timelapse module¶
Module for creating timelapse from Earth Engine data.
add_image_to_gif(in_gif, out_gif, in_image, xy=None, image_size=(80, 80), circle_mask=False)
¶
Adds an image logo to a GIF image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gif |
str |
Input file path to the GIF image. |
required |
out_gif |
str |
Output file path to the GIF image. |
required |
in_image |
str |
Input file path to the image. |
required |
xy |
tuple |
Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
None |
image_size |
tuple |
Resize image. Defaults to (80, 80). |
(80, 80) |
circle_mask |
bool |
Whether to apply a circle mask to the image. This only works with non-png images. Defaults to False. |
False |
Source code in geemap/timelapse.py
def add_image_to_gif(
in_gif, out_gif, in_image, xy=None, image_size=(80, 80), circle_mask=False
):
"""Adds an image logo to a GIF image.
Args:
in_gif (str): Input file path to the GIF image.
out_gif (str): Output file path to the GIF image.
in_image (str): Input file path to the image.
xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
image_size (tuple, optional): Resize image. Defaults to (80, 80).
circle_mask (bool, optional): Whether to apply a circle mask to the image. This only works with non-png images. Defaults to False.
"""
# import io
import warnings
from PIL import Image, ImageDraw, ImageSequence
warnings.simplefilter("ignore")
in_gif = os.path.abspath(in_gif)
is_url = False
if in_image.startswith("http"):
is_url = True
if not os.path.exists(in_gif):
print("The input gif file does not exist.")
return
if (not is_url) and (not os.path.exists(in_image)):
print("The provided logo file does not exist.")
return
out_dir = check_dir((os.path.dirname(out_gif)))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
try:
gif = Image.open(in_gif)
except Exception as e:
print("An error occurred while opening the image.")
print(e)
return
logo_raw_image = None
try:
if in_image.startswith("http"):
logo_raw_image = open_image_from_url(in_image)
else:
in_image = os.path.abspath(in_image)
logo_raw_image = Image.open(in_image)
except Exception as e:
print(e)
logo_raw_size = logo_raw_image.size
ratio = max(
logo_raw_size[0] / image_size[0],
logo_raw_size[1] / image_size[1],
)
image_resize = (int(logo_raw_size[0] / ratio), int(logo_raw_size[1] / ratio))
image_size = min(logo_raw_size[0], image_size[0]), min(
logo_raw_size[1], image_size[1]
)
logo_image = logo_raw_image.convert("RGBA")
logo_image.thumbnail(image_size, Image.LANCZOS)
gif_width, gif_height = gif.size
mask_im = None
if circle_mask:
mask_im = Image.new("L", image_size, 0)
draw = ImageDraw.Draw(mask_im)
draw.ellipse((0, 0, image_size[0], image_size[1]), fill=255)
if has_transparency(logo_raw_image):
mask_im = logo_image.copy()
if xy is None:
# default logo location is 5% width and 5% height of the image.
delta = 10
xy = (gif_width - image_resize[0] - delta, gif_height - image_resize[1] - delta)
# xy = (int(0.05 * gif_width), int(0.05 * gif_height))
elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
print("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")
return
elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
x, y = xy
if (x > 0) and (x < gif_width) and (y > 0) and (y < gif_height):
pass
else:
print(
"xy is out of bounds. x must be within [0, {}], and y must be within [0, {}]".format(
gif_width, gif_height
)
)
return
elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
x, y = xy
if ("%" in x) and ("%" in y):
try:
x = int(float(x.replace("%", "")) / 100.0 * gif_width)
y = int(float(y.replace("%", "")) / 100.0 * gif_height)
xy = (x, y)
except Exception:
raise Exception(
"The specified xy is invalid. It must be formatted like this ('10%', '10%')"
)
else:
raise Exception(
"The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
)
try:
frames = []
for _, frame in enumerate(ImageSequence.Iterator(gif)):
frame = frame.convert("RGBA")
frame.paste(logo_image, xy, mask_im)
b = io.BytesIO()
frame.save(b, format="GIF")
frame = Image.open(b)
frames.append(frame)
frames[0].save(out_gif, save_all=True, append_images=frames[1:])
except Exception as e:
print(e)
add_overlay(collection, overlay_data, color='black', width=1, opacity=1.0, region=None)
¶
Adds an overlay to an image collection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection |
ee.ImageCollection |
The image collection to add the overlay to. |
required |
overlay_data |
str | ee.Geometry | ee.FeatureCollection |
The overlay data to add to the image collection. It can be an HTTP URL to a GeoJSON file. |
required |
color |
str |
The color of the overlay. Defaults to 'black'. |
'black' |
width |
int |
The width of the overlay. Defaults to 1. |
1 |
opacity |
float |
The opacity of the overlay. Defaults to 1.0. |
1.0 |
region |
ee.Geometry | ee.FeatureCollection |
The region of interest to add the overlay to. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
An ImageCollection with the overlay added. |
Source code in geemap/timelapse.py
def add_overlay(
collection: ee.ImageCollection,
overlay_data: Union[str, ee.Geometry, ee.FeatureCollection],
color: str = "black",
width: int = 1,
opacity: float = 1.0,
region: Union[ee.Geometry, ee.FeatureCollection] = None,
) -> ee.ImageCollection:
"""Adds an overlay to an image collection.
Args:
collection (ee.ImageCollection): The image collection to add the overlay to.
overlay_data (str | ee.Geometry | ee.FeatureCollection): The overlay data to add to the image collection. It can be an HTTP URL to a GeoJSON file.
color (str, optional): The color of the overlay. Defaults to 'black'.
width (int, optional): The width of the overlay. Defaults to 1.
opacity (float, optional): The opacity of the overlay. Defaults to 1.0.
region (ee.Geometry | ee.FeatureCollection, optional): The region of interest to add the overlay to. Defaults to None.
Returns:
ee.ImageCollection: An ImageCollection with the overlay added.
"""
# Some common administrative boundaries.
public_assets = ["continents", "countries", "us_states", "china"]
if not isinstance(collection, ee.ImageCollection):
raise Exception("The collection must be an ee.ImageCollection.")
if not isinstance(overlay_data, ee.FeatureCollection):
if isinstance(overlay_data, str):
try:
if overlay_data.lower() in public_assets:
overlay_data = ee.FeatureCollection(
f"users/giswqs/public/{overlay_data.lower()}"
)
elif overlay_data.startswith("http") and overlay_data.endswith(
".geojson"
):
overlay_data = geojson_to_ee(overlay_data)
else:
overlay_data = ee.FeatureCollection(overlay_data)
except Exception as e:
print(
"The overlay_data must be a valid ee.FeatureCollection, a valid ee.FeatureCollection asset id, or http url to a geojson file."
)
raise Exception(e)
elif isinstance(overlay_data, ee.Feature):
overlay_data = ee.FeatureCollection([overlay_data])
elif isinstance(overlay_data, ee.Geometry):
overlay_data = ee.FeatureCollection([ee.Feature(overlay_data)])
else:
raise Exception(
"The overlay_data must be a valid ee.FeatureCollection or a valid ee.FeatureCollection asset id."
)
try:
if region is not None:
overlay_data = overlay_data.filterBounds(region)
empty = ee.Image().byte()
image = empty.paint(
**{
"featureCollection": overlay_data,
"color": 1,
"width": width,
}
).visualize(**{"palette": check_color(color), "opacity": opacity})
blend_col = collection.map(
lambda img: img.blend(image).set(
"system:time_start", img.get("system:time_start")
)
)
return blend_col
except Exception as e:
print("Error in add_overlay:")
raise Exception(e)
add_progress_bar_to_gif(in_gif, out_gif, progress_bar_color='blue', progress_bar_height=5, duration=100, loop=0)
¶
Adds a progress bar to a GIF image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gif |
str |
The file path to the input GIF image. |
required |
out_gif |
str |
The file path to the output GIF image. |
required |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'blue' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
duration |
int |
controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100. |
100 |
loop |
int |
controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
Source code in geemap/timelapse.py
def add_progress_bar_to_gif(
in_gif,
out_gif,
progress_bar_color="blue",
progress_bar_height=5,
duration=100,
loop=0,
):
"""Adds a progress bar to a GIF image.
Args:
in_gif (str): The file path to the input GIF image.
out_gif (str): The file path to the output GIF image.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
duration (int, optional): controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.
loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
"""
import io
import warnings
from PIL import Image, ImageDraw, ImageSequence
warnings.simplefilter("ignore")
in_gif = os.path.abspath(in_gif)
out_gif = os.path.abspath(out_gif)
if not os.path.exists(in_gif):
print("The input gif file does not exist.")
return
if not os.path.exists(os.path.dirname(out_gif)):
os.makedirs(os.path.dirname(out_gif))
progress_bar_color = check_color(progress_bar_color)
try:
image = Image.open(in_gif)
except Exception as e:
raise Exception("An error occurred while opening the gif.")
count = image.n_frames
W, H = image.size
progress_bar_widths = [i * 1.0 / count * W for i in range(1, count + 1)]
progress_bar_shapes = [
[(0, H - progress_bar_height), (x, H)] for x in progress_bar_widths
]
try:
frames = []
# Loop over each frame in the animated image
for index, frame in enumerate(ImageSequence.Iterator(image)):
# Draw the text on the frame
frame = frame.convert("RGB")
draw = ImageDraw.Draw(frame)
# w, h = draw.textsize(text[index])
draw.rectangle(progress_bar_shapes[index], fill=progress_bar_color)
del draw
b = io.BytesIO()
frame.save(b, format="GIF")
frame = Image.open(b)
frames.append(frame)
# https://www.pythoninformer.com/python-libraries/pillow/creating-animated-gif/
# Save the frames as a new image
frames[0].save(
out_gif,
save_all=True,
append_images=frames[1:],
duration=duration,
loop=loop,
optimize=True,
)
except Exception as e:
raise Exception(e)
add_text_to_gif(in_gif, out_gif, xy=None, text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#000000', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, duration=100, loop=0)
¶
Adds animated text to a GIF image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gif |
str |
The file path to the input GIF image. |
required |
out_gif |
str |
The file path to the output GIF image. |
required |
xy |
tuple |
Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
None |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'#000000' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
duration |
int |
controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100. |
100 |
loop |
int |
controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
Source code in geemap/timelapse.py
def add_text_to_gif(
in_gif,
out_gif,
xy=None,
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="#000000",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
duration=100,
loop=0,
):
"""Adds animated text to a GIF image.
Args:
in_gif (str): The file path to the input GIF image.
out_gif (str): The file path to the output GIF image.
xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
duration (int, optional): controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.
loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
"""
# import io
import warnings
import pkg_resources
from PIL import Image, ImageDraw, ImageFont, ImageSequence
warnings.simplefilter("ignore")
pkg_dir = os.path.dirname(pkg_resources.resource_filename("geemap", "geemap.py"))
default_font = os.path.join(pkg_dir, "data/fonts/arial.ttf")
in_gif = os.path.abspath(in_gif)
out_gif = os.path.abspath(out_gif)
if not os.path.exists(in_gif):
print("The input gif file does not exist.")
return
if not os.path.exists(os.path.dirname(out_gif)):
os.makedirs(os.path.dirname(out_gif))
if font_type == "arial.ttf":
font = ImageFont.truetype(default_font, font_size)
elif font_type == "alibaba.otf":
default_font = os.path.join(pkg_dir, "data/fonts/alibaba.otf")
font = ImageFont.truetype(default_font, font_size)
else:
try:
font_list = system_fonts(show_full_path=True)
font_names = [os.path.basename(f) for f in font_list]
if (font_type in font_list) or (font_type in font_names):
font = ImageFont.truetype(font_type, font_size)
else:
print(
"The specified font type could not be found on your system. Using the default font instead."
)
font = ImageFont.truetype(default_font, font_size)
except Exception as e:
print(e)
font = ImageFont.truetype(default_font, font_size)
color = check_color(font_color)
progress_bar_color = check_color(progress_bar_color)
try:
image = Image.open(in_gif)
except Exception as e:
print("An error occurred while opening the gif.")
print(e)
return
count = image.n_frames
W, H = image.size
progress_bar_widths = [i * 1.0 / count * W for i in range(1, count + 1)]
progress_bar_shapes = [
[(0, H - progress_bar_height), (x, H)] for x in progress_bar_widths
]
if xy is None:
# default text location is 5% width and 5% height of the image.
xy = (int(0.05 * W), int(0.05 * H))
elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
print("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")
return
elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
x, y = xy
if (x > 0) and (x < W) and (y > 0) and (y < H):
pass
else:
print(
f"xy is out of bounds. x must be within [0, {W}], and y must be within [0, {H}]"
)
return
elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
x, y = xy
if ("%" in x) and ("%" in y):
try:
x = int(float(x.replace("%", "")) / 100.0 * W)
y = int(float(y.replace("%", "")) / 100.0 * H)
xy = (x, y)
except Exception:
raise Exception(
"The specified xy is invalid. It must be formatted like this ('10%', '10%')"
)
else:
print(
"The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
)
return
if text_sequence is None:
text = [str(x) for x in range(1, count + 1)]
elif isinstance(text_sequence, int):
text = [str(x) for x in range(text_sequence, text_sequence + count + 1)]
elif isinstance(text_sequence, str):
try:
text_sequence = int(text_sequence)
text = [str(x) for x in range(text_sequence, text_sequence + count + 1)]
except Exception:
text = [text_sequence] * count
elif isinstance(text_sequence, list) and len(text_sequence) != count:
print(
f"The length of the text sequence must be equal to the number ({count}) of frames in the gif."
)
return
else:
text = [str(x) for x in text_sequence]
try:
frames = []
# Loop over each frame in the animated image
for index, frame in enumerate(ImageSequence.Iterator(image)):
# Draw the text on the frame
frame = frame.convert("RGB")
draw = ImageDraw.Draw(frame)
# w, h = draw.textsize(text[index])
draw.text(xy, text[index], font=font, fill=color)
if add_progress_bar:
draw.rectangle(progress_bar_shapes[index], fill=progress_bar_color)
del draw
b = io.BytesIO()
frame.save(b, format="GIF")
frame = Image.open(b)
frames.append(frame)
# https://www.pythoninformer.com/python-libraries/pillow/creating-animated-gif/
# Save the frames as a new image
frames[0].save(
out_gif,
save_all=True,
append_images=frames[1:],
duration=duration,
loop=loop,
optimize=True,
)
except Exception as e:
print(e)
create_timelapse(collection, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', date_format=None, out_gif=None, palette=None, vis_params=None, dimensions=768, frames_per_second=10, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=False, colorbar_width=6.0, colorbar_height=0.4, colorbar_label=None, colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color=None, colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False, parallel_scale=1, step=1)
¶
Create a timelapse from any ee.ImageCollection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection |
str | ee.ImageCollection |
The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object. |
required |
start_date |
str |
The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
end_date |
str |
The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
region |
ee.Geometry |
The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None. |
None |
bands |
list |
A list of band names to use in the timelapse. Defaults to None. |
None |
frequency |
str |
The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'. |
'year' |
reducer |
str |
The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. |
'median' |
drop_empty |
bool |
Whether to drop empty images from the timeseries. Defaults to True. |
required |
date_format |
str |
A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. |
None |
out_gif |
str |
The output gif file path. Defaults to None. |
None |
palette |
list |
A list of colors to render a single-band image in the timelapse. Defaults to None. |
None |
vis_params |
dict |
A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
10 |
crs |
str |
The coordinate reference system to use. Defaults to "EPSG:3857". |
'EPSG:3857' |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
add_colorbar |
bool |
Whether to add a colorbar to the timelapse. Defaults to False. |
False |
colorbar_width |
float |
Width of the colorbar. Defaults to 6.0. |
6.0 |
colorbar_height |
float |
Height of the colorbar. Defaults to 0.4. |
0.4 |
colorbar_label |
str |
Label for the colorbar. Defaults to None. |
None |
colorbar_label_size |
int |
Font size for the colorbar label. Defaults to 12. |
12 |
colorbar_label_weight |
str |
Font weight for the colorbar label. Defaults to 'normal'. |
'normal' |
colorbar_tick_size |
int |
Font size for the colorbar ticks. Defaults to 10. |
10 |
colorbar_bg_color |
str |
Background color for the colorbar, can be color like "white", "black". Defaults to None. |
None |
colorbar_orientation |
str |
Orientation of the colorbar. Defaults to 'horizontal'. |
'horizontal' |
colorbar_dpi |
str |
DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'. |
'figure' |
colorbar_xy |
tuple |
Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
None |
colorbar_size |
tuple |
Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300). |
(300, 300) |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to create an mp4 file. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
parallel_scale |
int |
A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. |
1 |
step |
int |
The step size to use when creating the date sequence. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
str |
File path to the timelapse gif. |
Source code in geemap/timelapse.py
def create_timelapse(
collection,
start_date,
end_date,
region=None,
bands=None,
frequency="year",
reducer="median",
date_format=None,
out_gif=None,
palette=None,
vis_params=None,
dimensions=768,
frames_per_second=10,
crs="EPSG:3857",
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
add_colorbar=False,
colorbar_width=6.0,
colorbar_height=0.4,
colorbar_label=None,
colorbar_label_size=12,
colorbar_label_weight="normal",
colorbar_tick_size=10,
colorbar_bg_color=None,
colorbar_orientation="horizontal",
colorbar_dpi="figure",
colorbar_xy=None,
colorbar_size=(300, 300),
loop=0,
mp4=False,
fading=False,
parallel_scale=1,
step=1,
):
"""Create a timelapse from any ee.ImageCollection.
Args:
collection (str | ee.ImageCollection): The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.
start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
out_gif (str): The output gif file path. Defaults to None.
palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
colorbar_label (str, optional): Label for the colorbar. Defaults to None.
colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
str: File path to the timelapse gif.
"""
import geemap.colormaps as cm
if not isinstance(collection, ee.ImageCollection):
if isinstance(collection, str):
collection = ee.ImageCollection(collection)
else:
raise Exception(
"The collection must be an ee.ImageCollection object or asset id."
)
col = create_timeseries(
collection,
start_date,
end_date,
region=region,
bands=bands,
frequency=frequency,
reducer=reducer,
drop_empty=True,
date_format=date_format,
parallel_scale=parallel_scale,
step=step,
)
# rename the bands to remove the '_reducer' characters from the band names.
col = col.map(
lambda img: img.rename(
img.bandNames().map(lambda name: ee.String(name).replace(f"_{reducer}", ""))
)
)
if out_gif is None:
out_gif = temp_file_path(".gif")
else:
out_gif = check_file_path(out_gif)
out_dir = os.path.dirname(out_gif)
if bands is None:
names = col.first().bandNames().getInfo()
if len(names) < 3:
bands = [names[0]]
else:
bands = names[:3][::-1]
elif isinstance(bands, str):
bands = [bands]
elif not isinstance(bands, list):
raise Exception("The bands must be a string or a list of strings.")
if isinstance(palette, str):
palette = cm.get_palette(palette, 15)
elif isinstance(palette, list) or isinstance(palette, tuple):
pass
elif palette is not None:
raise Exception("The palette must be a string or a list of strings.")
if vis_params is None:
img = col.first().select(bands)
scale = collection.first().select(0).projection().nominalScale().multiply(10)
min_value = min(
image_min_value(img, region=region, scale=scale).getInfo().values()
)
max_value = max(
image_max_value(img, region=region, scale=scale).getInfo().values()
)
vis_params = {"bands": bands, "min": min_value, "max": max_value}
if len(bands) == 1:
if palette is not None:
vis_params["palette"] = palette
else:
vis_params["palette"] = cm.palettes.ndvi
elif isinstance(vis_params, dict):
if "bands" not in vis_params:
vis_params["bands"] = bands
if "min" not in vis_params:
img = col.first().select(bands)
scale = (
collection.first().select(0).projection().nominalScale().multiply(10)
)
vis_params["min"] = min(
image_min_value(img, region=region, scale=scale).getInfo().values()
)
if "max" not in vis_params:
img = col.first().select(bands)
scale = (
collection.first().select(0).projection().nominalScale().multiply(10)
)
vis_params["max"] = max(
image_max_value(img, region=region, scale=scale).getInfo().values()
)
if palette is None and (len(bands) == 1) and ("palette" not in vis_params):
vis_params["palette"] = cm.palettes.ndvi
elif palette is not None and ("palette" not in vis_params):
vis_params["palette"] = palette
if len(bands) > 1 and "palette" in vis_params:
del vis_params["palette"]
else:
raise Exception("The vis_params must be a dictionary.")
col = col.select(bands).map(
lambda img: img.visualize(**vis_params).set(
{
"system:time_start": img.get("system:time_start"),
"system:date": img.get("system:date"),
}
)
)
if overlay_data is not None:
col = add_overlay(
col, overlay_data, overlay_color, overlay_width, overlay_opacity
)
video_args = {}
video_args["dimensions"] = dimensions
video_args["region"] = region
video_args["framesPerSecond"] = frames_per_second
video_args["crs"] = crs
video_args["min"] = 0
video_args["max"] = 255
# if crs is not None:
# video_args["crs"] = crs
if "palette" in vis_params or len(bands) > 1:
video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
else:
video_args["bands"] = ["vis-gray"]
if (
isinstance(dimensions, int)
and dimensions > 768
or isinstance(dimensions, str)
and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
):
count = col.size().getInfo()
basename = os.path.basename(out_gif)[:-4]
names = [
os.path.join(
out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
)
for i in range(count)
]
get_image_collection_thumbnails(
col,
out_dir,
vis_params={
"min": 0,
"max": 255,
"bands": video_args["bands"],
},
dimensions=dimensions,
names=names,
)
make_gif(
names,
out_gif,
fps=frames_per_second,
loop=loop,
mp4=False,
clean_up=True,
)
else:
download_ee_video(col, video_args, out_gif)
if title is not None and isinstance(title, str):
add_text_to_gif(
out_gif,
out_gif,
xy=title_xy,
text_sequence=title,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if add_text:
if text_sequence is None:
text_sequence = col.aggregate_array("system:date").getInfo()
add_text_to_gif(
out_gif,
out_gif,
xy=text_xy,
text_sequence=text_sequence,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if add_colorbar:
colorbar = save_colorbar(
None,
colorbar_width,
colorbar_height,
vis_params["min"],
vis_params["max"],
vis_params["palette"],
label=colorbar_label,
label_size=colorbar_label_size,
label_weight=colorbar_label_weight,
tick_size=colorbar_tick_size,
bg_color=colorbar_bg_color,
orientation=colorbar_orientation,
dpi=colorbar_dpi,
show_colorbar=False,
)
add_image_to_gif(out_gif, out_gif, colorbar, colorbar_xy, colorbar_size)
if os.path.exists(out_gif):
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
create_timeseries(collection, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1, step=1)
¶
Creates a timeseries from a collection of images by a specified frequency and reducer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection |
str | ee.ImageCollection |
The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object. |
required |
start_date |
str |
The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
end_date |
str |
The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
region |
ee.Geometry |
The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None. |
None |
bands |
list |
The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None. |
None |
frequency |
str |
The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'. |
'year' |
reducer |
str |
The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. |
'median' |
drop_empty |
bool |
Whether to drop empty images from the timeseries. Defaults to True. |
True |
date_format |
str |
A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. |
None |
parallel_scale |
int |
A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. |
1 |
step |
int |
The step size to use when creating the date sequence. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
The timeseries. |
Source code in geemap/timelapse.py
def create_timeseries(
collection,
start_date,
end_date,
region=None,
bands=None,
frequency="year",
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1,
step=1,
):
"""Creates a timeseries from a collection of images by a specified frequency and reducer.
Args:
collection (str | ee.ImageCollection): The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.
start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
ee.ImageCollection: The timeseries.
"""
if not isinstance(collection, ee.ImageCollection):
if isinstance(collection, str):
collection = ee.ImageCollection(collection)
else:
raise Exception(
"The collection must be an ee.ImageCollection object or asset id."
)
if bands is not None:
collection = collection.select(bands)
else:
bands = collection.first().bandNames()
feq_dict = {
"year": "YYYY",
"month": "YYYY-MM",
"quarter": "YYYY-MM",
"week": "YYYY-MM-dd",
"day": "YYYY-MM-dd",
"hour": "YYYY-MM-dd HH",
"minute": "YYYY-MM-dd HH:mm",
"second": "YYYY-MM-dd HH:mm:ss",
}
if date_format is None:
date_format = feq_dict[frequency]
dates = date_sequence(start_date, end_date, frequency, date_format, step)
try:
reducer = eval(f"ee.Reducer.{reducer}()")
except Exception as e:
print("The provided reducer is invalid.")
raise Exception(e)
def create_image(date):
start = ee.Date(date)
if frequency == "quarter":
end = start.advance(3, "month")
else:
end = start.advance(1, frequency)
if region is None:
sub_col = collection.filterDate(start, end)
image = sub_col.reduce(reducer, parallel_scale)
else:
sub_col = collection.filterDate(start, end).filterBounds(region)
image = ee.Image(
ee.Algorithms.If(
ee.Algorithms.ObjectType(region).equals("FeatureCollection"),
sub_col.reduce(reducer, parallel_scale).clipToCollection(region),
sub_col.reduce(reducer, parallel_scale).clip(region),
)
)
return image.set(
{
"system:time_start": ee.Date(date).millis(),
"system:date": ee.Date(date).format(date_format),
"empty": sub_col.limit(1).size().eq(0),
}
).rename(bands)
try:
images = ee.ImageCollection(dates.map(create_image))
if drop_empty:
return images.filterMetadata("empty", "equals", 0)
else:
return images
except Exception as e:
raise Exception(e)
dynamic_world_timeseries(region, start_date='2016-01-01', end_date='2021-12-31', cloud_pct=30, frequency='year', reducer='mode', drop_empty=True, date_format=None, return_type='hillshade', parallel_scale=1)
¶
Create Dynamic World timeseries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
region |
ee.Geometry | ee.FeatureCollection |
The region of interest. |
required |
start_date |
str | ee.Date |
The start date of the query. Default to "2016-01-01". |
'2016-01-01' |
end_date |
str | ee.Date |
The end date of the query. Default to "2021-12-31". |
'2021-12-31' |
cloud_pct |
int |
The cloud percentage threshold (<=). Defaults to 30. |
30 |
frequency |
str |
The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'. |
'year' |
reducer |
str |
The reducer to be used. Defaults to "mode". |
'mode' |
drop_empty |
bool |
Whether to drop empty images from the timeseries. Defaults to True. |
True |
date_format |
str |
A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. |
None |
return_type |
str |
The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade". |
'hillshade' |
parallel_scale |
int |
A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
An ImageCollection of the Dynamic World land cover timeseries. |
Source code in geemap/timelapse.py
def dynamic_world_timeseries(
region,
start_date="2016-01-01",
end_date="2021-12-31",
cloud_pct=30,
frequency="year",
reducer="mode",
drop_empty=True,
date_format=None,
return_type="hillshade",
parallel_scale=1,
):
"""Create Dynamic World timeseries.
Args:
region (ee.Geometry | ee.FeatureCollection): The region of interest.
start_date (str | ee.Date): The start date of the query. Default to "2016-01-01".
end_date (str | ee.Date): The end date of the query. Default to "2021-12-31".
cloud_pct (int, optional): The cloud percentage threshold (<=). Defaults to 30.
frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
reducer (str, optional): The reducer to be used. Defaults to "mode".
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
return_type (str, optional): The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
Returns:
ee.ImageCollection: An ImageCollection of the Dynamic World land cover timeseries.
"""
if return_type not in ["hillshade", "visualize", "class", "probability"]:
raise ValueError(
f"{return_type} must be one of 'hillshade', 'visualize', 'class', or 'probability'."
)
if (
isinstance(region, ee.FeatureCollection)
or isinstance(region, ee.Feature)
or isinstance(region, ee.Geometry)
):
pass
else:
raise ValueError(
f"{region} must be one of ee.FeatureCollection, ee.Feature, or ee.Geometry."
)
if cloud_pct < 0 or cloud_pct > 100:
raise ValueError(f"{cloud_pct} must be between 0 and 100.")
s2 = (
ee.ImageCollection("COPERNICUS/S2_HARMONIZED")
.filterDate(start_date, end_date)
.filterBounds(region)
.filter(ee.Filter.lte("CLOUDY_PIXEL_PERCENTAGE", cloud_pct))
)
ids = s2.aggregate_array("system:index")
dw = ee.ImageCollection("GOOGLE/DYNAMICWORLD/V1").filter(
ee.Filter.inList("system:index", ids)
)
collection = dw.select("label")
dwVisParams = {
"min": 0,
"max": 8,
"palette": [
"#419BDF",
"#397D49",
"#88B053",
"#7A87C6",
"#E49635",
"#DFC35A",
"#C4281B",
"#A59B8F",
"#B39FE1",
],
}
images = create_timeseries(
collection,
start_date,
end_date,
region,
None,
frequency,
reducer,
drop_empty,
date_format,
parallel_scale,
)
if return_type == "class":
return images
elif return_type == "visualize":
result = images.map(lambda img: img.visualize(**dwVisParams))
return result
else:
# Create a Top-1 Probability Hillshade Visualization
probabilityBands = [
"water",
"trees",
"grass",
"flooded_vegetation",
"crops",
"shrub_and_scrub",
"built",
"bare",
"snow_and_ice",
]
# Select probability bands
probabilityCol = dw.select(probabilityBands)
prob_col = create_timeseries(
probabilityCol,
start_date,
end_date,
region,
None,
frequency,
"mean",
drop_empty,
date_format,
parallel_scale,
)
prob_images = ee.ImageCollection(
prob_col.map(
lambda img: img.reduce(ee.Reducer.max()).set(
"system:time_start", img.get("system:time_start")
)
)
)
if return_type == "probability":
return prob_images
elif return_type == "hillshade":
count = prob_images.size()
nums = ee.List.sequence(0, count.subtract(1))
def create_hillshade(d):
proj = ee.Projection("EPSG:3857").atScale(10)
img = ee.Image(images.toList(images.size()).get(d))
prob_img = ee.Image(prob_images.toList(prob_images.size()).get(d))
prob_img = prob_img.setDefaultProjection(proj)
top1Confidence = prob_img.multiply(100).int()
hillshade = ee.Terrain.hillshade(top1Confidence).divide(255)
rgbImage = img.visualize(**dwVisParams).divide(255)
probabilityHillshade = rgbImage.multiply(hillshade)
return probabilityHillshade.set(
"system:time_start", img.get("system:time_start")
)
result = ee.ImageCollection(nums.map(create_hillshade))
return result
gif_fading(in_gif, out_gif, duration=1, verbose=True)
¶
Fade in/out the gif.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gif |
str |
The input gif file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif" |
required |
out_gif |
str |
The output gif file. |
required |
duration |
float |
The duration of the fading. Defaults to 1. |
1 |
verbose |
bool |
Whether to print the progress. Defaults to True. |
True |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
Raise exception when the input gif does not exist. |
Exception |
Raise exception when ffmpeg is not installed. |
Source code in geemap/timelapse.py
def gif_fading(in_gif, out_gif, duration=1, verbose=True):
"""Fade in/out the gif.
Args:
in_gif (str): The input gif file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"
out_gif (str): The output gif file.
duration (float, optional): The duration of the fading. Defaults to 1.
verbose (bool, optional): Whether to print the progress. Defaults to True.
Raises:
FileNotFoundError: Raise exception when the input gif does not exist.
Exception: Raise exception when ffmpeg is not installed.
"""
import glob
import tempfile
current_dir = os.getcwd()
if isinstance(in_gif, str) and in_gif.startswith("http"):
ext = os.path.splitext(in_gif)[1]
file_path = temp_file_path(ext)
download_from_url(in_gif, file_path, verbose=verbose)
in_gif = file_path
in_gif = os.path.abspath(in_gif)
if not in_gif.endswith(".gif"):
raise Exception("in_gif must be a gif file.")
if " " in in_gif:
raise Exception("The filename cannot contain spaces.")
out_gif = os.path.abspath(out_gif)
if not os.path.exists(os.path.dirname(out_gif)):
os.makedirs(os.path.dirname(out_gif))
if not os.path.exists(in_gif):
raise FileNotFoundError(f"{in_gif} does not exist.")
basename = os.path.basename(in_gif).replace(".gif", "")
temp_dir = os.path.join(tempfile.gettempdir(), basename)
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
gif_to_png(in_gif, temp_dir, verbose=verbose)
os.chdir(temp_dir)
images = list(glob.glob(os.path.join(temp_dir, "*.png")))
count = len(images)
files = []
for i in range(1, count + 1):
files.append(f"-loop 1 -t {duration} -i {i}.png")
inputs = " ".join(files)
filters = []
for i in range(1, count):
if i == 1:
filters.append(
f"\"[1:v][0:v]blend=all_expr='A*(if(gte(T,3),1,T/3))+B*(1-(if(gte(T,3),1,T/3)))'[v0];"
)
else:
filters.append(
f"[{i}:v][{i-1}:v]blend=all_expr='A*(if(gte(T,3),1,T/3))+B*(1-(if(gte(T,3),1,T/3)))'[v{i-1}];"
)
last_filter = ""
for i in range(count - 1):
last_filter += f"[v{i}]"
last_filter += f'concat=n={count-1}:v=1:a=0[v]" -map "[v]"'
filters.append(last_filter)
filters = " ".join(filters)
cmd = f"ffmpeg -y -loglevel error {inputs} -filter_complex {filters} {out_gif}"
# if fade >= duration:
# duration = fade + 1
# files = []
# for i in range(1, count + 1):
# files.append(f"-framerate {framerate} -loop 1 -t {duration} -i {i}.png")
# inputs = " ".join(files)
# filters = []
# for i in range(count):
# if i == 0:
# filters.append(f'"[0:v]fade=t=out:st=4:d={fade}[v0];')
# else:
# filters.append(
# f"[{i}:v]fade=t=in:st=0:d={fade},fade=t=out:st=4:d={fade}[v{i}];"
# )
# last_filter = ""
# for i in range(count):
# last_filter += f"[v{i}]"
# last_filter += f"concat=n={count}:v=1:a=0,split[v0][v1];"
# filters.append(last_filter)
# palette = f'[v0]palettegen[p];[v1][p]paletteuse[v]" -map "[v]"'
# filters.append(palette)
# filters = " ".join(filters)
# cmd = f"ffmpeg -y {inputs} -filter_complex {filters} {out_gif}"
os.system(cmd)
try:
shutil.rmtree(temp_dir)
except Exception as e:
print(e)
os.chdir(current_dir)
gif_to_mp4(in_gif, out_mp4)
¶
Converts a gif to mp4.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gif |
str |
The input gif file. |
required |
out_mp4 |
str |
The output mp4 file. |
required |
Source code in geemap/timelapse.py
def gif_to_mp4(in_gif, out_mp4):
"""Converts a gif to mp4.
Args:
in_gif (str): The input gif file.
out_mp4 (str): The output mp4 file.
"""
from PIL import Image
if not os.path.exists(in_gif):
raise FileNotFoundError(f"{in_gif} does not exist.")
out_mp4 = os.path.abspath(out_mp4)
if not out_mp4.endswith(".mp4"):
out_mp4 = out_mp4 + ".mp4"
if not os.path.exists(os.path.dirname(out_mp4)):
os.makedirs(os.path.dirname(out_mp4))
if not is_tool("ffmpeg"):
print("ffmpeg is not installed on your computer.")
return
width, height = Image.open(in_gif).size
if width % 2 == 0 and height % 2 == 0:
cmd = f"ffmpeg -loglevel error -i {in_gif} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
os.system(cmd)
else:
width += width % 2
height += height % 2
cmd = f"ffmpeg -loglevel error -i {in_gif} -vf scale={width}:{height} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
os.system(cmd)
if not os.path.exists(out_mp4):
raise Exception(f"Failed to create mp4 file.")
gif_to_png(in_gif, out_dir=None, prefix='', verbose=True)
¶
Converts a gif to png.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gif |
str |
The input gif file. |
required |
out_dir |
str |
The output directory. Defaults to None. |
None |
prefix |
str |
The prefix of the output png files. Defaults to None. |
'' |
verbose |
bool |
Whether to print the progress. Defaults to True. |
True |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
Raise exception when the input gif does not exist. |
Exception |
Raise exception when ffmpeg is not installed. |
Source code in geemap/timelapse.py
def gif_to_png(in_gif, out_dir=None, prefix="", verbose=True):
"""Converts a gif to png.
Args:
in_gif (str): The input gif file.
out_dir (str, optional): The output directory. Defaults to None.
prefix (str, optional): The prefix of the output png files. Defaults to None.
verbose (bool, optional): Whether to print the progress. Defaults to True.
Raises:
FileNotFoundError: Raise exception when the input gif does not exist.
Exception: Raise exception when ffmpeg is not installed.
"""
import tempfile
in_gif = os.path.abspath(in_gif)
if " " in in_gif:
raise Exception("in_gif cannot contain spaces.")
if not os.path.exists(in_gif):
raise FileNotFoundError(f"{in_gif} does not exist.")
basename = os.path.basename(in_gif).replace(".gif", "")
if out_dir is None:
out_dir = os.path.join(tempfile.gettempdir(), basename)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
elif isinstance(out_dir, str) and not os.path.exists(out_dir):
os.makedirs(out_dir)
elif not isinstance(out_dir, str):
raise Exception("out_dir must be a string.")
out_dir = os.path.abspath(out_dir)
cmd = f"ffmpeg -loglevel error -i {in_gif} -vsync 0 {out_dir}/{prefix}%d.png"
os.system(cmd)
if verbose:
print(f"Images are saved to {out_dir}")
goes_fire_timelapse(roi=None, out_gif=None, start_date='2020-09-05T15:00', end_date='2020-09-06T02:00', data='GOES-17', scan='full_disk', dimensions=768, framesPerSecond=10, date_format='YYYY-MM-dd HH:mm', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, crs=None, overlay_data=None, overlay_color='#000000', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)
¶
Create a timelapse of GOES fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Parameters:
Name | Type | Description | Default |
---|---|---|---|
out_gif |
str |
The file path to save the gif. |
None |
start_date |
str |
The start date of the time series. Defaults to "2021-10-24T14:00:00". |
'2020-09-05T15:00' |
end_date |
str |
The end date of the time series. Defaults to "2021-10-25T01:00:00". |
'2020-09-06T02:00' |
data |
str |
The GOES satellite data to use. Defaults to "GOES-17". |
'GOES-17' |
scan |
str |
The GOES scan to use. Defaults to "full_disk". |
'full_disk' |
region |
ee.Geometry |
The region of interest. Defaults to None. |
required |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
required |
date_format |
str |
The date format to use. Defaults to "YYYY-MM-dd HH:mm". |
'YYYY-MM-dd HH:mm' |
xy |
tuple |
Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('3%', '3%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'#ffffff' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
loop |
int |
controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
crs |
str |
The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None. |
None |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'#000000' |
overlay_width |
int |
Width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
mp4 |
bool |
Whether to convert the GIF to MP4. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
Exceptions:
Type | Description |
---|---|
Exception |
Raise exception. |
Source code in geemap/timelapse.py
def goes_fire_timelapse(
roi=None,
out_gif=None,
start_date="2020-09-05T15:00",
end_date="2020-09-06T02:00",
data="GOES-17",
scan="full_disk",
dimensions=768,
framesPerSecond=10,
date_format="YYYY-MM-dd HH:mm",
xy=("3%", "3%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="#ffffff",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
crs=None,
overlay_data=None,
overlay_color="#000000",
overlay_width=1,
overlay_opacity=1.0,
mp4=False,
fading=False,
**kwargs,
):
"""Create a timelapse of GOES fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e.
Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Args:
out_gif (str): The file path to save the gif.
start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
scan (str, optional): The GOES scan to use. Defaults to "full_disk".
region (ee.Geometry, optional): The region of interest. Defaults to None.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
date_format (str, optional): The date format to use. Defaults to "YYYY-MM-dd HH:mm".
xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
crs (str, optional): The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
Raises:
Exception: Raise exception.
"""
try:
if "region" in kwargs:
roi = kwargs["region"]
if out_gif is None:
out_gif = os.path.abspath(f"goes_fire_{random_string(3)}.gif")
if roi is None:
roi = ee.Geometry.BBox(-123.17, 36.56, -118.22, 40.03)
col = goes_fire_timeseries(start_date, end_date, data, scan, roi)
if overlay_data is not None:
col = add_overlay(
col, overlay_data, overlay_color, overlay_width, overlay_opacity
)
# visParams = {
# "bands": ["CMI_C02", "CMI_GREEN", "CMI_C01"],
# "min": 0,
# "max": 0.8,
# "dimensions": dimensions,
# "framesPerSecond": framesPerSecond,
# "region": region,
# "crs": col.first().projection(),
# }
if crs is None:
crs = col.first().projection()
cmiFdcVisParams = {
"dimensions": dimensions,
"framesPerSecond": framesPerSecond,
"region": roi,
"crs": crs,
}
if text_sequence is None:
text_sequence = image_dates(col, date_format=date_format).getInfo()
download_ee_video(col, cmiFdcVisParams, out_gif)
if os.path.exists(out_gif):
add_text_to_gif(
out_gif,
out_gif,
xy,
text_sequence,
font_type,
font_size,
font_color,
add_progress_bar,
progress_bar_color,
progress_bar_height,
duration=1000 / framesPerSecond,
loop=loop,
)
try:
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
except Exception as _:
pass
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
except Exception as e:
raise Exception(e)
goes_fire_timeseries(start_date='2020-09-05T15:00', end_date='2020-09-06T02:00', data='GOES-17', scan='full_disk', region=None, merge=True)
¶
Create a time series of GOES Fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start_date |
str |
The start date of the time series. Defaults to "2020-09-05T15:00". |
'2020-09-05T15:00' |
end_date |
str |
The end date of the time series. Defaults to "2020-09-06T02:00". |
'2020-09-06T02:00' |
data |
str |
The GOES satellite data to use. Defaults to "GOES-17". |
'GOES-17' |
scan |
str |
The GOES scan to use. Defaults to "full_disk". |
'full_disk' |
region |
ee.Geometry |
The region of interest. Defaults to None. |
None |
merge |
bool |
Whether to merge the fire timeseries with GOES CMI timeseries. Defaults to True. |
True |
Exceptions:
Type | Description |
---|---|
ValueError |
The data must be either GOES-16 or GOES-17. |
ValueError |
The scan must be either full_disk or conus. |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
GOES fire timeseries. |
Source code in geemap/timelapse.py
def goes_fire_timeseries(
start_date="2020-09-05T15:00",
end_date="2020-09-06T02:00",
data="GOES-17",
scan="full_disk",
region=None,
merge=True,
):
"""Create a time series of GOES Fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e.
Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Args:
start_date (str, optional): The start date of the time series. Defaults to "2020-09-05T15:00".
end_date (str, optional): The end date of the time series. Defaults to "2020-09-06T02:00".
data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
scan (str, optional): The GOES scan to use. Defaults to "full_disk".
region (ee.Geometry, optional): The region of interest. Defaults to None.
merge (bool, optional): Whether to merge the fire timeseries with GOES CMI timeseries. Defaults to True.
Raises:
ValueError: The data must be either GOES-16 or GOES-17.
ValueError: The scan must be either full_disk or conus.
Returns:
ee.ImageCollection: GOES fire timeseries.
"""
if data not in ["GOES-16", "GOES-17"]:
raise ValueError("The data must be either GOES-16 or GOES-17.")
if scan.lower() not in ["full_disk", "conus"]:
raise ValueError("The scan must be either full_disk or conus.")
scan_types = {
"full_disk": "FDCF",
"conus": "FDCC",
}
if region is None:
region = ee.Geometry.BBox(-123.17, 36.56, -118.22, 40.03)
# Get the fire/hotspot characterization dataset.
col = ee.ImageCollection(f"NOAA/GOES/{data[-2:]}/{scan_types[scan.lower()]}")
fdcCol = col.filterDate(start_date, end_date)
# Identify fire-detected pixels of medium to high confidence.
fireMaskCodes = [10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35]
confVals = [1.0, 1.0, 0.9, 0.9, 0.8, 0.8, 0.5, 0.5, 0.3, 0.3, 0.1, 0.1]
defaultConfVal = 0
def fdcVis(img):
confImg = img.remap(fireMaskCodes, confVals, defaultConfVal, "Mask")
return (
confImg.gte(0.3)
.selfMask()
.set("system:time_start", img.get("system:time_start"))
)
fdcVisCol = fdcCol.map(fdcVis)
if not merge:
return fdcVisCol
else:
geosVisCol = goes_timeseries(start_date, end_date, data, scan, region)
# Join the fire collection to the CMI collection.
joinFilter = ee.Filter.equals(
**{"leftField": "system:time_start", "rightField": "system:time_start"}
)
joinedCol = ee.Join.saveFirst("match").apply(geosVisCol, fdcVisCol, joinFilter)
def overlayVis(img):
cmi = ee.Image(img).visualize(
**{
"bands": ["CMI_C02", "CMI_GREEN", "CMI_C01"],
"min": 0,
"max": 0.8,
"gamma": 0.8,
}
)
fdc = ee.Image(img.get("match")).visualize(
**{"palette": ["ff5349"], "min": 0, "max": 1, "opacity": 0.7}
)
return cmi.blend(fdc).set("system:time_start", img.get("system:time_start"))
cmiFdcVisCol = ee.ImageCollection(joinedCol.map(overlayVis))
return cmiFdcVisCol
goes_timelapse(roi=None, out_gif=None, start_date='2021-10-24T14:00:00', end_date='2021-10-25T01:00:00', data='GOES-17', scan='full_disk', bands=['CMI_C02', 'CMI_GREEN', 'CMI_C01'], dimensions=768, framesPerSecond=10, date_format='YYYY-MM-dd HH:mm', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, crs=None, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)
¶
Create a timelapse of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
ee.Geometry |
The region of interest. Defaults to None. |
None |
out_gif |
str |
The file path to save the gif. |
None |
start_date |
str |
The start date of the time series. Defaults to "2021-10-24T14:00:00". |
'2021-10-24T14:00:00' |
end_date |
str |
The end date of the time series. Defaults to "2021-10-25T01:00:00". |
'2021-10-25T01:00:00' |
data |
str |
The GOES satellite data to use. Defaults to "GOES-17". |
'GOES-17' |
scan |
str |
The GOES scan to use. Defaults to "full_disk". |
'full_disk' |
bands |
list |
The bands to visualize. Defaults to ["CMI_C02", "CMI_GREEN", "CMI_C01"]. |
['CMI_C02', 'CMI_GREEN', 'CMI_C01'] |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
required |
date_format |
str |
The date format to use. Defaults to "YYYY-MM-dd HH:mm". |
'YYYY-MM-dd HH:mm' |
xy |
tuple |
Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('3%', '3%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'#ffffff' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
5 |
crs |
str |
The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None. |
None |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Line width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
mp4 |
bool |
Whether to save the animation as an mp4 file. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
Exceptions:
Type | Description |
---|---|
Exception |
Raise exception. |
Source code in geemap/timelapse.py
def goes_timelapse(
roi=None,
out_gif=None,
start_date="2021-10-24T14:00:00",
end_date="2021-10-25T01:00:00",
data="GOES-17",
scan="full_disk",
bands=["CMI_C02", "CMI_GREEN", "CMI_C01"],
dimensions=768,
framesPerSecond=10,
date_format="YYYY-MM-dd HH:mm",
xy=("3%", "3%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="#ffffff",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
crs=None,
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
mp4=False,
fading=False,
**kwargs,
):
"""Create a timelapse of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4.
Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Args:
roi (ee.Geometry, optional): The region of interest. Defaults to None.
out_gif (str): The file path to save the gif.
start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
scan (str, optional): The GOES scan to use. Defaults to "full_disk".
bands (list, optional): The bands to visualize. Defaults to ["CMI_C02", "CMI_GREEN", "CMI_C01"].
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
date_format (str, optional): The date format to use. Defaults to "YYYY-MM-dd HH:mm".
xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5. loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
crs (str, optional): The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Line width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
mp4 (bool, optional): Whether to save the animation as an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
Raises:
Exception: Raise exception.
"""
try:
if "region" in kwargs:
roi = kwargs["region"]
if out_gif is None:
out_gif = os.path.abspath(f"goes_{random_string(3)}.gif")
visParams = {
"bands": bands,
"min": 0,
"max": 0.8,
}
col = goes_timeseries(start_date, end_date, data, scan, roi)
col = col.select(bands).map(
lambda img: img.visualize(**visParams).set(
{
"system:time_start": img.get("system:time_start"),
}
)
)
if overlay_data is not None:
col = add_overlay(
col, overlay_data, overlay_color, overlay_width, overlay_opacity
)
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-159.5954, 60.4088],
[-159.5954, 24.5178],
[-114.2438, 24.5178],
[-114.2438, 60.4088],
]
],
None,
False,
)
if crs is None:
crs = col.first().projection()
videoParams = {
"bands": ["vis-red", "vis-green", "vis-blue"],
"min": 0,
"max": 255,
"dimensions": dimensions,
"framesPerSecond": framesPerSecond,
"region": roi,
"crs": crs,
}
if text_sequence is None:
text_sequence = image_dates(col, date_format=date_format).getInfo()
download_ee_video(col, videoParams, out_gif)
if os.path.exists(out_gif):
add_text_to_gif(
out_gif,
out_gif,
xy,
text_sequence,
font_type,
font_size,
font_color,
add_progress_bar,
progress_bar_color,
progress_bar_height,
duration=1000 / framesPerSecond,
loop=loop,
)
try:
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
except Exception as _:
pass
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
except Exception as e:
raise Exception(e)
goes_timeseries(start_date='2021-10-24T14:00:00', end_date='2021-10-25T01:00:00', data='GOES-17', scan='full_disk', region=None, show_night=[False, 'a_mode'])
¶
Create a time series of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start_date |
str |
The start date of the time series. Defaults to "2021-10-24T14:00:00". |
'2021-10-24T14:00:00' |
end_date |
str |
The end date of the time series. Defaults to "2021-10-25T01:00:00". |
'2021-10-25T01:00:00' |
data |
str |
The GOES satellite data to use. Defaults to "GOES-17". |
'GOES-17' |
scan |
str |
The GOES scan to use. Defaults to "full_disk". |
'full_disk' |
region |
ee.Geometry |
The region of interest. Defaults to None. |
None |
show_night |
list |
Show the clouds at night through [True, "a_mode"] o [True, "b_mode"]. Defaults to [False, "a_mode"] |
[False, 'a_mode'] |
Exceptions:
Type | Description |
---|---|
ValueError |
The data must be either GOES-16 or GOES-17. |
ValueError |
The scan must be either full_disk, conus, or mesoscale. |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
GOES timeseries. |
Source code in geemap/timelapse.py
def goes_timeseries(
start_date="2021-10-24T14:00:00",
end_date="2021-10-25T01:00:00",
data="GOES-17",
scan="full_disk",
region=None,
show_night=[False, "a_mode"],
):
"""Create a time series of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4.
Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16
Args:
start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
scan (str, optional): The GOES scan to use. Defaults to "full_disk".
region (ee.Geometry, optional): The region of interest. Defaults to None.
show_night (list, optional): Show the clouds at night through [True, "a_mode"] o [True, "b_mode"]. Defaults to [False, "a_mode"]
Raises:
ValueError: The data must be either GOES-16 or GOES-17.
ValueError: The scan must be either full_disk, conus, or mesoscale.
Returns:
ee.ImageCollection: GOES timeseries.
"""
if data not in ["GOES-16", "GOES-17"]:
raise ValueError("The data must be either GOES-16 or GOES-17.")
if scan.lower() not in ["full_disk", "conus", "mesoscale"]:
raise ValueError("The scan must be either full_disk, conus, or mesoscale.")
scan_types = {
"full_disk": "MCMIPF",
"conus": "MCMIPC",
"mesoscale": "MCMIPM",
}
col = ee.ImageCollection(f"NOAA/GOES/{data[-2:]}/{scan_types[scan.lower()]}")
if region is None:
region = ee.Geometry.Polygon(
[
[
[-159.5954379282731, 60.40883060191719],
[-159.5954379282731, 24.517881970830725],
[-114.2438754282731, 24.517881970830725],
[-114.2438754282731, 60.40883060191719],
]
],
None,
False,
)
# Applies scaling factors.
def applyScaleAndOffset(img):
def getFactorImg(factorNames):
factorList = img.toDictionary().select(factorNames).values()
return ee.Image.constant(factorList)
scaleImg = getFactorImg(["CMI_C.._scale"])
offsetImg = getFactorImg(["CMI_C.._offset"])
scaled = img.select("CMI_C..").multiply(scaleImg).add(offsetImg)
return img.addBands(**{"srcImg": scaled, "overwrite": True})
# Adds a synthetic green band.
def addGreenBand(img):
green = img.expression(
"CMI_GREEN = 0.45 * red + 0.10 * nir + 0.45 * blue",
{
"blue": img.select("CMI_C01"),
"red": img.select("CMI_C02"),
"nir": img.select("CMI_C03"),
},
)
return img.addBands(green)
# Show at clouds at night (a-mode)
def showNighta(img):
# Make normalized infrared
IR_n = img.select("CMI_C13").unitScale(ee.Number(90), ee.Number(313))
IR_n = IR_n.expression(
"ir_p = (1 -IR_n)/1.4",
{
"IR_n": IR_n.select("CMI_C13"),
},
)
# Add infrared to rgb bands
R_ir = img.select("CMI_C02").max(IR_n)
G_ir = img.select("CMI_GREEN").max(IR_n)
B_ir = img.select("CMI_C01").max(IR_n)
return img.addBands([R_ir, G_ir, B_ir], overwrite=True)
# Show at clouds at night (b-mode)
def showNightb(img):
night = img.select("CMI_C03").unitScale(0, 0.016).subtract(1).multiply(-1)
cmi11 = img.select("CMI_C11").unitScale(100, 310)
cmi13 = img.select("CMI_C13").unitScale(100, 300)
cmi15 = img.select("CMI_C15").unitScale(100, 310)
iNight = cmi15.addBands([cmi13, cmi11]).clamp(0, 1).subtract(1).multiply(-1)
iRGBNight = iNight.visualize(**{"min": 0, "max": 1, "gamma": 1.4}).updateMask(
night
)
iRGB = img.visualize(
**{
"bands": ["CMI_C02", "CMI_C03", "CMI_C01"],
"min": 0.15,
"max": 1,
"gamma": 1.4,
}
)
return iRGB.blend(iRGBNight).set(
"system:time_start", img.get("system:time_start")
)
# Scales select bands for visualization.
def scaleForVis(img):
return (
img.select(["CMI_C01", "CMI_GREEN", "CMI_C02", "CMI_C03", "CMI_C05"])
.resample("bicubic")
.log10()
.interpolate([-1.6, 0.176], [0, 1], "clamp")
.unmask(0)
.set("system:time_start", img.get("system:time_start"))
)
# Wraps previous functions.
def processForVis(img):
if show_night[0]:
if show_night[1] == "a_mode":
return scaleForVis(showNighta(addGreenBand(applyScaleAndOffset(img))))
else:
return showNightb(applyScaleAndOffset(img))
else:
return scaleForVis(addGreenBand(applyScaleAndOffset(img)))
return col.filterDate(start_date, end_date).filterBounds(region).map(processForVis)
landsat_timelapse(roi=None, out_gif=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue'], overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1)
¶
Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
out_gif |
str |
File path to the output animated GIF. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 1984. |
1984 |
end_year |
int |
Ending year for the timelapse. Defaults to None, which will use the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. |
'06-10' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. |
'09-20' |
bands |
list |
Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green']. |
['NIR', 'Red', 'Green'] |
vis_params |
dict |
Visualization parameters. Defaults to None. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 5. |
5 |
crs |
str |
The coordinate reference system to use. Defaults to "EPSG:3857". |
'EPSG:3857' |
apply_fmask |
bool |
Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. |
True |
nd_bands |
list |
A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1). |
None |
nd_threshold |
float |
The threshold for extracting pixels from the normalized difference band. |
0 |
nd_palette |
list |
The color palette to use for displaying the normalized difference band. |
['black', 'blue'] |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Line width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. |
'year' |
date_format |
str |
Date format for the timelapse. Defaults to None. |
None |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to convert the GIF to MP4. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
step |
int |
Step size for the timelapse. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
str |
File path to the output GIF image. |
Source code in geemap/timelapse.py
def landsat_timelapse(
roi=None,
out_gif=None,
start_year=1984,
end_year=None,
start_date="06-10",
end_date="09-20",
bands=["NIR", "Red", "Green"],
vis_params=None,
dimensions=768,
frames_per_second=5,
crs="EPSG:3857",
apply_fmask=True,
nd_bands=None,
nd_threshold=0,
nd_palette=["black", "blue"],
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
frequency="year",
date_format=None,
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
mp4=False,
fading=False,
step=1,
):
"""Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
out_gif (str, optional): File path to the output animated GIF. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
vis_params (dict, optional): Visualization parameters. Defaults to None.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 5.
crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
nd_threshold (float, optional): The threshold for extracting pixels from the normalized difference band.
nd_palette (list, optional): The color palette to use for displaying the normalized difference band.
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Line width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Date format for the timelapse. Defaults to None.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
step (int, optional): Step size for the timelapse. Defaults to 1.
Returns:
str: File path to the output GIF image.
"""
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
roi = roi.geometry()
elif isinstance(roi, ee.Geometry):
pass
else:
raise ValueError("The provided roi is invalid. It must be an ee.Geometry")
if out_gif is None:
out_gif = temp_file_path(".gif")
elif not out_gif.endswith(".gif"):
raise ValueError("The output file must end with .gif")
else:
out_gif = os.path.abspath(out_gif)
out_dir = os.path.dirname(out_gif)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if end_year is None:
end_year = get_current_year()
allowed_bands = ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"]
if len(bands) == 3 and all(x in allowed_bands for x in bands):
pass
else:
raise Exception(
"You can only select 3 bands from the following: {}".format(
", ".join(allowed_bands)
)
)
if nd_bands is not None:
if len(nd_bands) == 2 and all(x in allowed_bands[:-1] for x in nd_bands):
pass
else:
raise Exception(
"You can only select two bands from the following: {}".format(
", ".join(allowed_bands[:-1])
)
)
try:
if vis_params is None:
vis_params = {}
vis_params["bands"] = bands
vis_params["min"] = 0
vis_params["max"] = 0.4
vis_params["gamma"] = [1, 1, 1]
raw_col = landsat_timeseries(
roi,
start_year,
end_year,
start_date,
end_date,
apply_fmask,
frequency,
date_format,
step,
)
col = raw_col.select(bands).map(
lambda img: img.visualize(**vis_params).set(
{
"system:time_start": img.get("system:time_start"),
"system:date": img.get("system:date"),
}
)
)
if overlay_data is not None:
col = add_overlay(
col, overlay_data, overlay_color, overlay_width, overlay_opacity
)
if (
isinstance(dimensions, int)
and dimensions > 768
or isinstance(dimensions, str)
and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
):
count = col.size().getInfo()
basename = os.path.basename(out_gif)[:-4]
names = [
os.path.join(
out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
)
for i in range(count)
]
get_image_collection_thumbnails(
col,
out_dir,
vis_params={
"min": 0,
"max": 255,
"bands": ["vis-red", "vis-green", "vis-blue"],
},
dimensions=dimensions,
names=names,
)
make_gif(
names,
out_gif,
fps=frames_per_second,
loop=loop,
mp4=False,
clean_up=True,
)
else:
video_args = vis_params.copy()
video_args["dimensions"] = dimensions
video_args["region"] = roi
video_args["framesPerSecond"] = frames_per_second
video_args["crs"] = crs
video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
video_args["min"] = 0
video_args["max"] = 255
download_ee_video(col, video_args, out_gif)
if os.path.exists(out_gif):
if title is not None and isinstance(title, str):
add_text_to_gif(
out_gif,
out_gif,
xy=title_xy,
text_sequence=title,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if add_text:
if text_sequence is None:
text_sequence = col.aggregate_array("system:date").getInfo()
add_text_to_gif(
out_gif,
out_gif,
xy=text_xy,
text_sequence=text_sequence,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if nd_bands is not None:
nd_images = landsat_ts_norm_diff(
raw_col, bands=nd_bands, threshold=nd_threshold
)
out_nd_gif = out_gif.replace(".gif", "_nd.gif")
landsat_ts_norm_diff_gif(
nd_images,
out_gif=out_nd_gif,
vis_params=None,
palette=nd_palette,
dimensions=dimensions,
frames_per_second=frames_per_second,
)
if os.path.exists(out_gif):
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
except Exception as e:
raise Exception(e)
landsat_timelapse_legacy(roi=None, out_gif=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue'], overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False)
¶
Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
out_gif |
str |
File path to the output animated GIF. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 1984. |
1984 |
end_year |
int |
Ending year for the timelapse. Defaults to None, which means the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. |
'06-10' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. |
'09-20' |
bands |
list |
Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green']. |
['NIR', 'Red', 'Green'] |
vis_params |
dict |
Visualization parameters. Defaults to None. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 5. |
5 |
crs |
str |
The coordinate reference system to use. Defaults to "EPSG:3857". |
'EPSG:3857' |
apply_fmask |
bool |
Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. |
True |
nd_bands |
list |
A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1). |
None |
nd_threshold |
float |
The threshold for extracting pixels from the normalized difference band. |
0 |
nd_palette |
list |
The color palette to use for displaying the normalized difference band. |
['black', 'blue'] |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Line width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. |
'year' |
date_format |
str |
Date format for the timelapse. Defaults to None. |
None |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to convert the GIF to MP4. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
Returns:
Type | Description |
---|---|
str |
File path to the output GIF image. |
Source code in geemap/timelapse.py
def landsat_timelapse_legacy(
roi=None,
out_gif=None,
start_year=1984,
end_year=None,
start_date="06-10",
end_date="09-20",
bands=["NIR", "Red", "Green"],
vis_params=None,
dimensions=768,
frames_per_second=5,
crs="EPSG:3857",
apply_fmask=True,
nd_bands=None,
nd_threshold=0,
nd_palette=["black", "blue"],
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
frequency="year",
date_format=None,
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
mp4=False,
fading=False,
):
"""Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
out_gif (str, optional): File path to the output animated GIF. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
vis_params (dict, optional): Visualization parameters. Defaults to None.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 5.
crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
nd_threshold (float, optional): The threshold for extracting pixels from the normalized difference band.
nd_palette (list, optional): The color palette to use for displaying the normalized difference band.
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Line width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Date format for the timelapse. Defaults to None.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
Returns:
str: File path to the output GIF image.
"""
if end_year is None:
end_year = get_current_year()
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
roi = roi.geometry()
elif isinstance(roi, ee.Geometry):
pass
else:
raise ValueError("The provided roi is invalid. It must be an ee.Geometry")
if out_gif is None:
out_gif = temp_file_path(".gif")
elif not out_gif.endswith(".gif"):
raise ValueError("The output file must end with .gif")
else:
out_gif = os.path.abspath(out_gif)
out_dir = os.path.dirname(out_gif)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
allowed_bands = ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"]
if len(bands) == 3 and all(x in allowed_bands for x in bands):
pass
else:
raise Exception(
"You can only select 3 bands from the following: {}".format(
", ".join(allowed_bands)
)
)
if nd_bands is not None:
if len(nd_bands) == 2 and all(x in allowed_bands[:-1] for x in nd_bands):
pass
else:
raise Exception(
"You can only select two bands from the following: {}".format(
", ".join(allowed_bands[:-1])
)
)
try:
if vis_params is None:
vis_params = {}
vis_params["bands"] = bands
vis_params["min"] = 0
vis_params["max"] = 4000
vis_params["gamma"] = [1, 1, 1]
raw_col = landsat_timeseries(
roi,
start_year,
end_year,
start_date,
end_date,
apply_fmask,
frequency,
date_format,
)
col = raw_col.select(bands).map(
lambda img: img.visualize(**vis_params).set(
{
"system:time_start": img.get("system:time_start"),
"system:date": img.get("system:date"),
}
)
)
if overlay_data is not None:
col = add_overlay(
col, overlay_data, overlay_color, overlay_width, overlay_opacity
)
if (
isinstance(dimensions, int)
and dimensions > 768
or isinstance(dimensions, str)
and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
):
count = col.size().getInfo()
basename = os.path.basename(out_gif)[:-4]
names = [
os.path.join(
out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
)
for i in range(count)
]
get_image_collection_thumbnails(
col,
out_dir,
vis_params={
"min": 0,
"max": 255,
"bands": ["vis-red", "vis-green", "vis-blue"],
},
dimensions=dimensions,
names=names,
)
make_gif(
names,
out_gif,
fps=frames_per_second,
loop=loop,
mp4=False,
clean_up=True,
)
else:
video_args = vis_params.copy()
video_args["dimensions"] = dimensions
video_args["region"] = roi
video_args["framesPerSecond"] = frames_per_second
video_args["crs"] = crs
video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
video_args["min"] = 0
video_args["max"] = 255
download_ee_video(col, video_args, out_gif)
if os.path.exists(out_gif):
if title is not None and isinstance(title, str):
add_text_to_gif(
out_gif,
out_gif,
xy=title_xy,
text_sequence=title,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if add_text:
if text_sequence is None:
text_sequence = col.aggregate_array("system:date").getInfo()
add_text_to_gif(
out_gif,
out_gif,
xy=text_xy,
text_sequence=text_sequence,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if nd_bands is not None:
nd_images = landsat_ts_norm_diff(
raw_col, bands=nd_bands, threshold=nd_threshold
)
out_nd_gif = out_gif.replace(".gif", "_nd.gif")
landsat_ts_norm_diff_gif(
nd_images,
out_gif=out_nd_gif,
vis_params=None,
palette=nd_palette,
dimensions=dimensions,
frames_per_second=frames_per_second,
)
if os.path.exists(out_gif):
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
except Exception as e:
raise Exception(e)
landsat_timeseries(roi=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', apply_fmask=True, frequency='year', date_format=None, step=1)
¶
Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 1984. |
1984 |
end_year |
int |
Ending year for the timelapse. Defaults to None, which means the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. |
'06-10' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. |
'09-20' |
apply_fmask |
bool |
Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. |
True |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. |
'year' |
date_format |
str |
Format of the date. Defaults to None. |
None |
step |
int |
The step size to use when creating the date sequence. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
object |
Returns an ImageCollection containing annual Landsat images. |
Source code in geemap/timelapse.py
def landsat_timeseries(
roi=None,
start_year=1984,
end_year=None,
start_date="06-10",
end_date="09-20",
apply_fmask=True,
frequency="year",
date_format=None,
step=1,
):
"""Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Format of the date. Defaults to None.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
object: Returns an ImageCollection containing annual Landsat images.
"""
# Input and output parameters.
import re
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
if end_year is None:
end_year = get_current_year()
if not isinstance(roi, ee.Geometry):
try:
roi = roi.geometry()
except Exception as e:
print("Could not convert the provided roi to ee.Geometry")
print(e)
return
feq_dict = {
"year": "YYYY",
"month": "YYYY-MM",
"quarter": "YYYY-MM",
}
if date_format is None:
date_format = feq_dict[frequency]
if frequency not in feq_dict:
raise ValueError("frequency must be year, quarter, or month.")
# Setup vars to get dates.
if (
isinstance(start_year, int)
and (start_year >= 1984)
and (start_year < get_current_year())
):
pass
else:
print("The start year must be an integer >= 1984.")
return
if (
isinstance(end_year, int)
and (end_year > 1984)
and (end_year <= get_current_year())
):
pass
else:
print(f"The end year must be an integer <= {get_current_year()}.")
return
if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
r"[0-9]{2}-[0-9]{2}", end_date
):
pass
else:
print("The start date and end date must be month-day, such as 06-10, 09-20")
return
try:
datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
except Exception as e:
print("The input dates are invalid.")
raise Exception(e)
def days_between(d1, d2):
d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
return abs((d2 - d1).days)
n_days = days_between(
str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
)
start_month = int(start_date[:2])
start_day = int(start_date[3:5])
# Landsat collection preprocessingEnabled
# Get Landsat surface reflectance collections for OLI, ETM+ and TM sensors.
LC09col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2")
LC08col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")
LE07col = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2")
LT05col = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2")
LT04col = ee.ImageCollection("LANDSAT/LT04/C02/T1_L2")
# Define a collection filter by date, bounds, and quality.
def colFilter(col, roi, start_date, end_date):
return col.filterBounds(roi).filterDate(start_date, end_date)
# Function to get and rename bands of interest from OLI.
def renameOli(img):
return img.select(
["SR_B2", "SR_B3", "SR_B4", "SR_B5", "SR_B6", "SR_B7"],
["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2"],
)
# Function to get and rename bands of interest from ETM+.
def renameEtm(img):
return img.select(
["SR_B1", "SR_B2", "SR_B3", "SR_B4", "SR_B5", "SR_B7"],
["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2"],
)
def fmask(image):
# see https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
# Bit 0 - Fill
# Bit 1 - Dilated Cloud
# Bit 2 - Cirrus
# Bit 3 - Cloud
# Bit 4 - Cloud Shadow
qaMask = image.select("QA_PIXEL").bitwiseAnd(int("11111", 2)).eq(0)
# Apply the scaling factors to the appropriate bands.
opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2)
# Replace the original bands with the scaled ones and apply the masks.
return image.addBands(opticalBands, None, True).updateMask(qaMask)
# Define function to prepare OLI images.
def prepOli(img):
orig = img
if apply_fmask:
img = fmask(img)
else:
img = img.select("SR_B.").multiply(0.0000275).add(-0.2)
img = renameOli(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
"bicubic"
)
# Define function to prepare ETM+ images.
def prepEtm(img):
orig = img
if apply_fmask:
img = fmask(img)
else:
img = img.select("SR_B.").multiply(0.0000275).add(-0.2)
img = renameEtm(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
"bicubic"
)
# Get annual median collection.
def getAnnualComp(y):
startDate = ee.Date.fromYMD(
ee.Number(y), ee.Number(start_month), ee.Number(start_day)
)
endDate = startDate.advance(ee.Number(n_days), "day")
# Filter collections and prepare them for merging.
LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)
# Merge the collections.
col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)
yearImg = col.median()
nBands = yearImg.bandNames().size()
yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
return yearImg.set(
{
"year": y,
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
# Get monthly median collection.
def getMonthlyComp(startDate):
startDate = ee.Date(startDate)
endDate = startDate.advance(1, "month")
# Filter collections and prepare them for merging.
LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)
# Merge the collections.
col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)
monthImg = col.median()
nBands = monthImg.bandNames().size()
monthImg = ee.Image(ee.Algorithms.If(nBands, monthImg, dummyImg))
return monthImg.set(
{
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
# Get quarterly median collection.
def getQuarterlyComp(startDate):
startDate = ee.Date(startDate)
endDate = startDate.advance(3, "month")
# Filter collections and prepare them for merging.
LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)
# Merge the collections.
col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)
quarter = col.median()
nBands = quarter.bandNames().size()
quarter = ee.Image(ee.Algorithms.If(nBands, quarter, dummyImg))
return quarter.set(
{
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
# Make a dummy image for missing years.
bandNames = ee.List(["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"])
fillerValues = ee.List.repeat(0, bandNames.size())
dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()
# Make list of /quarterly/monthly image composites.
if frequency == "year":
years = ee.List.sequence(start_year, end_year, step)
imgList = years.map(getAnnualComp)
elif frequency == "quarter":
quarters = date_sequence(
str(start_year) + "-01-01",
str(end_year) + "-12-31",
"quarter",
date_format,
step,
)
imgList = quarters.map(getQuarterlyComp)
elif frequency == "month":
months = date_sequence(
str(start_year) + "-01-01",
str(end_year) + "-12-31",
"month",
date_format,
step,
)
imgList = months.map(getMonthlyComp)
# Convert image composite list to collection
imgCol = ee.ImageCollection.fromImages(imgList)
imgCol = imgCol.map(
lambda img: img.clip(roi).set({"coordinates": roi.coordinates()})
)
return imgCol
landsat_timeseries_legacy(roi=None, start_year=1984, end_year=2021, start_date='06-10', end_date='09-20', apply_fmask=True, frequency='year', date_format=None)
¶
Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 1984. |
1984 |
end_year |
int |
Ending year for the timelapse. Defaults to 2021. |
2021 |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. |
'06-10' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. |
'09-20' |
apply_fmask |
bool |
Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. |
True |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. |
'year' |
date_format |
str |
Format of the date. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
object |
Returns an ImageCollection containing annual Landsat images. |
Source code in geemap/timelapse.py
def landsat_timeseries_legacy(
roi=None,
start_year=1984,
end_year=2021,
start_date="06-10",
end_date="09-20",
apply_fmask=True,
frequency="year",
date_format=None,
):
"""Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
end_year (int, optional): Ending year for the timelapse. Defaults to 2021.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Format of the date. Defaults to None.
Returns:
object: Returns an ImageCollection containing annual Landsat images.
"""
################################################################################
# Input and output parameters.
import re
# import datetime
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
if not isinstance(roi, ee.Geometry):
try:
roi = roi.geometry()
except Exception as e:
print("Could not convert the provided roi to ee.Geometry")
print(e)
return
feq_dict = {
"year": "YYYY",
"month": "YYYY-MM",
"quarter": "YYYY-MM",
}
if date_format is None:
date_format = feq_dict[frequency]
if frequency not in feq_dict:
raise ValueError("frequency must be year, quarter, or month.")
################################################################################
# Setup vars to get dates.
if isinstance(start_year, int) and (start_year >= 1984) and (start_year < 2021):
pass
else:
print("The start year must be an integer >= 1984.")
return
if isinstance(end_year, int) and (end_year > 1984) and (end_year <= 2021):
pass
else:
print("The end year must be an integer <= 2021.")
return
if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
r"[0-9]{2}-[0-9]{2}", end_date
):
pass
else:
print("The start date and end date must be month-day, such as 06-10, 09-20")
return
try:
datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
except Exception as e:
print("The input dates are invalid.")
raise Exception(e)
def days_between(d1, d2):
d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
return abs((d2 - d1).days)
n_days = days_between(
str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
)
start_month = int(start_date[:2])
start_day = int(start_date[3:5])
# start_date = str(start_year) + "-" + start_date
# end_date = str(end_year) + "-" + end_date
# # Define a collection filter by date, bounds, and quality.
# def colFilter(col, aoi): # , startDate, endDate):
# return(col.filterBounds(aoi))
# Landsat collection preprocessingEnabled
# Get Landsat surface reflectance collections for OLI, ETM+ and TM sensors.
LC08col = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR")
LE07col = ee.ImageCollection("LANDSAT/LE07/C01/T1_SR")
LT05col = ee.ImageCollection("LANDSAT/LT05/C01/T1_SR")
LT04col = ee.ImageCollection("LANDSAT/LT04/C01/T1_SR")
# Define a collection filter by date, bounds, and quality.
def colFilter(col, roi, start_date, end_date):
return col.filterBounds(roi).filterDate(start_date, end_date)
# .filter('CLOUD_COVER < 5')
# .filter('GEOMETRIC_RMSE_MODEL < 15')
# .filter('IMAGE_QUALITY == 9 || IMAGE_QUALITY_OLI == 9'))
# Function to get and rename bands of interest from OLI.
def renameOli(img):
return img.select(
["B2", "B3", "B4", "B5", "B6", "B7", "pixel_qa"],
["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"],
)
# Function to get and rename bands of interest from ETM+.
def renameEtm(img):
return img.select(
["B1", "B2", "B3", "B4", "B5", "B7", "pixel_qa"],
["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"],
)
# Add NBR for LandTrendr segmentation.
def calcNbr(img):
return img.addBands(
img.normalizedDifference(["NIR", "SWIR2"]).multiply(-10000).rename("NBR")
).int16()
# Define function to mask out clouds and cloud shadows in images.
# Use CFmask band included in USGS Landsat SR image product.
def fmask(img):
cloudShadowBitMask = 1 << 3
cloudsBitMask = 1 << 5
qa = img.select("pixel_qa")
mask = (
qa.bitwiseAnd(cloudShadowBitMask)
.eq(0)
.And(qa.bitwiseAnd(cloudsBitMask).eq(0))
)
return img.updateMask(mask)
# Define function to prepare OLI images.
def prepOli(img):
orig = img
img = renameOli(img)
if apply_fmask:
img = fmask(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
"bicubic"
)
# Define function to prepare ETM+ images.
def prepEtm(img):
orig = img
img = renameEtm(img)
if apply_fmask:
img = fmask(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
"bicubic"
)
# Get annual median collection.
def getAnnualComp(y):
startDate = ee.Date.fromYMD(
ee.Number(y), ee.Number(start_month), ee.Number(start_day)
)
endDate = startDate.advance(ee.Number(n_days), "day")
# Filter collections and prepare them for merging.
LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)
# Merge the collections.
col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)
yearImg = col.median()
nBands = yearImg.bandNames().size()
yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
return calcNbr(yearImg).set(
{
"year": y,
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
# Get monthly median collection.
def getMonthlyComp(startDate):
startDate = ee.Date(startDate)
endDate = startDate.advance(1, "month")
# Filter collections and prepare them for merging.
LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)
# Merge the collections.
col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)
monthImg = col.median()
nBands = monthImg.bandNames().size()
monthImg = ee.Image(ee.Algorithms.If(nBands, monthImg, dummyImg))
return calcNbr(monthImg).set(
{
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
# Get quarterly median collection.
def getQuarterlyComp(startDate):
startDate = ee.Date(startDate)
endDate = startDate.advance(3, "month")
# Filter collections and prepare them for merging.
LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)
# Merge the collections.
col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)
quarter = col.median()
nBands = quarter.bandNames().size()
quarter = ee.Image(ee.Algorithms.If(nBands, quarter, dummyImg))
return calcNbr(quarter).set(
{
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
################################################################################
# Make a dummy image for missing years.
bandNames = ee.List(["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"])
fillerValues = ee.List.repeat(0, bandNames.size())
dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()
# ################################################################################
# # Get a list of years
# years = ee.List.sequence(start_year, end_year)
# ################################################################################
# # Make list of annual image composites.
# imgList = years.map(getAnnualComp)
if frequency == "year":
years = ee.List.sequence(start_year, end_year)
imgList = years.map(getAnnualComp)
elif frequency == "quarter":
quarters = date_sequence(
str(start_year) + "-01-01", str(end_year) + "-12-31", "quarter", date_format
)
imgList = quarters.map(getQuarterlyComp)
elif frequency == "month":
months = date_sequence(
str(start_year) + "-01-01", str(end_year) + "-12-31", "month", date_format
)
imgList = months.map(getMonthlyComp)
# Convert image composite list to collection
imgCol = ee.ImageCollection.fromImages(imgList)
imgCol = imgCol.map(
lambda img: img.clip(roi).set({"coordinates": roi.coordinates()})
)
return imgCol
# ################################################################################
# # Run LandTrendr.
# lt = ee.Algorithms.TemporalSegmentation.LandTrendr(
# timeSeries=imgCol.select(['NBR', 'SWIR1', 'NIR', 'Green']),
# maxSegments=10,
# spikeThreshold=0.7,
# vertexCountOvershoot=3,
# preventOneYearRecovery=True,
# recoveryThreshold=0.5,
# pvalThreshold=0.05,
# bestModelProportion=0.75,
# minObservationsNeeded=6)
# ################################################################################
# # Get fitted imagery. This starts export tasks.
# def getYearStr(year):
# return(ee.String('yr_').cat(ee.Algorithms.String(year).slice(0,4)))
# yearsStr = years.map(getYearStr)
# r = lt.select(['SWIR1_fit']).arrayFlatten([yearsStr]).toShort()
# g = lt.select(['NIR_fit']).arrayFlatten([yearsStr]).toShort()
# b = lt.select(['Green_fit']).arrayFlatten([yearsStr]).toShort()
# for i, c in zip([r, g, b], ['r', 'g', 'b']):
# descr = 'mamore-river-'+c
# name = 'users/user/'+descr
# print(name)
# task = ee.batch.Export.image.toAsset(
# image=i,
# region=roi.getInfo()['coordinates'],
# assetId=name,
# description=descr,
# scale=30,
# crs='EPSG:3857',
# maxPixels=1e13)
# task.start()
landsat_ts_norm_diff(collection, bands=['Green', 'SWIR1'], threshold=0)
¶
Computes a normalized difference index based on a Landsat timeseries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection |
ee.ImageCollection |
A Landsat timeseries. |
required |
bands |
list |
The bands to use for computing normalized difference. Defaults to ['Green', 'SWIR1']. |
['Green', 'SWIR1'] |
threshold |
float |
The threshold to extract features. Defaults to 0. |
0 |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
An ImageCollection containing images with values greater than the specified threshold. |
Source code in geemap/timelapse.py
def landsat_ts_norm_diff(collection, bands=["Green", "SWIR1"], threshold=0):
"""Computes a normalized difference index based on a Landsat timeseries.
Args:
collection (ee.ImageCollection): A Landsat timeseries.
bands (list, optional): The bands to use for computing normalized difference. Defaults to ['Green', 'SWIR1'].
threshold (float, optional): The threshold to extract features. Defaults to 0.
Returns:
ee.ImageCollection: An ImageCollection containing images with values greater than the specified threshold.
"""
nd_images = collection.map(
lambda img: img.normalizedDifference(bands)
.gt(threshold)
.copyProperties(img, img.propertyNames())
)
return nd_images
landsat_ts_norm_diff_gif(collection, out_gif=None, vis_params=None, palette=['black', 'blue'], dimensions=768, frames_per_second=10, mp4=False)
¶
[summary]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection |
ee.ImageCollection |
The normalized difference Landsat timeseires. |
required |
out_gif |
str |
File path to the output animated GIF. Defaults to None. |
None |
vis_params |
dict |
Visualization parameters. Defaults to None. |
None |
palette |
list |
The palette to use for visualizing the timelapse. Defaults to ['black', 'blue']. The first color in the list is the background color. |
['black', 'blue'] |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
10 |
mp4 |
bool |
If True, the output gif will be converted to mp4. Defaults to False. |
False |
Returns:
Type | Description |
---|---|
str |
File path to the output animated GIF. |
Source code in geemap/timelapse.py
def landsat_ts_norm_diff_gif(
collection,
out_gif=None,
vis_params=None,
palette=["black", "blue"],
dimensions=768,
frames_per_second=10,
mp4=False,
):
"""[summary]
Args:
collection (ee.ImageCollection): The normalized difference Landsat timeseires.
out_gif (str, optional): File path to the output animated GIF. Defaults to None.
vis_params (dict, optional): Visualization parameters. Defaults to None.
palette (list, optional): The palette to use for visualizing the timelapse. Defaults to ['black', 'blue']. The first color in the list is the background color.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
mp4 (bool, optional): If True, the output gif will be converted to mp4. Defaults to False.
Returns:
str: File path to the output animated GIF.
"""
coordinates = ee.Image(collection.first()).get("coordinates")
roi = ee.Geometry.Polygon(coordinates, None, False)
if out_gif is None:
out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
filename = "landsat_ts_nd_" + random_string() + ".gif"
out_gif = os.path.join(out_dir, filename)
elif not out_gif.endswith(".gif"):
raise Exception("The output file must end with .gif")
bands = ["nd"]
if vis_params is None:
vis_params = {}
vis_params["bands"] = bands
vis_params["palette"] = palette
video_args = vis_params.copy()
video_args["dimensions"] = dimensions
video_args["region"] = roi
video_args["framesPerSecond"] = frames_per_second
video_args["crs"] = "EPSG:3857"
if "bands" not in video_args.keys():
video_args["bands"] = bands
download_ee_video(collection, video_args, out_gif)
if os.path.exists(out_gif):
reduce_gif_size(out_gif)
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
make_gif(images, out_gif, ext='jpg', fps=10, loop=0, mp4=False, clean_up=False)
¶
Creates a gif from a list of images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images |
list | str |
The list of images or input directory to create the gif from. |
required |
out_gif |
str |
File path to the output gif. |
required |
ext |
str |
The extension of the images. Defaults to 'jpg'. |
'jpg' |
fps |
int |
The frames per second of the gif. Defaults to 10. |
10 |
loop |
int |
The number of times to loop the gif. Defaults to 0. |
0 |
mp4 |
bool |
Whether to convert the gif to mp4. Defaults to False. |
False |
Source code in geemap/timelapse.py
def make_gif(
images: Union[List[str], str],
out_gif: str,
ext: str = "jpg",
fps: int = 10,
loop: int = 0,
mp4: bool = False,
clean_up: bool = False,
) -> None:
"""Creates a gif from a list of images.
Args:
images (list | str): The list of images or input directory to create the gif from.
out_gif (str): File path to the output gif.
ext (str, optional): The extension of the images. Defaults to 'jpg'.
fps (int, optional): The frames per second of the gif. Defaults to 10.
loop (int, optional): The number of times to loop the gif. Defaults to 0.
mp4 (bool, optional): Whether to convert the gif to mp4. Defaults to False.
"""
if isinstance(images, str) and os.path.isdir(images):
images = list(glob.glob(os.path.join(images, f"*.{ext}")))
if len(images) == 0:
raise ValueError("No images found in the input directory.")
elif not isinstance(images, list):
raise ValueError("images must be a list or a path to the image directory.")
images.sort()
frames = [Image.open(image) for image in images]
frame_one = frames[0]
frame_one.save(
out_gif,
format="GIF",
append_images=frames,
save_all=True,
duration=int(1000 / fps),
loop=loop,
)
if mp4:
if not is_tool("ffmpeg"):
print("ffmpeg is not installed on your computer.")
return
if os.path.exists(out_gif):
out_mp4 = out_gif.replace(".gif", ".mp4")
cmd = f"ffmpeg -loglevel error -i {out_gif} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
os.system(cmd)
if not os.path.exists(out_mp4):
raise Exception(f"Failed to create mp4 file.")
if clean_up:
for image in images:
os.remove(image)
merge_gifs(in_gifs, out_gif)
¶
Merge multiple gifs into one.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gifs |
str | list |
The input gifs as a list or a directory path. |
required |
out_gif |
str |
The output gif. |
required |
Exceptions:
Type | Description |
---|---|
Exception |
Raise exception when gifsicle is not installed. |
Source code in geemap/timelapse.py
def merge_gifs(in_gifs, out_gif):
"""Merge multiple gifs into one.
Args:
in_gifs (str | list): The input gifs as a list or a directory path.
out_gif (str): The output gif.
Raises:
Exception: Raise exception when gifsicle is not installed.
"""
import glob
try:
if isinstance(in_gifs, str) and os.path.isdir(in_gifs):
in_gifs = glob.glob(os.path.join(in_gifs, "*.gif"))
elif not isinstance(in_gifs, list):
raise Exception("in_gifs must be a list.")
in_gifs = " ".join(in_gifs)
cmd = f"gifsicle {in_gifs} > {out_gif}"
os.system(cmd)
except Exception as e:
print(
"gifsicle is not installed. Run 'sudo apt-get install -y gifsicle' to install it."
)
print(e)
modis_ndvi_doy_ts(data='Terra', band='NDVI', start_date=None, end_date=None, region=None)
¶
Create MODIS NDVI timeseries. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str |
Either "Terra" or "Aqua". Defaults to "Terra". |
'Terra' |
band |
str |
Either the "NDVI" or "EVI" band. Defaults to "NDVI". |
'NDVI' |
start_date |
str |
The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None. |
None |
end_date |
str |
The end date used to filter the image collection. Defaults to None. |
None |
region |
ee.Geometry |
The geometry used to filter the image collection. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
The MODIS NDVI time series. |
Source code in geemap/timelapse.py
def modis_ndvi_doy_ts(
data="Terra", band="NDVI", start_date=None, end_date=None, region=None
):
"""Create MODIS NDVI timeseries. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.
Args:
data (str, optional): Either "Terra" or "Aqua". Defaults to "Terra".
band (str, optional): Either the "NDVI" or "EVI" band. Defaults to "NDVI".
start_date (str, optional): The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.
end_date (str, optional): The end date used to filter the image collection. Defaults to None.
region (ee.Geometry, optional): The geometry used to filter the image collection. Defaults to None.
Returns:
ee.ImageCollection: The MODIS NDVI time series.
"""
if data not in ["Terra", "Aqua"]:
raise Exception("data must be 'Terra' or 'Aqua'.")
if band not in ["NDVI", "EVI"]:
raise Exception("band must be 'NDVI' or 'EVI'.")
if region is not None:
if isinstance(region, ee.Geometry) or isinstance(region, ee.FeatureCollection):
pass
else:
raise Exception("region must be an ee.Geometry or ee.FeatureCollection.")
if data == "Terra":
col = ee.ImageCollection("MODIS/006/MOD13A2").select(band)
else:
col = ee.ImageCollection("MODIS/006/MYD13A2").select(band)
if (start_date is not None) and (end_date is not None):
col = col.filterDate(start_date, end_date)
def set_doy(img):
doy = ee.Date(img.get("system:time_start")).getRelative("day", "year")
return img.set("doy", doy)
col = col.map(set_doy)
# Get a collection of distinct images by 'doy'.
distinctDOY = col.filterDate("2013-01-01", "2014-01-01")
# Define a filter that identifies which images from the complete
# collection match the DOY from the distinct DOY collection.
filter = ee.Filter.equals(**{"leftField": "doy", "rightField": "doy"})
# Define a join.
join = ee.Join.saveAll("doy_matches")
# Apply the join and convert the resulting FeatureCollection to an
# ImageCollection.
joinCol = ee.ImageCollection(join.apply(distinctDOY, col, filter))
# Apply median reduction among matching DOY collections.
def match_doy(img):
doyCol = ee.ImageCollection.fromImages(img.get("doy_matches"))
return doyCol.reduce(ee.Reducer.median())
comp = joinCol.map(match_doy)
if region is not None:
return comp.map(lambda img: img.clip(region))
else:
return comp
modis_ndvi_timelapse(roi=None, out_gif=None, data='Terra', band='NDVI', start_date=None, end_date=None, dimensions=768, framesPerSecond=10, crs='EPSG:3857', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)
¶
Create MODIS NDVI timelapse. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
ee.Geometry |
The geometry used to filter the image collection. Defaults to None. |
None |
out_gif |
str |
The output gif file path. Defaults to None. |
None |
data |
str |
Either "Terra" or "Aqua". Defaults to "Terra". |
'Terra' |
band |
str |
Either the "NDVI" or "EVI" band. Defaults to "NDVI". |
'NDVI' |
start_date |
str |
The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None. |
None |
end_date |
str |
The end date used to filter the image collection. Defaults to None. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
required |
crs |
str |
The coordinate reference system to use. Defaults to "EPSG:3857". |
'EPSG:3857' |
xy |
tuple |
Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('3%', '3%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'#ffffff' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
loop |
int |
controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
mp4 |
bool |
Whether to convert the output gif to mp4. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
Source code in geemap/timelapse.py
def modis_ndvi_timelapse(
roi=None,
out_gif=None,
data="Terra",
band="NDVI",
start_date=None,
end_date=None,
dimensions=768,
framesPerSecond=10,
crs="EPSG:3857",
xy=("3%", "3%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="#ffffff",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
mp4=False,
fading=False,
**kwargs,
):
"""Create MODIS NDVI timelapse. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.
Args:
roi (ee.Geometry, optional): The geometry used to filter the image collection. Defaults to None.
out_gif (str): The output gif file path. Defaults to None.
data (str, optional): Either "Terra" or "Aqua". Defaults to "Terra".
band (str, optional): Either the "NDVI" or "EVI" band. Defaults to "NDVI".
start_date (str, optional): The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.
end_date (str, optional): The end date used to filter the image collection. Defaults to None.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
mp4 (bool, optional): Whether to convert the output gif to mp4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
"""
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-18.6983, 38.1446],
[-18.6983, -36.1630],
[52.2293, -36.1630],
[52.2293, 38.1446],
]
],
None,
False,
)
if out_gif is None:
out_gif = os.path.abspath(f"modis_ndvi_{random_string(3)}.gif")
try:
col = modis_ndvi_doy_ts(data, band, start_date, end_date, roi)
# Define RGB visualization parameters.
visParams = {
"min": 0.0,
"max": 9000.0,
"palette": [
"FFFFFF",
"CE7E45",
"DF923D",
"F1B555",
"FCD163",
"99B718",
"74A901",
"66A000",
"529400",
"3E8601",
"207401",
"056201",
"004C00",
"023B01",
"012E01",
"011D01",
"011301",
],
}
# Create RGB visualization images for use as animation frames.
rgbVis = col.map(lambda img: img.visualize(**visParams).clip(roi))
if overlay_data is not None:
rgbVis = add_overlay(
rgbVis,
overlay_data,
overlay_color,
overlay_width,
overlay_opacity,
roi,
)
# Define GIF visualization arguments.
videoArgs = {
"region": roi,
"dimensions": dimensions,
"crs": crs,
"framesPerSecond": framesPerSecond,
}
download_ee_video(rgbVis, videoArgs, out_gif)
if text_sequence is None:
text = rgbVis.aggregate_array("system:index").getInfo()
text_sequence = [d.replace("_", "-")[5:] for d in text]
if os.path.exists(out_gif):
add_text_to_gif(
out_gif,
out_gif,
xy,
text_sequence,
font_type,
font_size,
font_color,
add_progress_bar,
progress_bar_color,
progress_bar_height,
duration=1000 / framesPerSecond,
loop=loop,
)
try:
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
except Exception as _:
pass
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
except Exception as e:
raise Exception(e)
modis_ocean_color_timelapse(satellite, start_date, end_date, roi=None, bands=None, frequency='year', reducer='median', date_format=None, out_gif=None, palette='coolwarm', vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=True, colorbar_width=6.0, colorbar_height=0.4, colorbar_label='Sea Surface Temperature (°C)', colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color='white', colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False)
¶
Creates a ocean color timelapse from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI
Parameters:
Name | Type | Description | Default |
---|---|---|---|
satellite |
str |
The satellite to use, can be either "Terra" or "Aqua". |
required |
start_date |
str |
The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
end_date |
str |
The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
roi |
ee.Geometry |
The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None. |
None |
bands |
list |
A list of band names to use in the timelapse. Defaults to None. |
None |
frequency |
str |
The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'. |
'year' |
reducer |
str |
The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. |
'median' |
drop_empty |
bool |
Whether to drop empty images from the timeseries. Defaults to True. |
required |
date_format |
str |
A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. |
None |
out_gif |
str |
The output gif file path. Defaults to None. |
None |
palette |
list |
A list of colors to render a single-band image in the timelapse. Defaults to None. |
'coolwarm' |
vis_params |
dict |
A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
5 |
crs |
str |
The coordinate reference system to use. Defaults to "EPSG:3857". |
'EPSG:3857' |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
add_colorbar |
bool |
Whether to add a colorbar to the timelapse. Defaults to False. |
True |
colorbar_width |
float |
Width of the colorbar. Defaults to 6.0. |
6.0 |
colorbar_height |
float |
Height of the colorbar. Defaults to 0.4. |
0.4 |
colorbar_label |
str |
Label for the colorbar. Defaults to None. |
'Sea Surface Temperature (°C)' |
colorbar_label_size |
int |
Font size for the colorbar label. Defaults to 12. |
12 |
colorbar_label_weight |
str |
Font weight for the colorbar label. Defaults to 'normal'. |
'normal' |
colorbar_tick_size |
int |
Font size for the colorbar ticks. Defaults to 10. |
10 |
colorbar_bg_color |
str |
Background color for the colorbar, can be color like "white", "black". Defaults to None. |
'white' |
colorbar_orientation |
str |
Orientation of the colorbar. Defaults to 'horizontal'. |
'horizontal' |
colorbar_dpi |
str |
DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'. |
'figure' |
colorbar_xy |
tuple |
Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
None |
colorbar_size |
tuple |
Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300). |
(300, 300) |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to create an mp4 file. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
Returns:
Type | Description |
---|---|
str |
File path to the timelapse gif. |
Source code in geemap/timelapse.py
def modis_ocean_color_timelapse(
satellite,
start_date,
end_date,
roi=None,
bands=None,
frequency="year",
reducer="median",
date_format=None,
out_gif=None,
palette="coolwarm",
vis_params=None,
dimensions=768,
frames_per_second=5,
crs="EPSG:3857",
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
add_colorbar=True,
colorbar_width=6.0,
colorbar_height=0.4,
colorbar_label="Sea Surface Temperature (°C)",
colorbar_label_size=12,
colorbar_label_weight="normal",
colorbar_tick_size=10,
colorbar_bg_color="white",
colorbar_orientation="horizontal",
colorbar_dpi="figure",
colorbar_xy=None,
colorbar_size=(300, 300),
loop=0,
mp4=False,
fading=False,
):
"""Creates a ocean color timelapse from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI
Args:
satellite (str): The satellite to use, can be either "Terra" or "Aqua".
start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
roi (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
out_gif (str): The output gif file path. Defaults to None.
palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
colorbar_label (str, optional): Label for the colorbar. Defaults to None.
colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
Returns:
str: File path to the timelapse gif.
"""
collection = modis_ocean_color_timeseries(
satellite, start_date, end_date, roi, bands, frequency, reducer, date_format
)
if bands is None:
bands = ["sst"]
if len(bands) == 1 and palette is None:
palette = "coolwarm"
if roi is None:
roi = ee.Geometry.BBox(-99.755133, 18.316722, -79.761194, 31.206929)
out_gif = create_timelapse(
collection,
start_date,
end_date,
roi,
bands,
frequency,
reducer,
date_format,
out_gif,
palette,
vis_params,
dimensions,
frames_per_second,
crs,
overlay_data,
overlay_color,
overlay_width,
overlay_opacity,
title,
title_xy,
add_text,
text_xy,
text_sequence,
font_type,
font_size,
font_color,
add_progress_bar,
progress_bar_color,
progress_bar_height,
add_colorbar,
colorbar_width,
colorbar_height,
colorbar_label,
colorbar_label_size,
colorbar_label_weight,
colorbar_tick_size,
colorbar_bg_color,
colorbar_orientation,
colorbar_dpi,
colorbar_xy,
colorbar_size,
loop,
mp4,
fading,
)
return out_gif
modis_ocean_color_timeseries(satellite, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1)
¶
Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI
Parameters:
Name | Type | Description | Default |
---|---|---|---|
satellite |
str |
The satellite to use, can be either "Terra" or "Aqua". |
required |
start_date |
str |
The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
end_date |
str |
The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'. |
required |
region |
ee.Geometry |
The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None. |
None |
bands |
list |
The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None. |
None |
frequency |
str |
The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day'. Defaults to 'year'. |
'year' |
reducer |
str |
The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. |
'median' |
drop_empty |
bool |
Whether to drop empty images from the timeseries. Defaults to True. |
True |
date_format |
str |
A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. |
None |
parallel_scale |
int |
A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
ee.ImageCollection |
The timeseries. |
Source code in geemap/timelapse.py
def modis_ocean_color_timeseries(
satellite,
start_date,
end_date,
region=None,
bands=None,
frequency="year",
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1,
):
"""Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI
Args:
satellite (str): The satellite to use, can be either "Terra" or "Aqua".
start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day'. Defaults to 'year'.
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
Returns:
ee.ImageCollection: The timeseries.
"""
if satellite not in ["Terra", "Aqua"]:
raise Exception("Satellite must be 'Terra' or 'Aqua'.")
allowed_frequency = ["year", "quarter", "month", "week", "day"]
if frequency not in allowed_frequency:
raise Exception(
"Frequency must be one of the following: {}".format(allowed_frequency)
)
if region is not None:
if isinstance(region, ee.Geometry) or isinstance(region, ee.FeatureCollection):
pass
else:
raise Exception("region must be an ee.Geometry or ee.FeatureCollection.")
col = ee.ImageCollection(f"NASA/OCEANDATA/MODIS-{satellite}/L3SMI").filterDate(
start_date, end_date
)
ts = create_timeseries(
col,
start_date,
end_date,
region,
bands,
frequency,
reducer,
drop_empty,
date_format,
parallel_scale,
)
return ts
modis_timeseries(asset_id='MODIS/006/MOD13A2', band_name=None, roi=None, start_year=2001, end_year=None, start_date='01-01', end_date='12-31')
¶
Generates a Monthly MODIS ImageCollection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asset_id |
str |
The asset id the MODIS ImageCollection. |
'MODIS/006/MOD13A2' |
band_name |
str |
The band name of the image to use. |
None |
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 1984. |
2001 |
end_year |
int |
Ending year for the timelapse. Defaults to None, which is the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. |
'01-01' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. |
'12-31' |
Returns:
Type | Description |
---|---|
object |
Returns an ImageCollection containing month MODIS images. |
Source code in geemap/timelapse.py
def modis_timeseries(
asset_id="MODIS/006/MOD13A2",
band_name=None,
roi=None,
start_year=2001,
end_year=None,
start_date="01-01",
end_date="12-31",
):
"""Generates a Monthly MODIS ImageCollection.
Args:
asset_id (str, optional): The asset id the MODIS ImageCollection.
band_name (str, optional): The band name of the image to use.
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which is the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
Returns:
object: Returns an ImageCollection containing month MODIS images.
"""
try:
if end_year is None:
end_year = datetime.datetime.now().year
collection = ee.ImageCollection(asset_id)
if band_name is None:
band_name = collection.first().bandNames().getInfo()[0]
collection = collection.select(band_name)
if roi is not None:
if isinstance(roi, ee.Geometry):
collection = ee.ImageCollection(
collection.map(lambda img: img.clip(roi))
)
elif isinstance(roi, ee.FeatureCollection):
collection = ee.ImageCollection(
collection.map(lambda img: img.clipToCollection(roi))
)
start = str(start_year) + "-" + start_date
end = str(end_year) + "-" + end_date
seq = date_sequence(start, end, "month")
def monthly_modis(start_d):
end_d = ee.Date(start_d).advance(1, "month")
return ee.Image(collection.filterDate(start_d, end_d).mean())
images = ee.ImageCollection(seq.map(monthly_modis))
return images
except Exception as e:
raise Exception(e)
naip_timelapse(roi, start_year=2003, end_year=None, out_gif=None, bands=None, palette=None, vis_params=None, dimensions=768, frames_per_second=3, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1)
¶
Create a timelapse from NAIP imagery.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
ee.Geometry |
The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None. |
required |
start_year |
int | str |
The start year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to 2003. |
2003 |
end_year |
int | str |
The end year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to None, which will use the current year. |
None |
out_gif |
str |
The output gif file path. Defaults to None. |
None |
bands |
list |
A list of band names to use in the timelapse. Defaults to None. |
None |
palette |
list |
A list of colors to render a single-band image in the timelapse. Defaults to None. |
None |
vis_params |
dict |
A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
3 |
crs |
str |
The coordinate reference system to use. Defaults to "EPSG:3857". |
'EPSG:3857' |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to create an mp4 file. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
step |
int |
The step size to use when creating the date sequence. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
str |
File path to the timelapse gif. |
Source code in geemap/timelapse.py
def naip_timelapse(
roi,
start_year=2003,
end_year=None,
out_gif=None,
bands=None,
palette=None,
vis_params=None,
dimensions=768,
frames_per_second=3,
crs="EPSG:3857",
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
mp4=False,
fading=False,
step=1,
):
"""Create a timelapse from NAIP imagery.
Args:
roi (ee.Geometry): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
start_year (int | str, optional): The start year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to 2003.
end_year (int | str, optional): The end year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to None, which will use the current year.
out_gif (str): The output gif file path. Defaults to None.
bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
str: File path to the timelapse gif.
"""
try:
if end_year is None:
end_year = datetime.datetime.now().year
collection = ee.ImageCollection("USDA/NAIP/DOQQ")
start_date = str(start_year) + "-01-01"
end_date = str(end_year) + "-12-31"
frequency = "year"
reducer = "median"
date_format = "YYYY"
if bands is not None and isinstance(bands, list) and "N" in bands:
collection = collection.filter(
ee.Filter.listContains("system:band_names", "N")
)
return create_timelapse(
collection,
start_date,
end_date,
roi,
bands,
frequency,
reducer,
date_format,
out_gif,
palette,
vis_params,
dimensions,
frames_per_second,
crs,
overlay_data,
overlay_color,
overlay_width,
overlay_opacity,
title,
title_xy,
add_text,
text_xy,
text_sequence,
font_type,
font_size,
font_color,
add_progress_bar,
progress_bar_color,
progress_bar_height,
loop=loop,
mp4=mp4,
fading=fading,
step=step,
)
except Exception as e:
raise Exception(e)
naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False, step=1)
¶
Creates NAIP annual timeseries
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
An ee.Geometry representing the region of interest. Defaults to None. |
None |
start_year |
int |
Starting year for the timeseries. Defaults to 2003. |
2003 |
end_year |
int |
Ending year for the timeseries. Defaults to None, which will use the current year. |
None |
RGBN |
bool |
Whether to retrieve 4-band NAIP imagery only. |
False |
step |
int |
The step size to use when creating the date sequence. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
object |
An ee.ImageCollection representing annual NAIP imagery. |
Source code in geemap/timelapse.py
def naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False, step=1):
"""Creates NAIP annual timeseries
Args:
roi (object, optional): An ee.Geometry representing the region of interest. Defaults to None.
start_year (int, optional): Starting year for the timeseries. Defaults to 2003.
end_year (int, optional): Ending year for the timeseries. Defaults to None, which will use the current year.
RGBN (bool, optional): Whether to retrieve 4-band NAIP imagery only.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
object: An ee.ImageCollection representing annual NAIP imagery.
"""
try:
if end_year is None:
end_year = datetime.datetime.now().year
def get_annual_NAIP(year):
try:
collection = ee.ImageCollection("USDA/NAIP/DOQQ")
if roi is not None:
collection = collection.filterBounds(roi)
start_date = ee.Date.fromYMD(year, 1, 1)
end_date = ee.Date.fromYMD(year, 12, 31)
naip = collection.filterDate(start_date, end_date)
if RGBN:
naip = naip.filter(ee.Filter.listContains("system:band_names", "N"))
if roi is not None:
if isinstance(roi, ee.Geometry):
image = ee.Image(ee.ImageCollection(naip).mosaic().clip(roi))
elif isinstance(roi, ee.FeatureCollection):
image = ee.Image(
ee.ImageCollection(naip).mosaic().clipToCollection(roi)
)
else:
image = ee.Image(ee.ImageCollection(naip).mosaic())
return image.set(
{
"system:time_start": ee.Date(start_date).millis(),
"system:time_end": ee.Date(end_date).millis(),
"empty": naip.size().eq(0),
}
)
except Exception as e:
raise Exception(e)
years = ee.List.sequence(start_year, end_year, step)
collection = ee.ImageCollection(years.map(get_annual_NAIP))
return collection.filterMetadata("empty", "equals", 0)
except Exception as e:
raise Exception(e)
reduce_gif_size(in_gif, out_gif=None)
¶
Reduces a GIF image using ffmpeg.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_gif |
str |
The input file path to the GIF image. |
required |
out_gif |
str |
The output file path to the GIF image. Defaults to None. |
None |
Source code in geemap/timelapse.py
def reduce_gif_size(in_gif, out_gif=None):
"""Reduces a GIF image using ffmpeg.
Args:
in_gif (str): The input file path to the GIF image.
out_gif (str, optional): The output file path to the GIF image. Defaults to None.
"""
import ffmpeg
import warnings
warnings.filterwarnings("ignore")
if not is_tool("ffmpeg"):
print("ffmpeg is not installed on your computer.")
return
if not os.path.exists(in_gif):
print("The input gif file does not exist.")
return
if out_gif is None:
out_gif = in_gif
elif not os.path.exists(os.path.dirname(out_gif)):
os.makedirs(os.path.dirname(out_gif))
if in_gif == out_gif:
tmp_gif = in_gif.replace(".gif", "_tmp.gif")
shutil.copyfile(in_gif, tmp_gif)
stream = ffmpeg.input(tmp_gif)
stream = ffmpeg.output(stream, in_gif, loglevel="quiet").overwrite_output()
ffmpeg.run(stream)
os.remove(tmp_gif)
else:
stream = ffmpeg.input(in_gif)
stream = ffmpeg.output(stream, out_gif, loglevel="quiet").overwrite_output()
ffmpeg.run(stream)
sentinel1_filtering(collection, band='VV', instrumentMode=None, orbitProperties_pass=None, transmitterReceiverPolarisation=None, remove_outliers=True, **kwargs)
¶
Sentinel-1 data is collected with several different instrument configurations, resolutions, band combinations during both ascending and descending orbits. Because of this heterogeneity, it's usually necessary to filter the data down to a homogeneous subset before starting processing.
For more details, see https://developers.google.com/earth-engine/guides/sentinel1
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection |
A Sentinel1 ImageCollection to filter. |
required | |
band |
str |
Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land. |
'VV' |
instrumentMode |
str |
Collection property. Can be one of ['IW','EW','SM']. Defaults to band default availability (IW for ['VV','VH'], EW for ['HH','HV']). IW is typically available for land. EW for icy regions. |
None |
orbitProperties_pass |
str|None |
Collection property. Can be one of ['ASCENDING', 'DESCENDING', None]. Default to 'ASCENDING'. Will return mixed property if set to None, which dampen elevation, and increase surface roughness/fractality visibility. |
None |
transmitterReceiverPolarisation |
Collection property List contains this value. Can be one of ['HH','HV','VV','VH']. Defaults to band. |
None |
|
remove_outliers |
bool |
Remove pixels with extreme values (< -30). These can occur near the edge of an image. Default to True. |
True |
**kwargs |
dict |
All other arguments will be applied as filters to collection properties. F.e. {'resolution_meters':10} Full list properties: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#image-properties |
{} |
Returns:
Type | Description |
---|---|
object |
Returns a homogeneous ImageCollection of Sentinel 1 images. |
Source code in geemap/timelapse.py
def sentinel1_filtering(
collection,
band="VV",
instrumentMode=None,
orbitProperties_pass=None,
transmitterReceiverPolarisation=None,
remove_outliers=True,
**kwargs,
):
"""
Sentinel-1 data is collected with several different instrument configurations, resolutions,
band combinations during both ascending and descending orbits. Because of this heterogeneity,
it's usually necessary to filter the data down to a homogeneous subset before starting processing.
For more details, see https://developers.google.com/earth-engine/guides/sentinel1
Args:
collection: A Sentinel1 ImageCollection to filter.
band (str): Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.
instrumentMode (str, optional): Collection property. Can be one of ['IW','EW','SM']. Defaults to band default availability (IW for ['VV','VH'], EW for ['HH','HV']). IW is typically available for land. EW for icy regions.
orbitProperties_pass (str|None, optional): Collection property. Can be one of ['ASCENDING', 'DESCENDING', None]. Default to 'ASCENDING'.
Will return mixed property if set to None, which dampen elevation, and increase surface roughness/fractality visibility.
transmitterReceiverPolarisation: Collection property List contains this value. Can be one of ['HH','HV','VV','VH']. Defaults to band.
remove_outliers (bool, optional): Remove pixels with extreme values (< -30). These can occur near the edge of an image. Default to True.
**kwargs (dict, optional): All other arguments will be applied as filters to collection properties. F.e. {'resolution_meters':10}
Full list properties: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#image-properties
Returns:
object: Returns a homogeneous ImageCollection of Sentinel 1 images.
"""
transmitterReceiverPolarisation = transmitterReceiverPolarisation or band
instrumentMode = (
instrumentMode or {"VV": "IW", "VH": "IW", "HH": "EW", "HV": "EW"}[band]
)
def remove_outliers_func(image):
if not remove_outliers:
return image
edge = image.select(band).lt(-30.0)
maskedimage = image.mask().And(edge.Not())
return image.updateMask(maskedimage)
col = collection.filter(ee.Filter.eq("instrumentMode", instrumentMode)).filter(
ee.Filter.listContains(
"transmitterReceiverPolarisation", transmitterReceiverPolarisation
)
)
if remove_outliers:
col = col.map(remove_outliers_func)
for k, v in kwargs.items():
col = col.filter(ee.Filter.eq(k, v))
if orbitProperties_pass:
col = col.filter(ee.Filter.eq("orbitProperties_pass", orbitProperties_pass))
return col
sentinel1_timelapse(roi, out_gif=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', bands=['VV'], frequency='year', reducer='median', date_format=None, palette='Greys', vis_params=None, dimensions=768, frames_per_second=10, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=False, colorbar_width=6.0, colorbar_height=0.4, colorbar_label=None, colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color=None, colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False, **kwargs)
¶
Create a timelapse from any ee.ImageCollection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
ee.Geometry |
The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None. |
required |
out_gif |
str |
The output gif file path. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 2015. |
2015 |
end_year |
int |
Ending year for the timelapse. Defaults to the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'. |
'01-01' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'. |
'12-31' |
bands |
list |
A list of band names to use in the timelapse. Can be one of ['VV'],['HV'],['VH'],['HH'],['VV','VH'] or ['HH','HV'] |
['VV'] |
frequency |
str |
The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'. |
'year' |
reducer |
str |
The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. |
'median' |
drop_empty |
bool |
Whether to drop empty images from the timeseries. Defaults to True. |
required |
date_format |
str |
A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'. |
None |
palette |
list |
A list of colors to render a single-band image in the timelapse. Defaults to None. |
'Greys' |
vis_params |
dict |
A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
10 |
crs |
str |
The coordinate reference system to use. Defaults to "EPSG:3857". |
'EPSG:3857' |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
add_colorbar |
bool |
Whether to add a colorbar to the timelapse. Defaults to False. |
False |
colorbar_width |
float |
Width of the colorbar. Defaults to 6.0. |
6.0 |
colorbar_height |
float |
Height of the colorbar. Defaults to 0.4. |
0.4 |
colorbar_label |
str |
Label for the colorbar. Defaults to None. |
None |
colorbar_label_size |
int |
Font size for the colorbar label. Defaults to 12. |
12 |
colorbar_label_weight |
str |
Font weight for the colorbar label. Defaults to 'normal'. |
'normal' |
colorbar_tick_size |
int |
Font size for the colorbar ticks. Defaults to 10. |
10 |
colorbar_bg_color |
str |
Background color for the colorbar, can be color like "white", "black". Defaults to None. |
None |
colorbar_orientation |
str |
Orientation of the colorbar. Defaults to 'horizontal'. |
'horizontal' |
colorbar_dpi |
str |
DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'. |
'figure' |
colorbar_xy |
tuple |
Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
None |
colorbar_size |
tuple |
Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300). |
(300, 300) |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to create an mp4 file. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
**kwargs |
Arguments for sentinel1_filtering(). Same filters will be applied to all bands. |
{} |
Returns:
Type | Description |
---|---|
str |
File path to the timelapse gif. |
Source code in geemap/timelapse.py
def sentinel1_timelapse(
roi,
out_gif=None,
start_year=2015,
end_year=None,
start_date="01-01",
end_date="12-31",
bands=["VV"],
frequency="year",
reducer="median",
date_format=None,
palette="Greys",
vis_params=None,
dimensions=768,
frames_per_second=10,
crs="EPSG:3857",
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
add_colorbar=False,
colorbar_width=6.0,
colorbar_height=0.4,
colorbar_label=None,
colorbar_label_size=12,
colorbar_label_weight="normal",
colorbar_tick_size=10,
colorbar_bg_color=None,
colorbar_orientation="horizontal",
colorbar_dpi="figure",
colorbar_xy=None,
colorbar_size=(300, 300),
loop=0,
mp4=False,
fading=False,
**kwargs,
):
"""Create a timelapse from any ee.ImageCollection.
Args:
roi (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
out_gif (str): The output gif file path. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
bands (list, optional): A list of band names to use in the timelapse. Can be one of ['VV'],['HV'],['VH'],['HH'],['VV','VH'] or ['HH','HV']
frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
colorbar_label (str, optional): Label for the colorbar. Defaults to None.
colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
**kwargs: Arguments for sentinel1_filtering(). Same filters will be applied to all bands.
Returns:
str: File path to the timelapse gif.
"""
from datetime import date
assert bands in (
["VV"],
["VH"],
["HH"],
["HV"],
["VV", "VH"],
["HH", "HV"],
["VH", "VV"],
["HV", "HH"],
), "Not all Sentinel1 bands are available together."
if bands in (["VH", "VV"], ["HV", "HH"]):
bands[0], bands[1] = bands[1], bands[0]
band = bands[0]
if end_year is None:
end_year = date.today().year
start = f"{start_year}-{start_date}"
end = f"{end_year}-{end_date}"
if vis_params is None:
vis_params = {"min": -30, "max": 0}
collection = (
ee.ImageCollection("COPERNICUS/S1_GRD").filterDate(start, end).filterBounds(roi)
)
collection = sentinel1_filtering(collection, band, **kwargs)
return create_timelapse(
collection,
start,
end,
roi,
bands,
frequency,
reducer,
date_format,
out_gif,
palette,
vis_params,
dimensions,
frames_per_second,
crs,
overlay_data,
overlay_color,
overlay_width,
overlay_opacity,
title,
title_xy,
add_text,
text_xy,
text_sequence,
font_type,
font_size,
font_color,
add_progress_bar,
progress_bar_color,
progress_bar_height,
add_colorbar,
colorbar_width,
colorbar_height,
colorbar_label,
colorbar_label_size,
colorbar_label_weight,
colorbar_tick_size,
colorbar_bg_color,
colorbar_orientation,
colorbar_dpi,
colorbar_xy,
colorbar_size,
loop,
mp4,
fading,
)
sentinel1_timelapse_legacy(roi=None, out_gif=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False)
¶
Generates a Sentinel-1 timelapse animated GIF or MP4.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to LV & Lake Mead. |
None |
out_gif |
str |
File path to the output animated GIF. Defaults to the Downloads folder s1_ts_*.gif. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 2015. |
2015 |
end_year |
int |
Ending year for the timelapse. Defaults to current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'. |
'01-01' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'. |
'12-31' |
vis_params |
dict |
Visualization parameters. Defaults to {'min':-18, 'max': -4}. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 5. |
5 |
crs |
str |
Coordinate reference system. Defaults to 'EPSG:3857'. |
'EPSG:3857' |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Line width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. Can be year, quarter or month. |
'year' |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to image start dates. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to 'white'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to convert the GIF to MP4. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
Returns:
Type | Description |
---|---|
str |
File path to the output GIF image. |
Source code in geemap/timelapse.py
def sentinel1_timelapse_legacy(
roi=None,
out_gif=None,
start_year=2015,
end_year=None,
start_date="01-01",
end_date="12-31",
vis_params=None,
dimensions=768,
frames_per_second=5,
crs="EPSG:3857",
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
frequency="year",
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
mp4=False,
fading=False,
):
"""Generates a Sentinel-1 timelapse animated GIF or MP4.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to LV & Lake Mead.
out_gif (str, optional): File path to the output animated GIF. Defaults to the Downloads folder s1_ts_*.gif.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
vis_params (dict, optional): Visualization parameters. Defaults to {'min':-18, 'max': -4}.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 5.
crs (str, optional): Coordinate reference system. Defaults to 'EPSG:3857'.
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Line width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'. Can be year, quarter or month.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to image start dates.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to 'white'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
Returns:
str: File path to the output GIF image.
"""
CURRENT_YEAR, ROI_DEFAULT = sentinel1_defaults()
roi = roi or ROI_DEFAULT
end_year = end_year or CURRENT_YEAR
col = sentinel1_timeseries(
roi=roi,
start_year=start_year,
end_year=end_year,
start_date=start_date,
end_date=end_date,
frequency=frequency,
clip=True,
)
vis_params = vis_params or {"min": -25, "max": 5}
if out_gif is None:
out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
filename = "s1_ts_" + random_string() + ".gif"
out_gif = os.path.join(out_dir, filename)
elif not out_gif.endswith(".gif"):
print("The output file must end with .gif")
return
else:
out_gif = os.path.abspath(out_gif)
out_dir = os.path.dirname(out_gif)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if overlay_data is not None:
col = add_overlay(
col, overlay_data, overlay_color, overlay_width, overlay_opacity
)
if (
isinstance(dimensions, int)
and dimensions > 768
or isinstance(dimensions, str)
and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
):
count = col.size().getInfo()
basename = os.path.basename(out_gif)[:-4]
names = [
os.path.join(
out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
)
for i in range(count)
]
get_image_collection_thumbnails(
col,
out_dir,
vis_params=vis_params,
dimensions=dimensions,
names=names,
)
make_gif(
names,
out_gif,
fps=frames_per_second,
loop=loop,
mp4=False,
clean_up=True,
)
else:
video_args = vis_params.copy()
video_args["dimensions"] = dimensions
video_args["region"] = roi
video_args["framesPerSecond"] = frames_per_second
video_args["crs"] = crs
video_args["min"] = vis_params["min"]
video_args["max"] = vis_params["max"]
download_ee_video(col, video_args, out_gif)
if os.path.exists(out_gif):
if title is not None and isinstance(title, str):
add_text_to_gif(
out_gif,
out_gif,
xy=title_xy,
text_sequence=title,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if add_text:
if text_sequence is None:
text_sequence = col.aggregate_array("system:date").getInfo()
add_text_to_gif(
out_gif,
out_gif,
xy=text_xy,
text_sequence=text_sequence,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if os.path.exists(out_gif):
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
sentinel1_timeseries(roi=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', frequency='year', clip=False, band='VV', **kwargs)
¶
1 2 |
|
Adapted from https://code.earthengine.google.com/?scriptPath=Examples:Datasets/COPERNICUS_S1_GRD
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to a polygon partially covering Las Vegas and Lake Mead. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 2015. |
2015 |
end_year |
int |
Ending year for the timelapse. Defaults to current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'. |
'01-01' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'. |
'12-31' |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. Can be 'year', 'quarter' or 'month'. |
'year' |
band |
str |
Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land. |
'VV' |
**kwargs |
Arguments for sentinel1_filtering(). |
{} |
Returns:
Type | Description |
---|---|
object |
Returns an ImageCollection of Sentinel 1 images. |
Source code in geemap/timelapse.py
def sentinel1_timeseries(
roi=None,
start_year=2015,
end_year=None,
start_date="01-01",
end_date="12-31",
frequency="year",
clip=False,
band="VV",
**kwargs,
):
"""
Generates a Sentinel 1 ImageCollection,
based on mean composites following a steady frequency (f.e. 1 image per month)
Adapted from https://code.earthengine.google.com/?scriptPath=Examples:Datasets/COPERNICUS_S1_GRD
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to a polygon partially covering Las Vegas and Lake Mead.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'. Can be 'year', 'quarter' or 'month'.
band (str): Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.
**kwargs: Arguments for sentinel1_filtering().
Returns:
object: Returns an ImageCollection of Sentinel 1 images.
"""
CURRENT_YEAR, ROI_DEFAULT = sentinel1_defaults()
roi = roi or ROI_DEFAULT
end_year = end_year or CURRENT_YEAR
roi = valid_roi(roi)
start = f"{start_year}-{start_date}"
end = f"{end_year}-{end_date}"
dates = date_sequence(start, end, frequency)
col = ee.ImageCollection("COPERNICUS/S1_GRD").filterBounds(roi)
col = sentinel1_filtering(col, band=band, **kwargs).select(band)
n = 1
if frequency == "quarter":
n = 3
frequency = "month"
def transform(date): # coll, frequency
start = date
end = ee.Date(date).advance(n, frequency).advance(-1, "day")
return (
col.filterDate(start, end)
.mean()
.set(
{
"system:time_start": ee.Date(start).millis(),
"system:time_end": ee.Date(end).millis(),
"system:date": start,
}
)
)
imgList = dates.map(lambda date: transform(date))
imgColl = ee.ImageCollection.fromImages(imgList)
if clip:
imgColl = imgColl.map(lambda img: img.clip(roi))
return imgColl
sentinel2_timelapse(roi=None, out_gif=None, start_year=2015, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, cloud_pct=30, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1, **kwargs)
¶
Generates a Sentinel-2 timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
out_gif |
str |
File path to the output animated GIF. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 2015. |
2015 |
end_year |
int |
Ending year for the timelapse. Defaults to None, which means the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. |
'06-10' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. |
'09-20' |
bands |
list |
Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'Red Edge 1', 'Red Edge 2', 'Red Edge 3', 'Red Edge 4']. Defaults to ['NIR', 'Red', 'Green']. |
['NIR', 'Red', 'Green'] |
vis_params |
dict |
Visualization parameters. Defaults to None. |
None |
dimensions |
int |
a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
5 |
crs |
str |
Coordinate reference system. Defaults to 'EPSG:3857'. |
'EPSG:3857' |
apply_fmask |
bool |
Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. |
True |
cloud_pct |
int |
Maximum percentage of cloud coverage allowed. Defaults to 30. |
30 |
overlay_data |
int, str, list |
Administrative boundary to be drawn on the timelapse. Defaults to None. |
None |
overlay_color |
str |
Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'. |
'black' |
overlay_width |
int |
Line width of the overlay. Defaults to 1. |
1 |
overlay_opacity |
float |
Opacity of the overlay. Defaults to 1.0. |
1.0 |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. |
'year' |
date_format |
str |
Date format for the timelapse. Defaults to None. |
None |
title |
str |
The title of the timelapse. Defaults to None. |
None |
title_xy |
tuple |
Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
add_text |
bool |
Whether to add animated text to the timelapse. Defaults to True. |
True |
title_xy |
tuple |
Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None. |
('2%', '90%') |
text_sequence |
int, str, list |
Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None. |
None |
font_type |
str |
Font type. Defaults to "arial.ttf". |
'arial.ttf' |
font_size |
int |
Font size. Defaults to 20. |
20 |
font_color |
str |
Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
loop |
int |
Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0. |
0 |
mp4 |
bool |
Whether to convert the GIF to MP4. Defaults to False. |
False |
fading |
int | bool |
If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration). |
False |
step |
int |
Step size for selecting images. Defaults to 1. |
1 |
kwargs |
optional |
Additional arguments to pass the geemap.create_timeseries() function. |
{} |
Returns:
Type | Description |
---|---|
str |
File path to the output GIF image. |
Source code in geemap/timelapse.py
def sentinel2_timelapse(
roi=None,
out_gif=None,
start_year=2015,
end_year=None,
start_date="06-10",
end_date="09-20",
bands=["NIR", "Red", "Green"],
vis_params=None,
dimensions=768,
frames_per_second=5,
crs="EPSG:3857",
apply_fmask=True,
cloud_pct=30,
overlay_data=None,
overlay_color="black",
overlay_width=1,
overlay_opacity=1.0,
frequency="year",
date_format=None,
title=None,
title_xy=("2%", "90%"),
add_text=True,
text_xy=("2%", "2%"),
text_sequence=None,
font_type="arial.ttf",
font_size=20,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
loop=0,
mp4=False,
fading=False,
step=1,
**kwargs,
):
"""Generates a Sentinel-2 timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
out_gif (str, optional): File path to the output animated GIF. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'Red Edge 1', 'Red Edge 2', 'Red Edge 3', 'Red Edge 4']. Defaults to ['NIR', 'Red', 'Green'].
vis_params (dict, optional): Visualization parameters. Defaults to None.
dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
crs (str, optional): Coordinate reference system. Defaults to 'EPSG:3857'.
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
cloud_pct (int, optional): Maximum percentage of cloud coverage allowed. Defaults to 30.
overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
overlay_width (int, optional): Line width of the overlay. Defaults to 1.
overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Date format for the timelapse. Defaults to None.
title (str, optional): The title of the timelapse. Defaults to None.
title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
font_type (str, optional): Font type. Defaults to "arial.ttf".
font_size (int, optional): Font size. Defaults to 20.
font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
step (int, optional): Step size for selecting images. Defaults to 1.
kwargs (optional): Additional arguments to pass the geemap.create_timeseries() function.
Returns:
str: File path to the output GIF image.
"""
if end_year is None:
end_year = datetime.datetime.now().year
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
roi = roi.geometry()
elif isinstance(roi, ee.Geometry):
pass
else:
print("The provided roi is invalid. It must be an ee.Geometry")
return
if out_gif is None:
out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
filename = "s2_ts_" + random_string() + ".gif"
out_gif = os.path.join(out_dir, filename)
elif not out_gif.endswith(".gif"):
print("The output file must end with .gif")
return
else:
out_gif = os.path.abspath(out_gif)
out_dir = os.path.dirname(out_gif)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
allowed_bands = {
"Blue": "B2",
"Green": "B3",
"Red": "B4",
"Red Edge 1": "B5",
"Red Edge 2": "B6",
"Red Edge 3": "B7",
"NIR": "B8",
"Red Edge 4": "B8A",
"SWIR1": "B11",
"SWIR2": "B12",
"QA60": "QA60",
}
if bands is None:
bands = ["SWIR1", "NIR", "Red"]
for index, band in enumerate(bands):
if band in allowed_bands:
bands[index] = allowed_bands[band]
if len(bands) == 3:
pass
else:
raise Exception(
"You can only select 3 bands from the following: {}".format(
", ".join(allowed_bands)
)
)
try:
if vis_params is None:
vis_params = {}
vis_params["bands"] = bands
vis_params["min"] = 0
vis_params["max"] = 0.4
vis_params["gamma"] = [1, 1, 1]
if "reducer" not in kwargs:
kwargs["reducer"] = "median"
if "drop_empty" not in kwargs:
kwargs["drop_empty"] = True
if "parallel_scale" not in kwargs:
kwargs["parallel_scale"] = 1
kwargs["date_format"] = date_format
col = sentinel2_timeseries(
roi,
start_year,
end_year,
start_date,
end_date,
bands,
apply_fmask,
cloud_pct,
frequency,
step=step,
**kwargs,
)
col = col.select(bands).map(
lambda img: img.visualize(**vis_params).set(
{
"system:time_start": img.get("system:time_start"),
"system:date": img.get("system:date"),
}
)
)
if overlay_data is not None:
col = add_overlay(
col, overlay_data, overlay_color, overlay_width, overlay_opacity
)
if (
isinstance(dimensions, int)
and dimensions > 768
or isinstance(dimensions, str)
and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
):
count = col.size().getInfo()
basename = os.path.basename(out_gif)[:-4]
names = [
os.path.join(
out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
)
for i in range(count)
]
get_image_collection_thumbnails(
col,
out_dir,
vis_params={
"min": 0,
"max": 255,
"bands": ["vis-red", "vis-green", "vis-blue"],
},
dimensions=dimensions,
names=names,
)
make_gif(
names,
out_gif,
fps=frames_per_second,
loop=loop,
mp4=False,
clean_up=True,
)
else:
video_args = vis_params.copy()
video_args["dimensions"] = dimensions
video_args["region"] = roi
video_args["framesPerSecond"] = frames_per_second
video_args["crs"] = crs
video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
video_args["min"] = 0
video_args["max"] = 255
download_ee_video(col, video_args, out_gif)
if os.path.exists(out_gif):
if title is not None and isinstance(title, str):
add_text_to_gif(
out_gif,
out_gif,
xy=title_xy,
text_sequence=title,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if add_text:
if text_sequence is None:
text_sequence = col.aggregate_array("system:date").getInfo()
add_text_to_gif(
out_gif,
out_gif,
xy=text_xy,
text_sequence=text_sequence,
font_type=font_type,
font_size=font_size,
font_color=font_color,
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
duration=1000 / frames_per_second,
loop=loop,
)
if os.path.exists(out_gif):
reduce_gif_size(out_gif)
if isinstance(fading, bool):
fading = int(fading)
if fading > 0:
gif_fading(out_gif, out_gif, duration=fading, verbose=False)
if mp4:
out_mp4 = out_gif.replace(".gif", ".mp4")
gif_to_mp4(out_gif, out_mp4)
return out_gif
except Exception as e:
print(e)
sentinel2_timeseries(roi, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', bands=None, mask_cloud=True, cloud_pct=30, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1, step=1)
¶
Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Images include both level 1C and level 2A imagery.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
required |
start_year |
int |
Starting year for the timelapse. Defaults to 2015. |
2015 |
end_year |
int |
Ending year for the timelapse. Defaults to None, which will use the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'. |
'01-01' |
mask_cloud |
bool |
Whether to mask clouds. Defaults to True. |
True |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'. |
'12-31' |
bands |
list |
The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None. |
None |
cloud_pct |
int |
Maximum cloud percentage to include in the timelapse. Defaults to 30. |
30 |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. |
'year' |
reducer |
str |
The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'. |
'median' |
drop_empty |
bool |
Whether to drop empty images from the timeseries. Defaults to True. |
True |
date_format |
str |
Format of the date. Defaults to None. |
None |
parallel_scale |
int |
A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1. |
1 |
step |
int |
The step size to use when creating the date sequence. Defaults to 1. |
1 |
Returns:
Type | Description |
---|---|
object |
Returns an ImageCollection containing annual Sentinel 2 images. |
Source code in geemap/timelapse.py
def sentinel2_timeseries(
roi,
start_year=2015,
end_year=None,
start_date="01-01",
end_date="12-31",
bands=None,
mask_cloud=True,
cloud_pct=30,
frequency="year",
reducer="median",
drop_empty=True,
date_format=None,
parallel_scale=1,
step=1,
):
"""Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Images include both level 1C and level 2A imagery.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
mask_cloud (bool, optional): Whether to mask clouds. Defaults to True.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
cloud_pct (int, optional): Maximum cloud percentage to include in the timelapse. Defaults to 30.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
reducer (str, optional): The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
date_format (str, optional): Format of the date. Defaults to None.
parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
Returns:
object: Returns an ImageCollection containing annual Sentinel 2 images.
"""
if end_year is None:
end_year = datetime.date.today().year
def maskS2clouds(image):
qa = image.select("QA60")
# Bits 10 and 11 are clouds and cirrus, respectively.
cloudBitMask = 1 << 10
cirrusBitMask = 1 << 11
# Both flags should be set to zero, indicating clear conditions.
mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0))
return (
image.updateMask(mask)
.divide(10000)
.set(image.toDictionary(image.propertyNames()))
)
start = f"{start_year}-{start_date}"
end = f"{end_year}-{end_date}"
doy_start = ee.Number.parse(ee.Date(start).format("D"))
doy_end = ee.Number.parse(ee.Date(end).format("D"))
collection = (
ee.ImageCollection("COPERNICUS/S2_HARMONIZED")
.filterDate(start, end)
.filter(ee.Filter.calendarRange(doy_start, doy_end, "day_of_year"))
.filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", cloud_pct))
.filterBounds(roi)
)
if mask_cloud:
collection = collection.map(maskS2clouds)
else:
collection = collection.map(
lambda img: img.divide(10000).set(img.toDictionary(img.propertyNames()))
)
if bands is not None:
allowed_bands = {
"Blue": "B2",
"Green": "B3",
"Red": "B4",
"Red Edge 1": "B5",
"Red Edge 2": "B6",
"Red Edge 3": "B7",
"NIR": "B8",
"Red Edge 4": "B8A",
"SWIR1": "B11",
"SWIR2": "B12",
"QA60": "QA60",
}
for index, band in enumerate(bands):
if band in allowed_bands:
bands[index] = allowed_bands[band]
collection = collection.select(bands)
ts = create_timeseries(
collection,
start,
end,
roi,
bands,
frequency,
reducer,
drop_empty,
date_format,
parallel_scale,
step,
)
return ts
sentinel2_timeseries_legacy(roi=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', apply_fmask=True, frequency='year', date_format=None)
¶
Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Images include both level 1C and level 2A imagery.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 2015. |
2015 |
end_year |
int |
Ending year for the timelapse. Defaults to None, which will use the current year. |
None |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'. |
'01-01' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'. |
'12-31' |
apply_fmask |
bool |
Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. |
True |
frequency |
str |
Frequency of the timelapse. Defaults to 'year'. |
'year' |
date_format |
str |
Format of the date. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
object |
Returns an ImageCollection containing annual Sentinel 2 images. |
Source code in geemap/timelapse.py
def sentinel2_timeseries_legacy(
roi=None,
start_year=2015,
end_year=None,
start_date="01-01",
end_date="12-31",
apply_fmask=True,
frequency="year",
date_format=None,
):
"""Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
Images include both level 1C and level 2A imagery.
Args:
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
date_format (str, optional): Format of the date. Defaults to None.
Returns:
object: Returns an ImageCollection containing annual Sentinel 2 images.
"""
################################################################################
################################################################################
# Input and output parameters.
import re
# import datetime
if end_year is None:
end_year = datetime.date.today().year
if roi is None:
# roi = ee.Geometry.Polygon(
# [[[-180, -80],
# [-180, 80],
# [180, 80],
# [180, -80],
# [-180, -80]]], None, False)
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
if not isinstance(roi, ee.Geometry):
try:
roi = roi.geometry()
except Exception as e:
print("Could not convert the provided roi to ee.Geometry")
print(e)
return
# Adjusts longitudes less than -180 degrees or greater than 180 degrees.
geojson = ee_to_geojson(roi)
geojson = adjust_longitude(geojson)
roi = ee.Geometry(geojson)
feq_dict = {
"year": "YYYY",
"month": "YYYY-MM",
"quarter": "YYYY-MM",
}
if date_format is None:
date_format = feq_dict[frequency]
if frequency not in feq_dict:
raise ValueError("frequency must be year, quarter, or month.")
################################################################################
# Setup vars to get dates.
if (
isinstance(start_year, int)
and (start_year >= 2015)
and (start_year <= get_current_year())
):
pass
else:
print("The start year must be an integer >= 2015.")
return
if (
isinstance(end_year, int)
and (end_year >= 2015)
and (end_year <= get_current_year())
):
pass
else:
print(f"The end year must be an integer <= {get_current_year()}.")
return
if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
r"[0-9]{2}-[0-9]{2}", end_date
):
pass
else:
print("The start data and end date must be month-day, such as 06-10, 09-20")
return
try:
datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
except Exception as e:
raise ValueError("The input dates are invalid.")
try:
start_test = datetime.datetime(
int(start_year), int(start_date[:2]), int(start_date[3:5])
)
end_test = datetime.datetime(
int(end_year), int(end_date[:2]), int(end_date[3:5])
)
if start_test > end_test:
raise ValueError("Start date must be prior to end date")
except Exception as e:
raise Exception(e)
def days_between(d1, d2):
d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
return abs((d2 - d1).days)
n_days = days_between(
str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
)
start_month = int(start_date[:2])
start_day = int(start_date[3:5])
# start_date = str(start_year) + "-" + start_date
# end_date = str(end_year) + "-" + end_date
# # Define a collection filter by date, bounds, and quality.
# def colFilter(col, aoi): # , startDate, endDate):
# return(col.filterBounds(aoi))
# Get Sentinel 2 collections, both Level-1C (top of atmophere) and Level-2A (surface reflectance)
MSILCcol = ee.ImageCollection("COPERNICUS/S2")
MSI2Acol = ee.ImageCollection("COPERNICUS/S2_SR")
# Define a collection filter by date, bounds, and quality.
def colFilter(col, roi, start_date, end_date):
return col.filterBounds(roi).filterDate(start_date, end_date)
# .filter('CLOUD_COVER < 5')
# .filter('GEOMETRIC_RMSE_MODEL < 15')
# .filter('IMAGE_QUALITY == 9 || IMAGE_QUALITY_OLI == 9'))
# Function to get and rename bands of interest from MSI
def renameMSI(img):
return img.select(
["B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12", "QA60"],
[
"Blue",
"Green",
"Red",
"Red Edge 1",
"Red Edge 2",
"Red Edge 3",
"NIR",
"Red Edge 4",
"SWIR1",
"SWIR2",
"QA60",
],
)
# Add NBR for LandTrendr segmentation.
def calcNbr(img):
return img.addBands(
img.normalizedDifference(["NIR", "SWIR2"]).multiply(-10000).rename("NBR")
).int16()
# Define function to mask out clouds and cloud shadows in images.
# Use CFmask band included in USGS Landsat SR image product.
def fmask(img):
cloudOpaqueBitMask = 1 << 10
cloudCirrusBitMask = 1 << 11
qa = img.select("QA60")
mask = (
qa.bitwiseAnd(cloudOpaqueBitMask)
.eq(0)
.And(qa.bitwiseAnd(cloudCirrusBitMask).eq(0))
)
return img.updateMask(mask)
# Define function to prepare MSI images.
def prepMSI(img):
orig = img
img = renameMSI(img)
if apply_fmask:
img = fmask(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
"bicubic"
)
# Get annual median collection.
def getAnnualComp(y):
startDate = ee.Date.fromYMD(
ee.Number(y), ee.Number(start_month), ee.Number(start_day)
)
endDate = startDate.advance(ee.Number(n_days), "day")
# Filter collections and prepare them for merging.
MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)
# Merge the collections.
col = MSILCcoly.merge(MSI2Acoly)
yearImg = col.median()
nBands = yearImg.bandNames().size()
yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
return calcNbr(yearImg).set(
{
"year": y,
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
# Get quarterly median collection.
def getQuarterlyComp(startDate):
startDate = ee.Date(startDate)
endDate = startDate.advance(3, "month")
# Filter collections and prepare them for merging.
MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)
# Merge the collections.
col = MSILCcoly.merge(MSI2Acoly)
yearImg = col.median()
nBands = yearImg.bandNames().size()
yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
return calcNbr(yearImg).set(
{
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
# Get monthly median collection.
def getMonthlyComp(startDate):
startDate = ee.Date(startDate)
endDate = startDate.advance(1, "month")
# Filter collections and prepare them for merging.
MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)
# Merge the collections.
col = MSILCcoly.merge(MSI2Acoly)
yearImg = col.median()
nBands = yearImg.bandNames().size()
yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
return calcNbr(yearImg).set(
{
"system:time_start": startDate.millis(),
"nBands": nBands,
"system:date": ee.Date(startDate).format(date_format),
}
)
################################################################################
# Make a dummy image for missing years.
bandNames = ee.List(
[
"Blue",
"Green",
"Red",
"Red Edge 1",
"Red Edge 2",
"Red Edge 3",
"NIR",
"Red Edge 4",
"SWIR1",
"SWIR2",
"QA60",
]
)
fillerValues = ee.List.repeat(0, bandNames.size())
dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()
# ################################################################################
# # Get a list of years
# years = ee.List.sequence(start_year, end_year)
# ################################################################################
# # Make list of annual image composites.
# imgList = years.map(getAnnualComp)
if frequency == "year":
years = ee.List.sequence(start_year, end_year)
imgList = years.map(getAnnualComp)
elif frequency == "quarter":
quarters = date_sequence(
str(start_year) + "-01-01", str(end_year) + "-12-31", "quarter", date_format
)
imgList = quarters.map(getQuarterlyComp)
elif frequency == "month":
months = date_sequence(
str(start_year) + "-01-01", str(end_year) + "-12-31", "month", date_format
)
imgList = months.map(getMonthlyComp)
# Convert image composite list to collection
imgCol = ee.ImageCollection.fromImages(imgList)
imgCol = imgCol.map(lambda img: img.clip(roi))
return imgCol
vector_to_gif(filename, out_gif, colname, vmin=None, vmax=None, step=1, facecolor='black', figsize=(10, 8), padding=3, title=None, add_text=True, xy=('1%', '1%'), fontsize=20, add_progress_bar=True, progress_bar_color='blue', progress_bar_height=5, dpi=300, fps=10, loop=0, mp4=False, keep_png=False, verbose=True, open_args={}, plot_args={})
¶
Convert a vector to a gif. This function was inspired by by Johannes Uhl's shapefile2gif repo at https://github.com/johannesuhl/shapefile2gif. Credits to Johannes Uhl.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
The input vector file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif" |
required |
out_gif |
str |
The output gif file. |
required |
colname |
str |
The column name of the vector that contains numerical values. |
required |
vmin |
float |
The minimum value to filter the data. Defaults to None. |
None |
vmax |
float |
The maximum value to filter the data. Defaults to None. |
None |
step |
float |
The step to filter the data. Defaults to 1. |
1 |
facecolor |
str |
The color to visualize the data. Defaults to "black". |
'black' |
figsize |
tuple |
The figure size. Defaults to (10, 8). |
(10, 8) |
padding |
int |
The padding of the figure tight_layout. Defaults to 3. |
3 |
title |
str |
The title of the figure. Defaults to None. |
None |
add_text |
bool |
Whether to add text to the figure. Defaults to True. |
True |
xy |
tuple |
The position of the text from the lower-left corner. Defaults to ("1%", "1%"). |
('1%', '1%') |
fontsize |
int |
The font size of the text. Defaults to 20. |
20 |
add_progress_bar |
bool |
Whether to add a progress bar to the figure. Defaults to True. |
True |
progress_bar_color |
str |
The color of the progress bar. Defaults to "blue". |
'blue' |
progress_bar_height |
int |
The height of the progress bar. Defaults to 5. |
5 |
dpi |
int |
The dpi of the figure. Defaults to 300. |
300 |
fps |
int |
The frames per second (fps) of the gif. Defaults to 10. |
10 |
loop |
int |
The number of loops of the gif. Defaults to 0, infinite loop. |
0 |
mp4 |
bool |
Whether to convert the gif to mp4. Defaults to False. |
False |
keep_png |
bool |
Whether to keep the png files. Defaults to False. |
False |
verbose |
bool |
Whether to print the progress. Defaults to True. |
True |
open_args |
dict |
The arguments for the geopandas.read_file() function. Defaults to {}. |
{} |
plot_args |
dict |
The arguments for the geopandas.GeoDataFrame.plot() function. Defaults to {}. |
{} |
Source code in geemap/timelapse.py
def vector_to_gif(
filename,
out_gif,
colname,
vmin=None,
vmax=None,
step=1,
facecolor="black",
figsize=(10, 8),
padding=3,
title=None,
add_text=True,
xy=("1%", "1%"),
fontsize=20,
add_progress_bar=True,
progress_bar_color="blue",
progress_bar_height=5,
dpi=300,
fps=10,
loop=0,
mp4=False,
keep_png=False,
verbose=True,
open_args={},
plot_args={},
):
"""Convert a vector to a gif. This function was inspired by by Johannes Uhl's shapefile2gif repo at
https://github.com/johannesuhl/shapefile2gif. Credits to Johannes Uhl.
Args:
filename (str): The input vector file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"
out_gif (str): The output gif file.
colname (str): The column name of the vector that contains numerical values.
vmin (float, optional): The minimum value to filter the data. Defaults to None.
vmax (float, optional): The maximum value to filter the data. Defaults to None.
step (float, optional): The step to filter the data. Defaults to 1.
facecolor (str, optional): The color to visualize the data. Defaults to "black".
figsize (tuple, optional): The figure size. Defaults to (10, 8).
padding (int, optional): The padding of the figure tight_layout. Defaults to 3.
title (str, optional): The title of the figure. Defaults to None.
add_text (bool, optional): Whether to add text to the figure. Defaults to True.
xy (tuple, optional): The position of the text from the lower-left corner. Defaults to ("1%", "1%").
fontsize (int, optional): The font size of the text. Defaults to 20.
add_progress_bar (bool, optional): Whether to add a progress bar to the figure. Defaults to True.
progress_bar_color (str, optional): The color of the progress bar. Defaults to "blue".
progress_bar_height (int, optional): The height of the progress bar. Defaults to 5.
dpi (int, optional): The dpi of the figure. Defaults to 300.
fps (int, optional): The frames per second (fps) of the gif. Defaults to 10.
loop (int, optional): The number of loops of the gif. Defaults to 0, infinite loop.
mp4 (bool, optional): Whether to convert the gif to mp4. Defaults to False.
keep_png (bool, optional): Whether to keep the png files. Defaults to False.
verbose (bool, optional): Whether to print the progress. Defaults to True.
open_args (dict, optional): The arguments for the geopandas.read_file() function. Defaults to {}.
plot_args (dict, optional): The arguments for the geopandas.GeoDataFrame.plot() function. Defaults to {}.
"""
import geopandas as gpd
import matplotlib.pyplot as plt
out_dir = os.path.dirname(out_gif)
tmp_dir = os.path.join(out_dir, "tmp_png")
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
if isinstance(filename, str):
gdf = gpd.read_file(filename, **open_args)
elif isinstance(filename, gpd.GeoDataFrame):
gdf = filename
else:
raise ValueError(
"filename must be a string or a geopandas.GeoDataFrame object."
)
bbox = gdf.total_bounds
if colname not in gdf.columns:
raise Exception(
f"{colname} is not in the columns of the GeoDataFrame. It must be one of {gdf.columns}"
)
values = gdf[colname].unique().tolist()
values.sort()
if vmin is None:
vmin = values[0]
if vmax is None:
vmax = values[-1]
options = range(vmin, vmax + step, step)
W = bbox[2] - bbox[0]
H = bbox[3] - bbox[1]
if xy is None:
# default text location is 5% width and 5% height of the image.
xy = (int(0.05 * W), int(0.05 * H))
elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
raise Exception("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")
elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
x, y = xy
if (x > 0) and (x < W) and (y > 0) and (y < H):
pass
else:
print(
f"xy is out of bounds. x must be within [0, {W}], and y must be within [0, {H}]"
)
return
elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
x, y = xy
if ("%" in x) and ("%" in y):
try:
x = float(x.replace("%", "")) / 100.0 * W
y = float(y.replace("%", "")) / 100.0 * H
except Exception:
raise Exception(
"The specified xy is invalid. It must be formatted like this ('10%', '10%')"
)
else:
raise Exception(
"The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
)
x = bbox[0] + x
y = bbox[1] + y
for index, v in enumerate(options):
if verbose:
print(f"Processing {index+1}/{len(options)}: {v}...")
yrdf = gdf[gdf[colname] <= v]
fig, ax = plt.subplots()
ax = yrdf.plot(facecolor=facecolor, figsize=figsize, **plot_args)
ax.set_title(title, fontsize=fontsize)
ax.set_axis_off()
ax.set_xlim([bbox[0], bbox[2]])
ax.set_ylim([bbox[1], bbox[3]])
if add_text:
ax.text(x, y, v, fontsize=fontsize)
fig = ax.get_figure()
plt.tight_layout(pad=padding)
fig.savefig(tmp_dir + os.sep + "%s.png" % v, dpi=dpi)
plt.clf()
plt.close("all")
png_to_gif(tmp_dir, out_gif, fps=fps, loop=loop)
if add_progress_bar:
add_progress_bar_to_gif(
out_gif,
out_gif,
progress_bar_color,
progress_bar_height,
duration=1000 / fps,
loop=loop,
)
if mp4:
gif_to_mp4(out_gif, out_gif.replace(".gif", ".mp4"))
if not keep_png:
shutil.rmtree(tmp_dir)
if verbose:
print(f"Done. The GIF is saved to {out_gif}.")