types = in_value_raster.bandTypes().get(band_name).getInfo()
    band_type = band_types.get("precision")
    if band_type != "int":
        print("The input image band must be integer type.")
        return

    if not isinstance(in_zone_vector, ee.FeatureCollection):
        print("The input zone data must be an ee.FeatureCollection.")
        return

    allowed_formats = ["csv", "geojson", "kml", "kmz", "shp"]
    filename = os.path.abspath(out_file_path)
    basename = os.path.basename(filename)
    # name = os.path.splitext(basename)[0]
    filetype = os.path.splitext(basename)[1][1:]

    if not (filetype.lower() in allowed_formats):
        print(
            "The file type must be one of the following: {}".format(
                ", ".join(allowed_formats)
            )
        )
        return

    out_dir = os.path.dirname(filename)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    allowed_statistics = ["SUM", "PERCENTAGE"]
    if not (stat_type.upper() in allowed_statistics):
        print(
            "The statistics type can only be one of {}".format(
                ", ".join(allowed_statistics)
            )
        )
        return

    if scale is None:
        scale = in_value_raster.projection().nominalScale().multiply(10)

    try:
        if verbose:
            print("Computing ... ")
        geometry = in_zone_vector.geometry()

        hist = in_value_raster.reduceRegion(
            ee.Reducer.frequencyHistogram(),
            geometry=geometry,
            scale=scale,
            crs=crs,
            crsTransform=crs_transform,
            bestEffort=best_effort,
            maxPixels=max_pixels,
            tileScale=tile_scale,
        )
        class_values = (
            ee.Dictionary(hist.get(band_name))
            .keys()
            .map(lambda v: ee.Number.parse(v))
            .sort()
        )

        class_names = class_values.map(
            lambda c: ee.String("Class_").cat(ee.Number(c).format())
        )

        # class_count = class_values.size().getInfo()
        dataset = ee.Image.pixelArea().divide(denominator).addBands(in_value_raster)

        init_result = dataset.reduceRegions(
            **{
                "collection": in_zone_vector,
                "reducer": ee.Reducer.sum().group(
                    **{
                        "groupField": 1,
                        "groupName": "group",
                    }
                ),
                "scale": scale,
            }
        )

        # def build_dict(input_list):

        #     decimal_format = '%.{}f'.format(decimal_places)
        #     in_dict = input_list.map(lambda x: ee.Dictionary().set(ee.String('Class_').cat(
        #         ee.Number(ee.Dictionary(x).get('group')).format()), ee.Number.parse(ee.Number(ee.Dictionary(x).get('sum')).format(decimal_format))))
        #     return in_dict

        def get_keys(input_list):
            return input_list.map(
                lambda x: ee.String("Class_").cat(
                    ee.Number(ee.Dictionary(x).get("group")).format()
                )
            )

        def get_values(input_list):
            decimal_format = "%.{}f".format(decimal_places)
            return input_list.map(
                lambda x: ee.Number.parse(
                    ee.Number(ee.Dictionary(x).get("sum")).format(decimal_format)
                )
            )

        def set_attribute(f):
            groups = ee.List(f.get("groups"))
            keys = get_keys(groups)
            values = get_values(groups)
            total_area = ee.List(values).reduce(ee.Reducer.sum())

            def get_class_values(x):
                cls_value = ee.Algorithms.If(
                    keys.contains(x), values.get(keys.indexOf(x)), 0
                )
                cls_value = ee.Algorithms.If(
                    ee.String(stat_type).compareTo(ee.String("SUM")),
                    ee.Number(cls_value).divide(ee.Number(total_area)),
                    cls_value,
                )
                return cls_value

            full_values = class_names.map(lambda x: get_class_values(x))
            attr_dict = ee.Dictionary.fromLists(class_names, full_values)
            attr_dict = attr_dict.set("Class_sum", total_area)

            return f.set(attr_dict).set("groups", None)

        final_result = init_result.map(set_attribute)
        if return_fc:
            return final_result
        else:
            ee_export_vector(final_result, filename, timeout=timeout, proxies=proxies)

    except Exception as e:
        raise Exception(e)

zoom_level_resolution(zoom, latitude=0)

Returns the approximate pixel scale based on zoom level and latutude. See https://blogs.bing.com/maps/2006/02/25/map-control-zoom-levels-gt-resolution

Parameters:

Name Type Description Default
zoom int

The zoom level.

required
latitude float

The latitude. Defaults to 0.

0

Returns:

Name Type Description
float

Map resolution in meters.

Source code in geemap/common.py
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
def zoom_level_resolution(zoom, latitude=0):
    """Returns the approximate pixel scale based on zoom level and latutude.
        See https://blogs.bing.com/maps/2006/02/25/map-control-zoom-levels-gt-resolution

    Args:
        zoom (int): The zoom level.
        latitude (float, optional): The latitude. Defaults to 0.

    Returns:
        float: Map resolution in meters.
    """
    import math

    resolution = 156543.04 * math.cos(latitude) / math.pow(2, zoom)
    return abs(resolution)